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The \mathrm{s}\mathrm{u}() WZNW fusion ring as integrable model: \mathrm{a}

new algorithm to compute fusion coecients

By

Christian KORFF *

Abstract

This is a proceedings article reviewing a recent combinatorial construction of the sû(n)k
WZNW fusion ring by C. Stroppel and the author. It contains one novel aspect: the explicit
derivation of an algorithm for the computation of fusion coecients dierent from the Kac‐

Walton formula. The discussion is presented from the point of view of a vertex model in

statistical mechanics whose partition function generates the fusion coecients. The statistical

model can be shown to be integrable by linking its transfer matrix to a particular solution of the

Yang‐Baxter equation. This transfer matrix can be identied with the generating function of

an (innite) set of polynomials in a noncommutative alphabet: the generators of the local ane

plactic algebra. The latter is a generalisation of the plactic algebra occurring in the context

of the Robinson‐Schensted correspondence. One can dene analogues of Schur polynomials in

this noncommutative alphabet which become identical to the fusion matrices when represented
as endomorphisms over the state space of the integrable model. Crucial is the construction of

an eigenbasis, the Bethe vectors, which are the idempotents of the fusion algebra.

§1. Introduction

Wess‐Zumino‐Novikov‐Witten (WZNW) models are an important class of confor‐

mal field theories (CFT) distinguished by their Lie algebraic symmetry. Due to this

symmetry the primary fields of WZNW theories are in one‐to‐one correspondence with

the integrable highest weight representations of an ane Lie algebra; see e.g. the text

book [4] for details and references. Consider the sû(n)k WZNW model, then the set of
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all dominant integral weights of level k\in \mathbb{Z}_{\geq 0} is given by

(1.1) P_{k}^{+}=\displaystyle \{\times=\sum_{i=1}^{n}m_{i}\hat{ $\omega$}_{i}|\sum_{i=1}^{n}m_{i}=k, m_{i}\in \mathbb{Z}_{\geq 0}\}
where the \hat{ $\omega$}_{i} �s denote the fundamental ane weights of the ane Lie algebra \mathfrak{s}û(n); see

e.g. [13] for details. Note that we use the label n instead of 0 for the ane node. In

what follows it will be convenient to identify elements in the set P_{k}^{+} with the partitions

\mathcal{P}_{\leq n-1,k} whose Young diagram fits into a bounding box of height n-1 and width k.

Namely, dene a bijection P_{k}^{+}\rightarrow \mathcal{P}_{\leq n-1,k} by setting

(1.2) \hat{ $\lambda$}\mapsto $\lambda$=($\lambda$_{1}, \ldots, $\lambda$_{n-1}) with $\lambda$_{i}-$\lambda$_{i+1}=m_{i} ,

where m_{i} is the so‐called Dynkin label, i.e. the coecient of the i^{\mathrm{t}\mathrm{h}} fundamental weight
in (1.1). Vice versa, given a partition  $\lambda$\in \mathcal{P}_{\leq n-1,k} we shall denote by \hat{ $\lambda$} the correspond‐

ing ane weight in P_{k}^{+}.
Since the set of dominant integral weights at fixed level k has cardinality |P_{k}^{+}|=

\left(\begin{array}{l}
n+k-1\\
k
\end{array}\right) , WZNW models are so‐called rational conformal field theories, i.e. they have

a finite set of primary fields from which all other fields can be generated. An important

ingredient in the description of rational conformal field theories is the concept of fusion:

in physics terminology one considers the operator product expansion of two primary
fields. While this can be made mathematically precise in the context of vertex operator

algebras and the fusion process can be identied with the product in the Grothendieck

ring of an abelian braided monoidal category in the context of tilting modules of quan‐

tum groups, we will not use this mathematical framework here.

Consider the free abelian group (with respect to addition) generated by P_{k}^{+} and

introduce the so‐called fusion product

(1.3) \displaystyle \times*\wedge=\sum_{\hat{ $\nu$}\in P_{k}^{+}}\mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k)t_{ $\phi$}},
by dening the structure constants \mathcal{N}_{\wedge\hat{ $\mu$}}^{(k)\wedge}\wedge\in \mathbb{Z}_{\geq 0} ,

called fusion coecients, via the

celebrated Verlinde formula [19]

(1.4) \displaystyle \mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k)\wedge}=\sum_{\hat{ $\sigma$}\in P_{k}^{+}}\frac{S_{\hat{ $\lambda$}\hat{ $\sigma$}}S_{\hat{ $\mu$}\hat{ $\sigma$}}S_{\hat{ $\nu$}\hat{ $\sigma$}}^{-1}}{S_{\emptyset\hat{ $\sigma$}}\wedge}
Here \emptyset\wedge denotes the weight corresponding to the empty partition and  S is the modular S‐

matrix describing the modular transformation  $\tau$\rightarrow-$\tau$^{-1} of ane characters. Among
other properties it enjoys unitarity S =S_{\hat{ $\nu$}\hat{ $\sigma$}}^{-1} and crossing symmetry \overline{S}_{\hat{ $\lambda$}\wedge}=S_{\hat{ $\lambda$}^{*}\wedge},
where $\lambda$^{*} is the dual weight obtained by taking the complement of  $\lambda$ in the (n-1)\times k
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bounding box and then deleting all n‐columns, $\lambda$^{*}=($\lambda$_{1}, $\lambda$_{1}-$\lambda$_{n-1}, $\lambda$_{1}-$\lambda$_{n-2}, .

::, $\lambda$_{1}-

$\lambda$_{2}) .

For WZNW models the explicit expression for S is known: the Kac‐Peterson for‐

mula [14] states S in terms of the Weyl group W and specialises for sû(n) to the

expression

(1.5) S_{ $\lambda$\wedge}=\displaystyle \frac{e^{i $\pi$ n(n-1)/4}}{\sqrt{n(k+n)^{n-1}}}\sum_{w\in W}(-1)^{l(w)}e^{-\frac{2 $\pi$ i}{k+n}( $\sigma$+ $\rho$,w( $\lambda$+ $\rho$))},
where  $\rho$ is the Weyl vector and  $\lambda$,  $\sigma$ denote the finite, non‐ane weights corresponding
to \times, \hat{ $\sigma$} . From this formula it is by no means obvious that the fusion coecients (1.4)
are non‐negative integers, however they have been identied with certain dimensions or

multiplicities in various dierent contexts as e.g. discussed in [9] (for references see loc.

cit.): dimensions of spaces of conformal blocks of 3‐point functions, so‐called moduli

spaces of generalised  $\theta$‐functions; outer multiplicities of truncated tensor products of

tilting modules of quantum groups at roots of unity; Littlewood‐Richardson coecients

of Hecke algebras at roots of unity; dimensions of local states in restricted‐solid‐on‐

solid models. In fact, (1.3) denes a unital, commutative ring over the integers \mathbb{Z},
which we shall refer to as the sû(n) fusion ring at level k

,
denoted by \mathcal{F}_{n,k} ,

and to the

corresponding unital, commutative and associative algebra \mathcal{F}_{n,k}^{\mathbb{C}}=\mathcal{F}_{n,k}\otimes_{\mathbb{Z}}\mathbb{C} as fusion
or ve rlinde algebra.

This article aims to give a non‐technical account of the main findings in [15] and

[16] regarding the sû(n) fusion ring. For proofs the reader is referred to the mentioned

papers. Sections 2 and 3 are largely a summary of previous results reviewing the de‐

nition of an integrable statistical mechanics model which generates the fusion ring. It

is convenient to describe the statistical model and its lattice congurations using non‐

intersecting paths, since this allows for instance a non‐technical denition of the transfer

matrix. However, it needs to be stressed that at the moment the path picture is not

used to give combinatorial proofs, instead the discussion is algebraic and employs the

solution to the Yang‐Baxter equation given in [16]. However, we present one result,

Corollary 2.3, which relates the counting of non‐intersecting paths on the cylinder to a

sum over fusion coecients. We also make contact with the phase model of Bogoliubov,

Izergin and Kitanine [2] where closely related algebraic structures have been discussed.

