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Fully noncommutative discrete Liouville equation

By

Rinat Kashaev *

Abstract

A fully noncommutative version of the discrete Liouville equation is suggested, based on

a class of representations of mapping class groups of punctured surfaces arising from certain

set‐theoretical solutions of the Pentagon equation.

§1. Introduction

The discrete Liouville equation [2] has the form

(1.1) x_{m,n-1}x_{m,n+1}=(1+$\chi$_{m-1,n})(1+x_{m+1,n}) ,

where the �discrete space‐time� is represented by the integer lattice \mathbb{Z}^{2} and the dynam‐
ical field $\chi$_{m,n} is a strictly positive real function on this lattice. To see that this is a

discretized version of the Liouville equation, we take a small positive parameter  $\epsilon$ as the

lattice spacing of the discretized space‐time, and consider the combination

 $\phi$_{ $\epsilon$}(x, t)=-\log($\epsilon$^{2}$\chi$_{m,n})

in the limit, where  $\epsilon$\rightarrow 0, m,  n\rightarrow\infty in such a way that the products  x=m $\epsilon$
,

and

 t=n $\epsilon$ are kept fixed. If a solution  $\chi$_{m,n} of the discrete Liouville equation is such that

such a limit exists, then the limiting value $\phi$_{0}(x, t) solves the Liouville equation

(1.2) \displaystyle \frac{\partial^{2} $\phi$}{\partial t^{2}}-\frac{\partial^{2} $\phi$}{\partial_{X^{2}}}=-2e^{ $\phi$}.
The analytically continued version of it with imaginary time variable t\rightarrow it is the

equation
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(1.3) \displaystyle \frac{\partial^{2} $\phi$}{\partial z\partial\overline{z}}=\frac{1}{2}e^{ $\phi$}, z=x+it,
which describes surfaces of constant negative curvature. Indeed, if  p:\mathbb{H}\rightarrow $\Sigma$ is a

universal covering map for a hyperbolic surface  $\Sigma$
,

where \mathbb{H} is the upper half plane with

the standard Poincaré metric ds^{2}
,

and  $\sigma$:U\rightarrow \mathbb{H},  U\subset $\Sigma$ ,
a local section of  p , then, the

pull‐back metric $\sigma$^{*}ds^{2} in conformal form e^{ $\phi$}|dz|^{2}, z being a local complex coordinate

on U , gives a solution  $\phi$ of the Liouville equation (1.3) on  U.

In this paper, using the connection of the discrete Liouville equation with the

mapping class dynamics in Teichmüller space [1, 5], we describe a fully noncommutative

version of the discrete Liouville equation. The construction is based on the combinatorial

settings of the quantum Teichmüller theory [3, 4] and the quantum theory of the discrete

Liouville equation [2] (see also [5] for a review).

§2. Discrete Liouville equation and Teichmüller space

The key instrument in our construction will be the realization of the discrete Liou‐

ville equation as a mapping class group dynamics in Teichmüller space. Following the

paper [5], we describe this result in the case of an infinite strip.
Consider a strip with marked points on its boundary as pair of topological spaces

S=(\mathbb{R}\times I, \mathbb{Z}\times\partial I) ,
where I=[0 ,

1 ] is the unit interval in R. Elements of the subset

\mathbb{Z}\times\partial I are marked points, and in the sequel they will be denoted as

A_{k}=(k, 0) , B_{k}=(k, 1) , k\in \mathbb{Z}.

Additionally, we choose the triangulation of S shown in this picture

..

A_{i-1} A_{i} A_{i+1}

and we associate real positive variables \{f_{k}\}_{k\in \mathbb{Z}} with its internal edges such that f_{2i-1}
is associated with the edge A_{i}B_{i} and f_{2i} with the edge A_{i+1}B_{i} . These variables will be

identified with the shear coordinates in the corresponding Teichmüller space of hyper‐
bolic structures in S as follows.