Section 4 states a detailed derivation of the new algorithm to compute fusion coe‐

cients. First a review of the Bethe ansatz equations is given by highlighting how they
are connected to a fusion potential. The latter diers from the familiar fusion potential
of Gepner [7] and the algorithm therefore yields expressions for fusion coecients in

terms of Littlewood‐Richardson coecients which dier from the ones obtained via the

celebrated Kac‐Walton formula [13] [20]; compare also with the work of Goodman and

Wenzl [10]. Section 5 stresses that the Bethe vectors constructed via the quantum in‐
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verse scattering method can be identied with the idempotents of the fusion ring. The

proof of this result has been given before [15] but their role has not been emphasized.
The modular \mathrm{S}‐matrix is the transition matrix from the basis of integrable weights to

the basis of Bethe vectors and, hence, can be expressed in terms of the generators of

a Yang‐Baxter algebra. We also present a new perspective on the ane plactic Schur

polynomials which are dened in terms of the transfer matrix via a determinant for‐

mula: they constitute the set of conserved quantities of the integrable model and hence

should be seen as the quantum analogue of a spectral curve. In the present model this

quantum spectral curve coincides with the collection of sû(n)k fusion rings for k\in \mathbb{Z}_{\geq 0}.
We conclude with some practical applications, recursion formulae for fusion coecients

at dierent level. The last section discusses how the findings summarised here might

generalise to a wider class of integrable models.

§2. Fusion coecients from statistical mechanics

We start by dening a statistical vertex model which is obtained in the crystal
limit of U_{q}\hat{\mathfrak{s}\mathrm{u}}(2) ; see [16]. Consider a n\times(n-1) square lattice with quasi‐periodic

boundary conditions in the horizontal direction, i.e. a square lattice on a cylinder with

n-1 rows. On the edges of the square lattice live statistical variables m\in \mathbb{Z}_{\geq 0} ,
which

we will identify with the Dynkin labels of dominant integrable weights below. To each

lattice conguration we assign a
\backslash Boltzmann weight� in \mathbb{C}[z][x_{1}, . ::, x_{n-1}] by taking

the product over (local) vertex congurations.
Label the statistical variables a, b, c, d\in \mathbb{Z}_{\geq 0} sitting on the edges of a vertex in the

i^{\mathrm{t}\mathrm{h}} lattice row as shown in Figure 1, then we assign to it the weight (compare with [16])

(2.1) \mathcal{R}_{c,d}^{a,b}(x_{i})=\left\{\begin{array}{l}
x_{i}^{a}, d=a+b-c, b\geq c\\
0, \mathrm{e}\mathrm{l}\mathrm{s}\mathrm{e}
\end{array}\right.
It is convenient to describe the vertex congurations in terms of non‐intersecting paths,
so‐called \infty‐friendly walkers; compare with [8, 11, 12]. In Figure 1  b walkers are entering
the vertex from above turning to the right, at which point a contingent of them of size b-

c chooses to defect. The defectors then join another group of a walkers coming from the

left. The Boltzmann weight of the i^{\mathrm{t}\mathrm{h}} lattice row is then given by z^{a_{n}}\displaystyle \prod_{1\leq j\leq n}\mathcal{R}_{c_{j},d_{j}}^{a_{j},b_{j}} (xi),
where we have introduced a parameter z which keeps track of how many walkers pass

the boundary. Figure 3 shows on a simple example that the weight of a single row is

easily computed by simply counting the number of horizontal edges.
Given two arbitrary but fixed ane weights \hat{ $\mu$}, \hat{v}\in P_{k}^{+} ,

denote by m(\hat{ $\mu$}) , m(\hat{v}) their

n‐tuples of Dynkin labels in (1.1). Denote by $\Gamma$_{\hat{ $\nu$}}^{\hat{\wedge}} the lattice congurations where the

outer vertical edges at the bottom and top of the cylinder take the values m(\hat{ $\mu$}) , m(\hat{v}) ,

respectively. Figure 2 shows on an example that each lattice conguration corresponds
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\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\ovalbox{\tt\small REJECT} d=a+b-c

=

d=a+b-c

=x^{a}

Figure 1. Graphical depiction of a vertex conguration with Boltzmann weight (2.1).
The statistical variables a, b, c, d\in \mathbb{Z}_{\geq 0} obey the constraints a+b=c+d and b\geq c.

to k nonintersecting paths some of which are closely bunched together. The corre‐

sponding partition function of the vertex model, i.e. the weighted sum over all lattice

congurations is dened as

(2.2) Z_{\hat{ $\nu$}}^{\hat{\wedge}}(x_{1}, \displaystyle \ldots, x_{n-1};z) := \sum \prod z^{a_{in}}\prod_{1\leq j\leq n}\mathcal{R}_{c_{ij},d_{ij}}^{a_{ij},b_{ij}}(x_{i})\{(a_{ij},b_{ij},c_{ij},d_{ij})\}\in$\Gamma$_{\hat{\wedge}}^{\hat{ $\nu$}}1\leq i\leq n-1

with (a_{ij}, b_{ij}, c_{ij}, d_{ij}) denoting the vertex conguration in the i^{th} row and j^{th} col‐

umn. As we will see below the partition function is symmetric in the variables x_{i}

and, therefore, can be expanded into a suitable basis in the ring of symmetric func‐

tions \mathbb{C}[z][x_{1}, . :. ; x_{n-1}]^{\mathrm{S}_{n-1}} . We choose the basis of Schur functions \{s_{ $\lambda$}\} where  $\lambda$ is a

partition with length \ell( $\lambda$)<n.
We remind the reader that the Schur function s_{ $\lambda$}(x_{1}, x_{n-1}) can be dened as

weighted sum of Young tableaux. Given a partition  $\lambda$
,

a Young tableau  t of shape |t|= $\lambda$
is a filling of the Young diagram with integers in the set \{1, . . . ; n-1\} such that the

numbers are weakly increasing in each row from left to right and are strictly increasing
in each column from top to bottom. To each tableau we assign the weight vector

 $\alpha$= ($\alpha$_{1}, . . :; $\alpha$_{n-1}) where $\alpha$_{i} is the multiplicity of i occuring in t . The Schur function is

then given as s_{ $\lambda$}(x_{1}, \displaystyle \ldots, x_{n-1})=\sum_{|t|= $\lambda$}x_{1}^{$\alpha$_{1}(t)}\cdots x_{n-1}^{$\alpha$_{n-1}(t)} . We state an explicit example.

Example 2.1. Let n=3 and  $\lambda$=(2,1) . Then the list of possible tableaux t

reads,

t=
, , , , , , ,

.

Thus, the Schur function is the following polynomial

s_{(2,1)}=x_{1}^{2}x_{2}+x_{1}^{2}X3+x_{1}x_{2}^{2}+2x_{1}x_{2}x_{3}+x_{1}x_{3}^{2}+x_{2}^{2}X3+x_{2}x_{3}^{2} .

Expanding the partition function (2.2) with respect to Schur functions we obtain a
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relation between the statistical mechanics model dened via (2.1) and the fusion algebra
of the sû(n)k‐WZNW model [16].

Proposition 2.2 (generating function for fusion coecients). The partition func‐
tion (2.2) has the expansion

(2.3) Z_{\hat{ $\nu$}}^{\hat{\wedge}}(x_{1}, \displaystyle \ldots, x_{n-1};z)=\wedge\sum_{\wedge\in P_{k}^{+}}z^{d}\mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k)}
� \hat{ $\nu$}_{S_{ $\lambda$(x_{1}}}, x_{n-1}) ;

where \mathcal{N}_{\wedge\hat{ $\mu$}}^{(k),\wedge}\wedge are the fusion coecients and the degree  d is given by d:=\displaystyle \frac{| $\lambda$|+| $\mu$|-| $\nu$|}{n}+
v_{1}-$\mu$_{1}.

Given a square s at position (i, j) in the Young diagram of a partition  $\lambda$
,
recall that

the hook length is dened as  h(s)=$\lambda$_{i}+$\lambda$_{j}^{t}-i-j+1 . That is, h(s) is the number

of squares to right in the same row and the number of squares in the column below it

plus one (for the square itself). The content of the same square is simply dened as

c(s)=j-i . Denote by $\Gamma$_{\hat{ $\nu$}}^{\hat{\wedge}}(d)\subset$\Gamma$_{\hat{ $\nu$}}^{\hat{\wedge}} the subset of lattice path congurations which

have a fixed number of 2d outer horizontal edges. The following result on the number

of possible lattice congurations on the cylinder appears to be new.

Corollary 2.3 (lattice congurations and fusion coecients). Specialising to z=

x_{1}=\cdots=x_{n-1}=1 in (2.3) we obtain the identity

(2.4) |$\Gamma$_{\hat{ $\nu$}}^{\hat{\wedge}}(d)|=\displaystyle \wedge\sum_{\wedge\in P_{k}^{+}}\mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k),\hat{ $\nu$}}\prod_{s\in $\lambda$}\frac{n-1+c(s)}{h(s)},
where the sum can be restricted to those weights \hat{ $\lambda$} for which d=\displaystyle \frac{| $\lambda$|+| $\mu$|-| $\nu$|}{n}+v_{1}-$\mu$_{1}.

Proof. The assertion follows from the well‐known formula [18, Chapter I, Section

3, Example 4], s_{ $\lambda$}(1, \displaystyle \ldots, 1)=\prod_{s\in $\lambda$}(n-1+c(s))/h(s) and the previous expansion (2.3)
of the partition function. \square 

Remark. While in [8, 11, 12] the Gessel‐Viennot method has been used to obtain

analogous results for dierent type of boundary conditions, the proof of Proposition 2.2

rests on the Yang‐Baxter equation, see (3.16) below, and the quantum inverse scattering

method, thus it is of algebraic nature.

§3. Transfer matrix and Yang‐Baxter algebras

We now introduce the row‐to‐row transfer matrix of the vertex model (2.1) as the

partition function of a single lattice row and then identify it below as generating function

of certain polynomials in a noncommutative alphabet.
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x_{1}

x_{2}

x_{3}

x_{4}

m(\hat{ $\nu$}) 2 1 1 0 1

Figure 2. An example of a lattice conguration in terms of non‐intersecting paths for

n=k=5\mathrm{a}\mathrm{n}\mathrm{d} $\mu$=(5,3,1) , v=(4,2,1) .

2 5
=Z x_{i}

3 1 3 0 0

Figure 3. An example for n=5 and k=7 of a row conguration and its �statistical

weight�, which is obtained by counting the horizontal edges of paths. Outer edges are

identied and for each a power of z is added.
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Denition 3.1 (transfer matrix). Given any two n‐tuples m=(m\mathrm{l}, . . . , m_{n})
and m'=(m\'{i}, . . . , m_{n}')\in \mathbb{Z}_{\geq 0}^{n} ,

the transfer matrix Q(X) of the i^{\mathrm{t}\mathrm{h}} row is dened via

the elements

(3.1) Q(x_{i})_{m,m}, := \displaystyle \sum  zx_{i}\displaystyle \frac{\#\mathrm{f}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s}}{2}\# of horizontal edges,
allowed row

configurations

where the factor 1/2 in the power of the variable  z takes into account that the outer

horizontal edges need to be identied, since we are on the cylinder.

As it is common in the discussion of vertex models we wish to identify the transfer

matrix as an endomorphism of a vector space. For this purpose we now interpret the

statistical variables at the lattice edges as labels of basis vectors in the vector space

\mathcal{M}=\oplus_{m\in \mathbb{Z}\geq 0}\mathbb{C}v_{m} . Then a row conguration in the lattice, i.e. an assignment of

statistical variables m=(m\mathrm{l}, . . :, m_{n}) along one row of vertical edges, fixes a vector

v_{m_{1}}\otimes\cdots\otimes v_{m_{n}}\in \mathcal{M}^{\otimes n} . Henceforth, we identify the tensor product \mathcal{M}^{\otimes n} with \mathbb{C}P^{+},
the complex linear span of all the integral dominant weights of the ane Lie algebra

\mathfrak{s}û(n), P^{+} :=\displaystyle \{\times=\sum_{i=1}^{n}m_{i}!_{i}|m_{i}\in \mathbb{Z}_{\geq 0}\} ,
via the map m\displaystyle \mapsto\sum_{i=1}^{n}m_{i}\hat{ $\omega$}_{i} . That is,

we interpret the statistical variables m=(m\mathrm{l}, . . :, m_{n}) in one row of our vertex model

as Dynkin labels of an ane weight in P^{+} . For convenience we will sometimes denote

this n‐tuple m and the associated vector in \mathcal{M}^{\otimes n} by the same symbol. By construction

the row‐to‐row transfer matrix and the partition function are then related via

(3.2) Z_{\hat{\wedge}}^{\hat{ $\nu$}}(x_{1}, \ldots, x_{n-1};z)=\langle m(\hat{v}) , Q(x_{n-1})\cdots Q(x_{1})m(\hat{ $\mu$})\rangle,
where we have introduced the inner product \langle m, m'\displaystyle \rangle:=\prod_{i=1}^{n}$\delta$_{m_{i},m_{i}'} which we assume

to be antilinear in the first factor. Thus, the transfer matrix (3.1) can be interpreted as

discrete time evolution operator which successively generates the paths on the cylindric

square lattice. Note that for any pair of congurations m, m'\in \mathcal{M}^{\otimes n} only a finite

number of the terms making up the matrix element \langle m,  Q(x_{i})m'\rangle is non‐zero. The

operator  Q\in \mathrm{E}\mathrm{n}\mathrm{d}\mathcal{M}^{\otimes n} is therefore well‐dened. We now reformulate the transfer

matrix in terms of a set of more elementary, local operators which respectively increase

and decrease a single Dynkin label m_{i} only.

§3.1. The local ane plactic algebra

For i=1
,

. .

:;
n dene maps $\varphi$_{i}, $\varphi$_{i}^{*}\in \mathrm{E}\mathrm{n}\mathrm{d}(\mathcal{M}^{\otimes n}) by setting

(3.3) $\varphi$_{i}^{*}m=(m_{1}, \ldots, m_{i}+1, \ldots, m_{n})

and

(3.4) $\varphi$_{i}m=\left\{\begin{array}{l}
(m\mathrm{l}, . . . , m_{i}-1, \ldots, m_{n}), m_{i}>0\\
0, \mathrm{e}\mathrm{l}\mathrm{s}\mathrm{e}
\end{array}\right.
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In addition let N_{i}m=m_{i}m for all1 \leq i\leq n . These maps can be identied with the

Chevalley generators of the U_{q}\mathfrak{s}((2) Verma module in the crystal limit; see [16]. They
have first appeared in the context of the phase model; see [2] and references therein. In

[15] the following statement has been proven by constructing an explicit basis for the

phase algebra  $\Phi$.

Proposition 3.2 (phase algebra). The $\varphi$_{i}, $\varphi$_{i}^{*} and N_{i} generate a subalgebra \hat{ $\Phi$}

of End (\mathcal{M}^{\otimes n}) which can be realized as the algebra  $\Phi$ with the following generators and

relations for  1\leq i, j\leq n :

(3.5) $\varphi$_{i}$\varphi$_{j}=$\varphi$_{j}$\varphi$_{i}, $\varphi$_{i}^{*}$\varphi$_{j}^{*}=$\varphi$_{j}^{*}$\varphi$_{i}^{*}, N_{i}N_{j}=N_{j}N_{i}
(3.6) N_{i}$\varphi$_{j}-$\varphi$_{j}N_{i}=-$\delta$_{ij}$\varphi$_{i}, N_{i}$\varphi$_{j}^{*}-$\varphi$_{j}^{*}N_{i}=$\delta$_{ij}$\varphi$_{i}^{*},
(3.7) $\varphi$_{i}$\varphi$_{i}^{*}=1, $\varphi$_{i}$\varphi$_{j}^{*}=$\varphi$_{j}^{*}$\varphi$_{i} if i\neq j,

(3.8) N_{i}(1-$\varphi$_{i}^{*}$\varphi$_{i})=(1-$\varphi$_{i}^{*}$\varphi$_{i})N_{i}=0

Note that with respect to the scalar product introduced above we have \langle$\varphi$_{i}^{*}m, m'\rangle=
\langle m, $\varphi$_{i}m'\rangle for any  m, m'\in \mathcal{M}^{\otimes n}.