orientation preserving realizations of the strip S as an ideal geodesic strip in the

hyperbolic plane \mathbb{H} bijectively correspond to orientation preserving embeddings of the

marked points into the boundary of the hyperbolic plane, g:\mathbb{Z}\times\partial I\rightarrow\partial \mathbb{H} ,
considered

up to overall PSLR transformations. In the upper half‐space model of \mathbb{H}
,

we can

assume that

g(\mathbb{Z}\times\partial I)\subset \mathbb{R}\subset\partial \mathbb{H}, g(A_{i})<g(A_{i+1})<g(B_{j+1})<g(B_{j}) , \forall i, j\in \mathbb{Z},
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and define

f_{2i-1}=[g(B_{i}), g(A_{i+1}), g(A_{i}), g(B_{i-1})],

f_{2i}=[g(B_{i}), g(B_{i+1}), g(A_{i+1}), g(A_{i})], i\in \mathbb{Z},

where

[z_{1}, z_{2}, z_{3}, z_{4}]\equiv-(z_{1}-z_{2})(z_{2}-z_{3})^{-1}(z_{3}-z_{4})(z_{4}-z_{1})^{-1}

is a cross‐ratio of four numbers.

The mapping class group of S is given by all orientation preserving selfhomeomor‐

phisms preserving the set of marked points, not necessarily point‐wise. We are interested

in the mapping class [f] which fixes the bottom marked points \mathbb{Z}\times\{0\} point‐wise and

cyclically permutes the top marked points \mathbb{Z}\times\{1\} :

A_{i}\mapsto A_{i}, B_{i}\mapsto B_{i+1}, i\in \mathbb{Z}.

It is represented by the explicit linear map

f:\mathbb{R}\times I\rightarrow \mathbb{R}\times I, f(x, t)=(x+t, t) .

The non‐quantum version of the result of [1], adapted to the case of our infinite strip,
can be stated as the following theorem.

Theorem 2.1 ([1,5 The discrete dynamical system on the Teichmüller space

of the strip S , corresponding to the mapping class [f] ,
is described by the discrete Liou‐

ville equation (1.1) on the sublattice m+n=1 (mod2) with the evolution step being

identified with the translation along a �light‐cone�:

$\chi$_{m,n}\mapsto$\chi$_{m,n}'=$\chi$_{m-1,n+1}.

Indeed, under a flip, the shear coordinates transform according to the formulae [3]:

(2.1) a'=a/(1+1/e) , d'=d/(1+1/e) , b'=b(1+e) , c'=c(1+e) , e'=1/e,

where the variables are shown in Figure 1, and all other variables staying unchanged.
We remark that this transformation law still applies even if some of the sides of the

quadrilateral are a part of the boundary. The only modification is that there is no

coordinate associated to a boundary edge, and thus there is nothing to be transformed

on this edge.
From Figure 2 and the transformation law (2.1) it follows that the mapping class

[f] acts in the Teichmüller space according to the following formulae

(2.2) f_{2j}\mapsto f_{2j}'=1/f_{2j-1}, f_{2j+1}\mapsto f_{2j+1}'=f_{2j}(1+f_{2j-1})(1+f_{2j+1}) .
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\rightarrow

Figure 1. A flip transformation corresponding to equations (2.1).

\rightarrow[f]

\mathrm{p}\mathrm{p}
\mathrm{p}\mathrm{p}

\mathrm{p}\mathrm{p}
\mathrm{p}\mathrm{p}

\downarrow

\mathrm{p}\mathrm{p}
\mathrm{p}\mathrm{p}
\mathrm{p}\mathrm{p}
\mathrm{p}\mathrm{p}

Figure 2. The action of the mapping class [f] on the triangulated strip: it is identical

on the bottom boundary and a shift to the right by one spacing on the top boundary.

If we identify the variables \{f_{k}\}_{k\in \mathbb{Z}} with the initial data for the discrete Liouville

equation (1.1) on the sublattice m+n=1 (mod2) along the zig‐zag line n\in\{-1, 0\}
according to the formulae

f_{m}=\left\{\begin{array}{l}
$\chi$_{m,0} \mathrm{i}\mathrm{f} m=1 (\mathrm{m}\mathrm{o}\mathrm{d}2);\\
1/$\chi$_{m,-1} \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right.
then, the transformation formulae (2.2) exactly correspond to the light‐cone evolution:

$\chi$_{m,n}\mapsto$\chi$_{m,n}'=$\chi$_{m-1,n+1}

for the time instants n\in\{-1, 0\}.

§3. Mapping class group representations

Let  $\Sigma$ be an oriented surface with a set of punctures  P . We assume that it admits

ideal triangulations. Fix an index set J of cardinality equal to that of the set of triangles
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in ideal triangulations of  $\Sigma$ . In particular, for a surface of finite type  $\Sigma$=$\Sigma$_{g,s} of genus

g and s punctures, we have |J|=2(2g-2+s) . We will denote by J! the set of all

bijections of the set J to itself.