Denition 3.3 (local affine plactic algebra). Let Pl =\mathrm{P}1() be the free algebra

generated by the elements of \mathcal{A}=\{a_{1}, a_{2}, . . : a_{n}\} modulo the relations

(3.9) a_{i}a_{j}-a_{j}a_{i}=0 ,
if |i-j|\neq 1 \mathrm{m}\mathrm{o}\mathrm{d} n,

(3.10) a_{i+1}a_{i}^{2}=a_{i}a_{i+1}a_{i}, a_{i+1}^{2}a_{i}=a_{i+1}a_{i}a_{i+1},

where (3.10) are the plactic relations on the circle, i.e. all indices are dened modulo

n . Denote by \mathrm{P}1\mathrm{f}\mathrm{i}\mathrm{n}=\mathrm{P}1\mathrm{f}\mathrm{i}\mathrm{n}(\mathcal{A}') the local finite plactic algebra generated from \mathcal{A}'=

\{a_{1}, a_{2}, . . . a_{n-1}\}.

We recall the following result from [15, Prop 5.8]:

Proposition 3.4. There is a homomorphism of algebras \mathrm{P}1\mathrm{f}\mathrm{i}\mathrm{n}\rightarrow $\Phi$ such that

(3.11)  a_{j}\mapsto$\varphi$_{j+1}^{*}$\varphi$_{j}, j=1, n-1,

where the representation of the phase algebra  $\Phi$ given by (3.3) and (3.4) liftts to a repre‐

sentation of the local plactic algebra \mathrm{P}1\mathrm{f}\mathrm{i}\mathrm{n} . Mapping a_{0}=a_{n} to z$\varphi$_{1}^{*}$\varphi$_{n} it liftts in addition

to a representation of Pl on \mathcal{M}[z]^{\otimes n} with \mathcal{M}[z]=\mathbb{C}[z]\otimes_{\mathbb{C}}\mathcal{M} and z an indeterminate.

Both representations are fa ithful.

Remark. The finite plactic algebra first appeared in the context of the Robinson‐

Schensted correspondence: given a word in a noncommutative alphabet it can be

mapped onto a pair of Young tableaux, usually called (P, Q) , by using the bumping
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algorithm. Q is the recording tableau encoding the sequence of bumping processes; see

e.g. [6] for an explanation. Lascoux and Schützenberger showed that identifying words

which only dier in their recording tableaux is equivalent to a set of identities of which

(3.10) are special cases. The local finite plactic algebra was first considered by Fomin

and Greene in [5]. We recover their case when specialising to z=0.

Remark. Note that the action of the ane plactic algebra is blockdiagonal with

respect to the decomposition \mathbb{C}P^{+}=\oplus_{k\geq 0}\mathbb{C}P_{k}^{+} . In fact each subspace can be repre‐

sented as a directed coloured graph where the elements in P_{k}^{+} are the vertices and a

directed edge of colour i between two vertices, \hat{ $\mu$}\rightarrow^{i}\times ,
is introduced if \times=a_{i}\hat{ $\mu$} . This

yields the Kirillov‐Reshetikhin crystal graph \mathcal{B}_{1,k} of type A. Setting z=0 all edges
related to the ane generator a_{n} are removed from the graph and we obtain the su(n)
crystal graph of highest weight k$\omega$_{1} ,

where $\omega$_{1} is the first fundamental weight.

§3.2. Yang‐Baxter algebras

For r, s\in \mathbb{Z}_{\geq 0} arbitrary but fixed and u a formal, invertible variable dene Q(u) :

\mathcal{M}(u)\otimes \mathcal{M}(u)^{\otimes n}\rightarrow \mathcal{M}(u)\otimes \mathcal{M}(u)^{\otimes n} by setting Q(u)v_{r}\displaystyle \otimes m:=\sum_{s\geq 0}v_{s}\otimes Q_{s,r}(u)m
where

(3.12) Q_{s,r}(u) :=\displaystyle \sum_{ $\epsilon$}u^{| $\epsilon$|+r}($\varphi$_{1}^{*})^{r}a_{1}^{$\epsilon$_{1}}\cdots a_{n-1}^{$\epsilon$_{n-1}}$\varphi$_{n}^{s}
with the sum running over all compositions  $\epsilon$= ('';::. ; $\epsilon$_{n-1}) . Despite the sums in the

denition of Q(u) being innite, only a finite number of terms survive when acting on

a vector in \mathcal{M}(u)^{\otimes n+1} ,
thus the operator is well‐dened. In fact, we have the following

[16]:

Lemma 3.5. Let Q be the transfeer matrix dened in (3.1). Then

(3.13) Q(x_{i})=\displaystyle \sum_{r\geq 0}z^{r}Q_{r,r}(x_{i})=\sum_{r\geq 0}(zx_{i})^{r}($\varphi$_{1}^{*})^{r}Q_{0,0}(x_{i})$\varphi$_{n}^{r},
in other words forz=1 the transfeer matrix is the formal trace of the matrix (3.12).

Dene another operator \mathcal{R}(u/v) : \mathcal{M}(u)\otimes \mathcal{M}(v)\rightarrow \mathcal{M}(u)\otimes \mathcal{M}(v) via the relation

(3.14) \displaystyle \mathcal{R}(u)v_{a}\otimes v_{b}=\sum_{c,d\geq 0}\mathcal{R}_{c,d}^{a,b}(u)v_{c}\otimes v_{d},
setting

(3.15) \mathcal{R}_{c,d}^{a,b}(u)=\left\{\begin{array}{l}
u^{a}, c=b, d=a\\
u^{a}(1-u) , d=a+b-c, b>c .\\
0, \mathrm{e}\mathrm{l}\mathrm{s}\mathrm{e}
\end{array}\right.
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m m+1 m 0

1 1 x_{i} x_{i} x_{i}

Figure 4. The (Boltzmann) weights of local vertex conguration for the auxiliary matrix

T=A+zD . Note that in contrast to the Boltzmann weights (2.1) the walkers can now

propagate horizontally but only one is allowed on a horizontal edge at a time.

Proposition 3.6. The \mathcal{R} ‐matrix (3.14) and the monodromy matrix (3.12) obey
the Ya ng‐Baxter equation,

(3.16) \mathcal{R}_{12}(u/v)Q_{1}(u)Q_{2}(v)=Q_{2}(v)Q_{1}(u)\mathcal{R}_{12}(u/v) .

The denition of the monodromy matrix (3.12) can be algebraically motivated

by taking a special limit of the intertwiner of a U_{q}(\mathfrak{s}((2)) Verma module; see the dis‐

cussion in [16]. Replacing this Verma module with the (two‐dimensional) fundamen‐

tal representation one obtains in the analogous limit now a 2\times 2 monodromy ma‐

trix, T\in \mathrm{E}\mathrm{n}\mathrm{d}(\mathbb{C}^{2}\otimes \mathcal{M}(u)^{\otimes n}) ,
where the ordering of the noncommutative alphabet is

reversed(r, s=0,1) ,

(3.17) T_{r,s}(u) :=\displaystyle \sum_{$\epsilon$_{i}=0,1}u^{| $\epsilon$|+s}$\varphi$_{n}^{s}a_{n-1}^{$\epsilon$_{n-1}}\cdots a_{1}^{$\epsilon$_{1}}($\varphi$_{1}^{*})^{r}=\left(\begin{array}{l}
A(u)B(u)\\
C(u)D(u)
\end{array}\right)
Note that the sum now only runs over compositions  $\epsilon$ whose parts are  0 or 1. This

second monodromy matrix coincides with the matrix introduced by Bogoliubov, Izergin
and Kitanine in the context of the so‐called phase model [2].