Definition 3.1. A decorated ideal triangulation of  $\Sigma$ is an ideal triangulation  $\tau$,

where all triangles are provided with a marked corner, and a bijective map

\overline{ $\tau$}:J\ni j\mapsto\overline{ $\tau$}_{j}\in T( $\tau$)

is fixed. Here T( $\tau$) is the set of all triangles of  $\tau$.

Graphically, the marked corner of a triangle \overline{ $\tau$}_{j} is indicated by an asterisk and the

index j is put inside the triangle. The set of all decorated ideal triangulations of  $\Sigma$ is

denoted by \triangle_{ $\Sigma$}.

§3.1. Groupoid of decorated ideal triangulations

Recall that if a group G freely acts on a set X then there is an associated groupoid
defined as follows. The objects are the G‐orbits in X

,
while morphisms are G‐orbits

in X\times X with respect to the diagonal action. Denote by [x] the object represented

by the element x\in X and [x, y] the morphism represented by the pair of elements

(x, y)\in X\times X . Two morphisms [x, y] and [u, v] ,
are composable if and only if [y]=[u]

and their composition is [x, y][u, v]= [x , gv], where g\in G is the unique element sending
u to y . The inverse and the identity morphisms are given respectively by [x, y]^{-1}=[y, x]
and \mathrm{i}\mathrm{d}_{[x]}=[x, x] . In what follows, products of the form [x_{1}, x_{2}][x_{2}, x_{3}]\cdots[x_{n-1}, x_{n}] will

be written as [x_{1}, x_{2}, x_{3}, . . . , x_{n-1}, x_{n}].
Remarking that the mapping class group \mathcal{M}_{ $\Sigma$} of  $\Sigma$ freely acts on \triangle_{ $\Sigma$} ,

denote by
\mathcal{G}_{ $\Sigma$} the corresponding groupoid, called the groupoid of decorated ideal triangulations.
It admits a presentation with three types of generators and four types of nontrivial

relations.

The generators are of the form [ $\tau,\ \tau$^{ $\sigma$}], [ $\tau,\ \rho$_{i} $\tau$] ,
and [ $\tau,\ \omega$_{ij} $\tau$] ,

where $\tau$^{ $\sigma$} is obtained

from  $\tau$ by replacing the ordering map \overline{ $\tau$} by the map \overline{ $\tau$}\circ $\sigma$
,

where  $\sigma$\in J! is a permutation
of the set J,  $\rho$_{i} $\tau$ is obtained from  $\tau$ by changing the marked corner of the triangle \overline{ $\tau$}_{i}

as in Figure 3, and  $\omega$_{ij} $\tau$ is obtained from  $\tau$ by applying the flip transformation in the

quadrilateral composed of the triangles \overline{ $\tau$}_{i} and \overline{ $\tau$}_{j} as in Figure 4.

\rightarrow^{$\rho$_{i}}

Figure 3. Transformation $\rho$_{i}.
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\rightarrow^{$\omega$_{ij}}

Figure 4. Transformation $\omega$_{ij}.

There are two sets of relations satisfied by these generators. The first set is as

follows:

(3.1) [ $\tau,\ \tau$^{ $\alpha$}, ($\tau$^{ $\alpha$})^{ $\beta$}]=[ $\tau,\ \tau$^{ $\alpha \beta$}],  $\alpha$,  $\beta$\in J !,

(3.2) [ $\tau,\ \rho$_{i} $\tau,\ \rho$_{i}$\rho$_{i} $\tau,\ \rho$_{i}$\rho$_{i}$\rho$_{i} $\tau$]=\mathrm{i}\mathrm{d}_{[ $\tau$]},
(3.3) [ $\tau,\ \omega$_{ij} $\tau,\ \omega$_{ik}$\omega$_{ij} $\tau,\ \omega$_{jk}$\omega$_{ik}$\omega$_{ij} $\tau$]=[ $\tau,\ \omega$_{jk} $\tau,\ \omega$_{ij}$\omega$_{jk} $\tau$],

(3.4) [ $\tau,\ \omega$_{ij^{\mathcal{T}}}, $\rho$_{i}$\omega$_{ij^{\mathcal{T}}}, $\omega$_{ji}$\rho$_{i}$\omega$_{ij} $\tau$]=[ $\tau,\ \tau$^{(ij)}, $\rho$_{j}$\tau$^{(ij)}, $\rho$_{i}$\rho$_{j}$\tau$^{(ij)}].