Proposition 3.7 ([2]). The 2\times 2 matrix (3.17) with entries in End (\mathcal{M}(u)^{\otimes n})
obeys the Ya ng‐Baxter equation R_{12}(u/v)T_{1}(u)T_{2}(v)=T_{2}(v)T_{1}(u)R_{12}(u/v) with

(3.18) R(u)=\left(\begin{array}{llll}
\frac{u}{u-1} & 0 & 0 & 0\\
0 & 0 & \frac{u}{u-1} & 0\\
0 & \frac{1}{u-1} & 1 & 0\\
0 & 0 & 0 & \frac{u}{u-1}
\end{array}\right) .
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=zx_{i}^{5}
2 0 2 0 3 0

Figure 5. An example of a row conguration for the auxiliary matrix T for n=6 and

k=7 . The statistical weight is again obtained by counting the horizontal edges of

paths, where outer edges are once more identied each contributing a power of z.

The matrix elements of (3.17) obey certain commutation relations with the matrix

elements (3.12), which again can be encoded in yet another solution to the Yang‐Baxter

equation [16].

Proposition 3.8. The monodromy matrices (3.12) and (3.17) satisfy the equa‐

tion,

(3.19) L_{12}'(u/v)T_{1}(u)Q_{2}(v)=Q_{2}(v)T_{1}(u)L_{12}'(u/v) ,

where the endomorphism L'\in \mathrm{E}\mathrm{n}\mathrm{d}(\mathbb{C}^{2}\otimes \mathcal{M}(u)^{\otimes n}) is dened in terms the matrix ele‐

ments

(3.20) L_{c,d}^{\prime a,b}(u)=\left\{\begin{array}{l}
1+u, a, b, c, d=0\\
u^{a}, d=a+b-c, b\geq c, a, c=0, 1 .\\
0, else
\end{array}\right.
The hallmark of an exactly solvable or integrable model in statistical mechanics

is that its transfer matrix commutes with itself for arbitrary values of the spectral

parameter which here is identied with the variables x_{i} in each lattice row. In a physical

application the row variables \{x_{1}, . ::, x_{n}\} would be evaluated in the interval [0, 1]^{\times n}
such that the Boltzmann weights (2.1) can be interpreted as proper probabilities. The

transfer matrices for any other, possibly complex values, of the x_{i} �s would be seen as a

\backslash \backslash 

symmetry� of the system. Generalising the notion of Liouville integrability in classical

mechanics, such a statistical model is called integrable. One important consequence of

the Yang‐Baxter equations stated above is that they imply integrability of the vertex

model (2.1).

Corollary 3.9 (Integrability). Set T=A+zD then we have, among others, the

commutation relations

(3.21) [Q(u), Q(v)]=[T(u), T(v)]=[T(u), Q(v)]=0,
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where Q is the transfeer matrix (3.1). Moreover, the following relation holds true

Q_{r,r}(u)B(v)=(1+\displaystyle \frac{u}{v})$\delta$_{r,0}B(v)Q_{0,0}(u)
(3.22) +Q_{r-1,r}(u)D(v)-Q_{r,r+1}(u)A(v)+Q_{r-1,r+1}(u)C(v)

Note in particular that the first relation in (3.21) entails via (3.2) that the partition
function (2.2) is symmetric in the variables x_{i} as claimed earlier.

§3.3. Ane plactic elementary and complete symmetric polynomials

To keep this article self‐contained and motivate the denition of the ane plactic

polynomials below, we review some basic facts about symmetric functions; see [18]
for details. Let { y_{1} ,

. .

:, yp} be a set of commuting variables for some finite \ell>0.

Recall that the ring of symmetric functions \mathbb{C}[y_{1}, . ::, y_{l}]^{\mathrm{S}_{l}} is generated by either the

elementary or complete symmetric functions denoted by the letters e_{r} and h_{r} with  r\in

\mathbb{Z}_{\geq 0} , respectively. Both sets of functions can be introduced via the following generating

functions,

(3.23) \displaystyle \prod_{i=1}^{p}(1+y_{i}u)=\sum_{r\geq 0}e_{r} ( y\mathrm{l} ,
. . .

, y_{l} ) u^{r}

(3.24) \displaystyle \prod_{i=1}^{p}(1-y_{i}u)^{-1}=\sum_{r\geq 0}h_{r} (yl, . . .

, yp) u^{r},

respectively. Note that the first sum is finite, i.e. e_{r}(y_{1}, . . :; yp)=0 for  r>\ell ,
while the

second one is innite. Explicitly, the elementary and complete symmetric functions are

given by the expressions

(3.25)  e_{r} ( y\mathrm{l} ,
. . .

, yp ) =\displaystyle \sum_{1\leq i_{1}<\cdots<i_{r}\leq l}y_{i_{1}}\cdots y_{i_{r}}
(3.26) h_{r} ( y\mathrm{l} ,

. . .

, yp ) =\displaystyle \sum_{1\leq i_{1}\leq\cdots\underline{<}i_{r}\leq l}y_{i_{r}}\cdots y_{i_{1}}
From the generating functions it is immediate to deduce that the e �s and h �s satisfy
recursion relations. Namely, one has the identities

(3.27) e_{r}(y_{1}, \ldots, y_{l})=e_{r}(y_{1}, \ldots, y_{l-1})+y_{l}e_{r-1}(y_{1}, \ldots, y_{l-1}) ,

(3.28) h_{r} (yl, . . .

, yp ) =h_{r} (yl, . . .

, y_{l-1} ) +y_{l}h_{r-1} (yl, . . .

, yp) .

As mentioned above one has \mathbb{C}[y_{1}, . . :, y_{l}]^{\mathrm{S}_{l}}\cong \mathbb{C}[e_{1}, . . :; ep]\cong \mathbb{C} [ h_{1} ,
. :.

; hp] and, thus,
both sets of functions must be polynomials of each other. In fact, multiplying both

generating functions (with u replaced by -u in the first one) yields the equations
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\displaystyle \sum_{r=a+b}(-1)^{a}e_{a}h_{b}=0 for all r\geq 0 which can be solved either for the e �s or the

h �s to yield the well‐known Jacobi‐Trudi formulae

(3.29) h_{r}(y_{1}, \ldots, yp)=\det(e_{1-i+j}(y_{1}, \ldots; y_{l}))_{1\leq i,j\leq r},

(3.30) e_{r}(y_{1}, \ldots, yp)=\det(h_{1-i+j}(y_{1}, . . :; y_{l}))_{1\leq i,j\leq r} :

We will now generalise these functions by replacing the commuting variables \{y_{1} ,
. :.

;

yp} with the noncommutative variables \{a_{1}, . :. , a_{n}\} ,
i.e. the generators of the affine

plactic algebra. We wish to identify the auxiliary matrix T dened in Corollary 3.9,
the trace of (3.17), and the transfer matrix Q dened either through (3.1) or (3.13) as

noncommutative analogues of the generating functions (3.23) and (3.24), respectively.
When trying to generalise (3.25) and (3.26) to a noncommutative alphabet one needs

to specify an ordering of the variables. The auxiliary and transfer matrix prescribe
such an ordering of the noncommutative variables \{a_{i}\} which turns out to be consistent

and has the additional desirable property that the resulting ane plactic elementary
and complete symmetric polynomials form a commutative subalgebra due to the inte‐

grability condition (3.21). Because this ordering is cyclic, it is easier to split the ane

generator a_{n} into its constituents z, $\varphi$_{1}^{*} and $\varphi$_{n} , compare with Proposition 3.4, and write

the variables in descending or ascending order as we have already done in (3.17) and

(3.12).

Proposition 3.10 (generating functions). The transfeer matrix (3.1) can be in‐

terpreted as the generating function

(3.31) Q(x_{i})=\displaystyle \sum_{r\geq 0}z^{r}Q_{r,r}(x_{i})=\sum_{r\geq 0}x_{i}^{r}h_{r}(\mathcal{A})
of the ane plactic complete symmetric polynomials

(3.32) h_{r}(\displaystyle \mathcal{A}) :=\sum_{ $\epsilon$\vdash r}z^{$\epsilon$_{0}}($\varphi$_{1}^{*})^{$\epsilon$_{0}}a_{1}^{$\epsilon$_{1}}\cdots a_{n-1}^{$\epsilon$_{n-1}}$\varphi$_{n}^{$\epsilon$_{0}} .