The first two relations are evident, while the other two are shown graphically in Fig‐
ures 5, 6.

\rightarrow^{$\omega$_{ij}} \rightarrow^{$\omega$_{ik}}

jk

\rightarrow^{$\omega$_{ij}}

Figure 5. Pentagon relation (3.3).

The following commutation relations fulfill the remaining second set of relations:

(3.5) [ $\tau,\ \rho$_{i^{\mathcal{T}}}, ($\rho$_{i} $\tau$)^{ $\sigma$}]=[ $\tau,\ \tau$^{ $\sigma$}, $\rho$_{$\sigma$^{-1}(i)}$\tau$^{ $\sigma$}],
(3.6) [ $\tau,\ \omega$_{ij} $\tau$, ($\omega$_{ij} $\tau$)^{ $\sigma$}]=[ $\tau,\ \tau$^{ $\sigma$}, $\omega$_{$\sigma$^{-1}(i)$\sigma$^{-1}(i)}$\tau$^{ $\sigma$}],
(3.7) [ $\tau,\ \rho$_{j^{\mathcal{T}}}, $\rho$_{i}$\rho$_{j} $\tau$]=[ $\tau,\ \rho$_{i^{\mathcal{T}}}, $\rho$_{j}$\rho$_{i} $\tau$],

(3.8) [ $\tau,\ \rho$_{i} $\tau,\ \omega$_{jk}$\rho$_{i} $\tau$]=[ $\tau,\ \omega$_{jk} $\tau,\ \rho$_{i}$\omega$_{jk} $\tau$], i\not\in\{j, k\},

(3.9) [ $\tau,\ \omega$_{ij^{\mathcal{T}}}, $\omega$_{kl}$\omega$_{ij} $\tau$]=[ $\tau,\ \omega$_{kl^{\mathcal{T}}}, $\omega$_{ij}$\omega$_{kl} $\tau$], \{i, j\}\cap\{k, l\}=\emptyset.
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\rightarrow^{$\omega$_{ij}}

\leftarrow^{$\omega$_{ji}}

Figure 6. Inversion relation (3.4).

§3.2. Semisymmetric T‐matrices

Let C=(C, \otimes, s) be a symmetric (strict) monoidal category. A T ‐matrix in C is a

pair (V, T) ,
where V is an object of C and T\in \mathrm{E}\mathrm{n}\mathrm{d}(V\otimes V) satisfies the the following

Pentagon identity in End (V^{\otimes 3}) :

T_{12}T_{13}T_{23}=T_{23}T_{12}.

A semisymmetric T ‐matrix in C ,
is a triple (V, T, A) ,

where (V, T) is a T‐matrix in C

and A\in \mathrm{E}\mathrm{n}\mathrm{d}(V) is such that

A^{3}=\mathrm{i}\mathrm{d}_{V}, T(A\otimes \mathrm{i}\mathrm{d}_{V})s_{V},{}_{V}T=A\otimes A.

In what follows, we will call the element A of a semisymmetric T‐matrix the rotation

operator. The importance of semisymmetric T‐matrices comes from the following the‐

orem.

Theorem 3.2. Let (V, T, A) be a semisymmetric T ‐matrix. Then there exists a

unique homomorphism of groupoids from the groupoid of decorated ideal triangulations

\mathcal{G}_{ $\Sigma$} into the automorphism group \mathrm{A}\mathrm{u}\mathrm{t}(V^{\otimes J}) such that

[ $\tau,\ \tau$^{ $\sigma$}]\mapsto P_{ $\sigma$}, [ $\tau,\ \rho$_{i} $\tau$]\mapsto A_{i}, [ $\tau,\ \omega$_{ij} $\tau$]\mapsto T_{ij}.

§3.3. Set‐theoretical semisymmetric T‐matrices

A semisymmetric T‐matrix is called set‐theoretical if the underlying category is the

category of sets with the monoidal structure given by the cartesian product. In this

case, the map T:V^{2}\rightarrow V^{2} corresponds to two binary operations V^{2}\rightarrow V

(x, y)T=(xy, x*y)

satisfying the equations

(xy)z=x(yz) , x*(yz)=(x*y)((xy)*z) , (x*y)*((xy)*z)=y*z.
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Here we use the unusual convention that the maps act from right to left. Let us denote

also

(x)A=\hat{x}, (x)A^{2}=\check{x}.