The auxiliary matrix dened in Corollary 3.9,

(3.33) T(x_{i})=A(x_{i})+zD(x_{i})=\displaystyle \sum_{r\geq 0}x_{i}^{r}e_{r}()_{;}
on the other hand, yields the generating function of the ane plactic elementary sym‐

metric polynomials,

(3.34) e_{r}(\displaystyle \mathcal{A}) :=$\epsilon$_{i}=0,1\sum_{ $\epsilon$\vdash r}z^{$\epsilon$_{n}}$\varphi$_{n}^{$\epsilon$_{n}}a_{n-1}^{$\epsilon$_{n-1}}\cdots a_{1}^{$\epsilon$_{1}}($\varphi$_{1}^{*})^{$\epsilon$_{n}}
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§3.4. Combinatorial description of the Yang‐Baxter algebra

Note that when setting the quasi‐periodicity parameter z to zero, i.e. enforcing open

boundary conditions, one obtains the finite plactic polynomials of [5]. For instance, we

have that the matrix element A in (3.17) is the generating function of the finite plactic

elementary polynomials,

(3.35) z=0 : A(u)=(1+a_{n-1}u)\displaystyle \cdots(1+a_{1}u)=\sum_{r\geq 0}u^{r}e_{r}(\mathcal{A}')
Lemma 3.11. The action of the operator e_{r}(\mathcal{A}')=e_{r}(a_{1}, . . :; a_{n-1}) on a parti‐

tion  $\mu$\in \mathcal{P}\leq n-1,k produces a sum over all partitions  $\lambda$ in the  n\times k bounding box such

that the skew diagram  $\lambda$/ $\mu$ is a vertical strip of length  r and $\lambda$_{1}=$\mu$_{1},

(3.36) e_{r}(\displaystyle \mathcal{A}') $\mu$=\sum_{ $\lambda$\in \mathcal{P}_{\leq n,k}, $\lambda$/ $\mu$=(1^{r})}$\delta$_{$\lambda$_{1},$\mu$_{1}}$\lambda$'
Here $\lambda$'\in \mathcal{P}\leq n-1,k is the partition obtained from  $\lambda$ by deleting all columns of height  n.

Proof. Using the graphical depiction of the Boltzamnn weights in Figure 4 it

follows that for z=0 only row congurations are allowed which do not have an occupied
outer horizontal edge. Hence, m_{1}( $\mu$)\geq m() which entails that we must have $\mu$_{1}=

v_{1} according to (1.2). Moreover, we can deduce from the Boltzmann weights that

m_{i}(v)-m_{i}( $\mu$)=0 or 1 for i>1 ,
hence  $\lambda$/ $\mu$ must be a horizontal  r‐strip. \square 

In order to describe the action of the remaining matrix elements in (3.17) note that

in terms of partitions the map $\varphi$_{1}^{*} adds a column of height one and increases the width

of the bounding box, the level k
, by one. The map $\varphi$_{n} simply decreases the width of

the bounding box if $\lambda$_{1}<k ,
otherwise it sends  $\lambda$ to zero. Thus, the following formulae

(3.37)  B(u)=uA(u)$\varphi$_{1}^{*}, C(u)=$\varphi$_{n}A(u) , D(u)=u$\varphi$_{n}A(u)$\varphi$_{1}^{*},

which can be easily checked from (3.17), allow one to perform computations with the

Yang‐Baxter algebra purely in terms of Young diagrams and their bounding boxes.

Example 3.12. Let n=5 and choose  $\mu$= (2,2,1,0) with m= (0,1,1,0,1),
that is k=3 . Then we have for r=3 only a single term,
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In contrast the action of the ane plactic polynomial yields the sum

By converting each partition in the above sum to the corresponding compositions one

veries that each of the last four terms on the right hand side is generated by a monomial

in \mathcal{A} which contains the ane generator a_{n} . For instance, for the second term one finds

= \mathrm{Z}�aa�

=(0;1;2;0;0) =(0;1;1;0;1)

where we have used (3.7) to rewrite the respective term in e() as word in the ane

plactic generators. This is always possible for r<n.

In light of (3.35) and the last example the denition of the auxiliary matrix (3.33)
can be seen as the noncommutative analogue of (3.27), since after expanding with

respect to the variable u one arrives at the identity

(3.38) e_{r}() =e_{r}(\mathcal{A}')+z$\varphi$_{n}e_{r-1}(\mathcal{A}')$\varphi$_{1}^{*}

Cylic ordering. As already alluded to in the last example comparison with the com‐

mutative case (3.27) is made easier by realising that for r<n the terms in the second

summand can always be rearranged in cyclic order. To expose the general structure

more clearly consider another example provided by the row conguration depicted in

Figure 5 for n=6 and k=7 . The latter corresponds via (3.34) to the monomial

z$\varphi$_{6}a_{5}a_{4}a_{2}a_{1}$\varphi$_{1}^{*}=za_{2}a_{1}$\varphi$_{6}a_{5}a_{4}$\varphi$_{1}^{*}=a_{2}a_{1}a_{6}a_{5}a_{4},

where we have used once more (3.7). The general case is now clear: monomials in the

a_{i} which do neither contain a_{1} or a_{n} ,
or only one of these generators, are always written

in descending order from left to right. If both, a_{1} and a_{n} ,
occur in the same monomial

write the maximal string of form a_{l}a_{l-1}\cdots a_{2}a_{1} to the left of the remaining letters which

should also be in descending order starting with a_{n} (although the indices might now

\backslash \backslash \mathrm{j}\mathrm{u}\mathrm{m}\mathrm{p}
�

\mathrm{b}\mathrm{y} more than one). It follows from the denition (3.34) that for r=n we have

e_{n}(\mathcal{A})=z\cdot 1.

We now specialise to the finite plactic complete symmetric polynomials,

(3.39) z=0 : Q(u)=Q_{0,0}(u)=\displaystyle \sum_{r\geq 0}u^{r}h_{r}(\mathcal{A}')
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From the denition (3.32) one easily computes the noncommutative analogue of the

recursion relation (3.28),

(3.40) h_{r}(\mathcal{A})=h_{r}(\mathcal{A}')+z$\varphi$_{1}^{*}h_{r-1}(\mathcal{A})$\varphi$_{n}

Lemma 3.13. Let r\leq k and  $\mu$\in \mathcal{P}\leq n-1,k then

(3.41) h_{r}(\mathcal{A}') $\mu$= $\lambda$\in \mathcal{P}_{\leq n}\mathrm{X}_{/ $\mu$=(r)}^{$\delta$_{$\lambda$_{1},$\mu$_{1}}$\lambda$'}
Forr>k we have h_{r}(\mathcal{A}')|_{\mathbb{C}P_{k}^{+}}=0.

Proof. The assertion follows from a similar line of argument as before, but this

time one uses the Boltzmann weights depicted in Figure 1. Since z=0 row cong‐

urations with outer edges are prohibited, whence m_{1}( $\mu$)\geq m_{1}(v) . In contrast to the

previous case (3.36) a friendly walker now cannot propagate horizontally, however sev‐

eral are allowed at the same time on the horizontal edges. Thus, we obtain a horizontal

instead of a vertical strip. The last identity is also clear from the graphical depiction of

allowed row congurations: the number of occupied horizontal edges cannot exceed the

number of incoming walkers. \square 

Note that the ane plactic complete symmetric polynomials can only be rewritten

in (reverse) cyclic order for r<n using the same commutation relations of the phase

algebra as before. For r>n the cyclic ordering ceases to be well‐dened and one has

to resort to (3.32).
Finally, we generalise the last identities from the commutative case, the Jacobi‐

Trudi formulae (3.29) and (3.30), which are subject of the next proposition [16].

Proposition 3.14 (operator functional equation). The generating functions (3.31)
and (3. 33) satisfy the operator functional relation,

(3.42) T(-u)Q(u)=1+z(-1)^{n}\displaystyle \sum_{k\geq 0}u^{k+n}h_{k}(\mathcal{A})$\pi$_{k},
where $\pi$_{k} : \mathbb{C}P^{+}\rightarrow \mathbb{C}P_{k}^{+} is the projector onto the subspace spanned by the weights at level

k . In particular, forr<n+k the familiar determinant relations from the commutative

case also hold for the noncommutative elementary and complete symmetric polynomials,

(3.43) h_{r}()=\det(e_{1-i+j}(\mathcal{A}))_{1\leq i,j\leq r}, e_{r}()=\det(h_{1-i+j}(\mathcal{A}))_{1\leq i,j\leq r;}

where the determinants are well dened due to (3.21).

Setting once more z=0 we recover the relation expected from the commutative

case. The additional terms have their origin in the quasi‐periodic boundary conditions

and we explain their origin on an example which will elucidate the general formula.
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0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Figure 6. The two possible vacuum row congurations of the auxiliary matrix T . Note

that the transfer matrix Q only allows for the left one.

0 1 0 0 0

Figure 7. Depicted is the row conguration resulting from the successive action of the

transfer matrix Q and the operator D on a state of level k=1 and which is responsible
for the additional term on the right hand side of the functional equation (3.42).
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Example 3.15. Set n>2 and consider first the case oflevel k=0 . There is only
one state, the �pseudo‐vacuum� \hat{ $\Omega$}= (0,0, . . :; 0) ,

and trivially we have Q(u)\hat{ $\Omega$}=\hat{ $\Omega$}.
Acting with T(u) on \hat{ $\Omega$} we obtain two contributions shown in Figure 6. Thus, the

additional term in (3.42) with h_{0}(\mathcal{A})=1 is due to a
\backslash 
vacuum mode�, a path which

winds around the cylinder.
Let us now set k=1 and consider the state \hat{ $\omega$}_{i}= (0, . . :; 0,1, 0i'. :: 0) with i<n.

Then Q(u)\hat{ $\omega$}_{i}=\hat{ $\omega$}_{i}+u\hat{ $\omega$}_{i+1} as can be deduced graphically from (3.1). In order to

understand the origin of the additional term in (3.42) which includes the factor z
,

it

suces to look at the contribution from the D operator, since T=A+zD and A, D do

not contain z . The action of D can be easily computed using Figure 4 and remembering
that only row congurations contribute where the outer edges are occupied. One finds

that all row congurations cancel except for one term which is depicted in Figure 7:

again the additional term in (3.42) corresponds to a diagram where one path winds

around the cylinder.

§3.5. Quantum Hamiltonian and particle picture

So far we discussed a statistical mechanics model whose transfer matrix can be iden‐

tied with the generating function of the ane plactic complete symmetric polynomials.

Similarly, we can link the generating function of the ane plactic elementary symmetric

polynomials, the auxiliary matrix T
,
to a physical model in quantum mechancis. Inter‐

pret the Dynkin labels m_{i} as occupation numbers of a site i of a circular lattice‐the

Dynkin diagram of sû(n) in Figure 8‐ and the maps (3.3) and (3.4) as particle creation

and annihilation operators, respectively. Introducing the quantum Hamiltonian

(3.44) H=-\displaystyle \frac{e_{1}(\mathcal{A})+e_{n-1}(\mathcal{A})}{2}=-\frac{1}{2}\sum_{j=1}^{n}($\varphi$_{j+1}^{*}$\varphi$_{j}+z$\varphi$_{j}^{*}$\varphi$_{j+1})
with $\varphi$_{n+1}=z^{-1}$\varphi$_{1}, $\varphi$_{n+1}^{*}=z$\varphi$_{1}^{*} ,

as well as the conserved charges  H_{r}^{\pm}=-(e_{r}(\mathcal{A})\pm
 e_{n-r}(\mathcal{A}))/2 which because of (3.21) are in involution, [H, H_{r}^{\pm}]=[H_{r}^{\pm}, H_{r}^{\pm}]=0 , yields
an alternative physical interpretation of the combinatorial structures described here.

This quantum system is known as phase model, see [2] and references therein.

§4. Bethe ansatz equations and the fusion potential

Within the framework of exactly solvable models the next step is to construct the

eigenvectors of the transfer matrix Q . Instead it is simpler to consider the eigenvalue

problem of the auxiliary matrix T
,

since it follows from the functional relation (3.42) and

the determinant formulae (3.43) that the eigenvectors of Q coincide with the eigenvectors
of T . The advantage of this approach is that the eigenvectors of T can be computed via
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\bullet\bullet

 m_{1} m_{2} m_{3} m_{n-2} m_{n-1}

Figure 8. The fusion ring can be interpreted as a discrete model in quantum mechanics.

Each Dynkin label m_{i} species a number of particles sitting at the i^{\mathrm{t}\mathrm{h}} node of the

Dynkin diagram. Application of the generator a_{i} of the ane plactic algebra, shifts one

particle from site i to site i+1 ,
as indicated in the picture for i=1.

the algebraic Bethe ansatz or quantum inverse scattering method (see e.g. [3] for a text

book and references therein) using the commutation relations of the A, B, C, D algebra
in (3.17), which are drastically simpler than the commutation relations of the algebra

generated by the matrix elements (3.12). Starting point is a particular assumption on

the algebraic form of the eigenvectors: dene an (off‐shell) Bethe vector at level k>0

to be

(4.1) b(x_{1}, \ldots, x_{k}) :=B(x_{1}^{-1})\cdots B(x_{k}^{-1})\hat{ $\Omega$},

where \hat{ $\Omega$} is again the unique vector corresponding to the composition (0,0, . . :; 0) . The

requirement that (4.1) is an eigenvector of T leads via the commutation relations of the

Yang‐Baxter algebra contained in (3.18) and a standard computation‐ which we omit

‐to the Bethe ansatz equations [2] [15]

(4.2) x_{1}^{n+k}=\displaystyle \cdots=x_{k}^{n+k}=z(-1)^{k-1}\prod_{i=1}^{k}x_{i} .

We now discuss how the Bethe ansatz equations lead to a combinatorial computa‐

tion of fusion coecients. We wish to emphasize that this is possible without solving

(4.2) first. For this reason we postpone the discussion of their solutions to the next

section, however, we already mention that in order to solve them one needs to assume

that z^{\pm 1/n} exist.

The Bethe ansatz equations are k polynomial equations and, thus, describe an ane

variety \mathrm{V}_{n,k}'\subset \mathbb{C}[z^{\pm\frac{1}{n}}]^{k} . Recall that given a field \mathrm{K} an ane variety is usually dened

in terms of a set of polynomials f_{1} ,
. :.

, f_{k}\in \mathrm{K}[x_{1}, . . . , x_{k}] by setting \mathrm{V}(f_{1}, \ldots; f_{k}) :=

\{v\in \mathrm{K}^{k} : f_{i}(\mathrm{v}\mathrm{l}, . . . ; v_{k})=0, i=1, . . . , k\} . Note that due to the commutation relations
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B(x)B(y)=B(y)B(x) ,
which follow from the Yang‐Baxter equation (3.18), we can iden‐

tify solutions of (4.2) under permutations (xl, . :.

; x_{k} ) \sim(x_{w_{1}}, . :. , x_{w_{k}}) for all w\in \mathrm{S}_{k},
since they give rise to the same eigenvector (4.1). Denote by \mathrm{V}_{n,k} the variety obtained

under this identication, then we can think of \mathrm{V}_{n,k} as being dened by k elements in

the ring of symmetric polynomials \mathbb{C}[z^{\pm\frac{1}{n}}]^{k}[x_{1}, . . . , x_{k}]^{\mathrm{S}_{k}}\cong \mathbb{C}[z^{\pm\frac{1}{n}}]^{k}[e_{1}, . :. ; e_{k}] ,
where

the e_{i} �s are the elementary symmetric functions.