A group G is called group with addition if it is provided with an associative and

commutative binary operation called addition with respect to which the group multi‐

plication is distributive.

One can show that no finite group can be a group with addition. The set of positive
real numbers \mathbb{R}>0 is naturally a group with addition as well as its subgroup of positive
rationals \mathbb{Q}_{>0} . The group of integers \mathbb{Z} is also a group with addition where the addition

is the maximum operation \displaystyle \max(m, n) . An example of a non Abelian group with addition

is given by the group of upper‐triangular real two‐by‐two matrices with positive reals

on the diagonal. The addition here is given by the usual matrix addition.

Proposition 3.3. Let G be a group with addition and c\in G a central element

(for example, the identity element 1). Then there exists a set‐theoretical semisymmetric
T matrix with the underlying set G^{2} and the following structural operations

xy=(x_{1}, x_{2})(y_{1}, y_{2})=(x_{1}y_{1}, x_{1}y_{2}+x_{2}) ,

x*y=((1+y_{2}x_{2}^{-1}x_{1})^{-1}y_{1}, (1+y_{2}x_{2}^{-1}x_{1})^{-1}y_{2}x_{2}^{-1}) ,

\hat{x}=(\overline{x_{1},x_{2}})=(cx1-1_{x_{2},x_{1}^{-1})}.

The ratio coordinates in the Teichmüller space introduced in [4] correspond to the

positive real numbers \mathbb{R}>0 considered as a group with addition.

§4. Fully noncommutative discrete Liouville equation

Following Section 2, we apply Theorem 3.2 to realize the discrete dynamical system

corresponding to the mapping class [f] of the infinite strip S=(\mathbb{R}\times I, \mathbb{Z}\times\partial I) . We

choose the following decorated ideal triangulation:
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where we use the index set J=\mathbb{Z} . Realization of the mapping class [f] through a

T‐matrix (V, T) is obtained from the following commutative diagram:

\rightarrow^{[f]}

\Vert \downarrow$\Pi$_{i\in \mathbb{Z}}T_{2i-1,2i}

Notice that in this case the rotation operator is not used and the dynamical system can

be defined for any T‐matrix. In particular, for a set‐theoretical T‐matrix (X, T) ,
we

can color our triangulation with values an element g of the the set X^{J} :

where x_{i}=g(2i+1) and y_{i}=g(2i) . Then the associated mapping class dynamics is

described by the equations

x_{i,t+1}=x_{i-1,ty_{i,t}}, y_{i,t+1}=x_{i-1,t}*y_{i,t}, i, t\in \mathbb{Z}.

§4.1. Liouville dynamics in groups with addition

Let G be a group with addition. Associated to Proposition 3.3 evolution equation
of Liouville type is given by four G‐valued fields:

x_{i,m,n}, y_{i,m,n}, i\in\{1, 2\}, m, n\in \mathbb{Z}

satisfying four equations

x_{1,m,n+1}=x_{1,m-1,n}y_{1,m,n}, y_{2,m,n+1^{X}2,m,n+1}=y_{2,m,n},
-1 -1 -1 -1

w_{m,n}\equiv y2,m,n+1y_{2,m-1,n}y2,m-1,n-1y_{2,m,n}=x_{1,m-1,n+1}x_{1,m,n+2}x_{1,m,n+1^{X}1,m-1,n},

w_{m,n}+y_{2,m,n+1^{X}1,m-1,n}=1

Suppose our group with addition G is embedded into a ring R . Then, defining a new

field

$\eta$_{m,n}=y_{2,m,n}y_{2,m-1,n-1}^{-1},
we rewrite our evolution system in the form

$\chi$_{m+1,n+1}=(1+$\chi$_{m+1,n})\overline{ $\chi$}_{m,n-1}^{-1}(1+\overline{ $\chi$}_{m,n})
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where we use the notation

$\chi$_{m,n}\equiv($\eta$_{m,n+1}^{-1}$\eta$_{m,n}-1)^{-1}, \overline{ $\chi$}_{m,n}\equiv($\eta$_{m,n}$\eta$_{m,n+1}^{-1}-1)^{-1}

In the the case of a commutative ring, we obviously have \overline{ $\chi$}_{m,n}=$\chi$_{m,n} and we recover

the discrete Liouville equation (1.1) in a slightly differently parameterized space‐time
lattice.
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