Lemma 4.1. Let h_{r}=\det(e_{1-i+j})_{1\leq i,j\leq r} ,
the complete symmetric functions,

then the ane variety \mathrm{V}_{n,k} dened by the Bethe ansatz equations (up to permutations

of the solutions) is given by^{1}

(4.3) \mathrm{V}_{n,k}=\mathrm{V}(h_{n}-z, h_{n+1}, \ldots, h_{n+k-1})

The proof of this statement can be found in [15, Lemma 6.3] and simply uses

the recursive relation (3.28) for complete symmetric polynomials. Next we assign to

the solutions of the Bethe ansatz equations (4.2) an ideal in the ring of symmetric
functions. Recall the denition of the nullstellen or vanishing ideal of an ane variety

V, \mathcal{I}(\mathrm{V}) :=\{f\in \mathbb{C}(z)[e_{1}, . . . , e_{k}] : f(v)=0, v\in \mathrm{V}\} . Then we have the following
statement [15, Proof of Theorem 6.20]:

Proposition 4.2. Let\mathcal{I}(\mathrm{V}_{n,k}) be the nullstellen ideal of the Bethe ansatz variety

(4\cdot 3) , then

(4.4) \langle h_{n}-z, h_{n+1} ,
. . .

, h_{n+k-1}\rangle=\mathcal{I}(\mathrm{V}_{n,k})

This proposition is proved via Hilbert�s Nullstellensatz which asserts that given an

ideal I in a polynomial ring one has \mathcal{I}(\mathrm{V}(I))=\sqrt{I} , where \sqrt{I}=\{f : f^{m}\in I for some

m\in \mathbb{Z}_{>0}\} is the radical of I . In the present case where I=\langle h_{n}-1, h_{n+1} ,
.

::,  h_{n+k-1}\rangle
one shows that  I=\sqrt{I} and thus the assertion follows from the previous lemma.

Remark. For z=1 the ideal (4.4) can be encoded into a fusion potential p_{k+n}=

\displaystyle \sum_{i=1}^{k}x_{i}^{n+k} ,
the (k+n)^{\mathrm{t}\mathrm{h}} power sum, noting that

\displaystyle \frac{1}{k+n}\frac{\partial p_{k+n}}{\partial e_{r}}=(-1)^{r-1}h_{k+n-r}=0, r=1
, 2, . .

:;
k_{:}

This is very similar to the fusion potential introduced by Gepner. The dierence lies in

the constraints imposed on the variables: Gepner�s fusion potential [7, Equation (2.31)]

(4.5) V_{n+k}=\displaystyle \frac{1}{k+n}\sum y_{i}^{n+k}n,
i=1

lIn [15] an additional relation has been stated to facilitate the comparison with the small quantum

cohomology ring of the Grassmannian, h_{n+k}=z(-1)^{k-1}e_{k} . This last relation follows from h_{n}-z=

h_{n+1}=\cdots=h_{n+k-1}=0 by exploiting the denition the hook Schur polynomial s_{(n|k-1)}=
e_{k}h_{n}=ze_{k} ; see (4.10) below.
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is dened in terms of n variables \{y_{1}, . . :; y_{n}\} subject to the constraints e_{n}(y)=y_{1} . . .

y_{n}=

1 and

(4.6) \displaystyle \frac{@V_{n+k}}{\partial e_{i}}=(-1)^{i+1}h_{n+k-i}=0, i=1
,

. . .

,
n-1

These constraints can be shown to be equivalent with the following set of equations,

(4.7) y_{1}^{n+k}=\cdots=y_{n}^{n+k}=h_{k+n}(y_{1}, \ldots, y_{n})=(-1)^{n-1}h_{k}(y_{1}, . :. , y_{n}) ,

which look very similar to the Bethe ansatz equations (4.2). However, the corresponding
construction of the Bethe vector in terms of a Yang‐Baxter algebra is currently missing.

The importance of the ideal (4.4) derived form the Bethe ansatz equations lies in

the fact that it yields a presentation of the Verlinde or fusion algebra in the ring of

symmetric functions [15, Theorem 6.20].

Theorem 4.3 (Kor‐Stroppel). Set z=1 . Then the map P_{k}^{+}\ni\times\mapsto s_{$\lambda$^{t}}+
\mathcal{I}(\mathrm{V}_{n,k}) ,

where \mathcal{I}(\mathrm{V}_{n,k}) is the ideal in (4\cdot 4) provides an algebra isomorphism,

(4.8) \mathcal{F}_{n,k}\otimes_{\mathbb{Z}}\mathbb{C}\cong \mathbb{C}[e_{1}, . . . , e_{k}]/\mathcal{I}(\mathrm{V}_{n,k})

In contrast Gepner�s fusion potential is equivalent to a dierent presentation; c.f.

[10, p247, result (4)] and [7, Equation (2.36)].

Theorem 4.4 (Gepner, Goodman‐Wenzl). The map P_{k}^{+}\ni\times\mapsto s_{ $\lambda$}+I_{n,k} ,
where

I_{n,k}=\langle e_{n}-1, h_{n+1} ,
. . .

;  h_{n+k-1}\rangle is the ideal resulting fr om (4 \cdot 6) also provides an

isomorphism,

(4.9) \mathcal{F}_{n,k}\otimes_{\mathbb{Z}}\mathbb{C}\cong \mathbb{C}[e_{1}, . . . , e_{n}]/I_{n,k}

Proof. For the sake of completeness we briey outline a proof of (4.9) by showing
that the ideal (4.6) following from Gepner�s fusion potential is identical with the ideal

used by Goodman and Wenzl in [10] (with the extra condition e_{n}=1 ) who proved
that the fusion ring is isomorphic to a certain representation of the Hecke algebra at a

primitive (n+k)^{\mathrm{t}\mathrm{h}} root of unity.
Let J_{n,k} be the ideal generated from e_{n}-1 and the Schur polynomials of the

form s_{($\lambda$_{1},$\lambda$_{2},\ldots,$\lambda$_{n})} with $\lambda$_{1}-$\lambda$_{n}=1 ; c.f. [10, p247, result (4)]. Both ideals can be

shown to be radical along similar lines as it is discussed for (4.4) in [15, Proof of

Theorem 6.20, Claim 1]. Hence, employing the Nullstellensatz twice, \mathcal{I}(\mathrm{V}(I_{n,k}))=I_{n,k}
and \mathcal{I}(\mathrm{V}(J_{n,k}))=J_{n,k} ,

it sUces to prove the two inclusions J_{n,k}\subseteq \mathcal{I}(\mathrm{V}(I_{n,k})) and

I_{n,k}\subseteq \mathcal{I}(\mathrm{V}(J_{n,k})) . For this purpose we recall the denition of hook Schur polynomials

[18, Chapter I, Section 3, Example 9]

(4.10) s_{(a|b)}:=s_{(a+1,1^{b})}=h_{a+1}e_{b}-h_{a+2}e_{b-1}+\cdots+(-1)^{b}h_{a+b+1} .
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Using the Frobenius notation  $\lambda$= (;::. ; $\alpha$_{r}|$\beta$_{1}, \ldots, $\beta$_{r}) for a partition  $\lambda$
,

where  $\alpha$_{i}

and $\beta$_{i} are the lengths of the horizontal and vertical part of a hook centered at the i^{\mathrm{t}\mathrm{h}}

box in the diagonal of  $\lambda$
,

one has

(4.11)  s_{ $\lambda$}=\left|\begin{array}{lll}
s_{($\alpha$_{1}|$\beta$_{1})}s_{($\alpha$_{1}|$\beta$_{2})} &  & s_{($\alpha$_{1}|$\beta$_{r})}\\
s_{($\alpha$_{2}|$\beta$_{1})} & \ddots & s_{($\alpha$_{2}|$\beta$_{r})}\\
s_{($\alpha$_{r}|$\beta$_{1})}s_{($\alpha$_{r}|$\beta$_{2})} &  & s_{($\alpha$_{r}|$\beta$_{r})}
\end{array}\right|
We first show that J\subseteq \mathcal{I}(\mathrm{V}(I_{n,k}))=I_{n,k} . Exploiting e_{n}=1 and the Pieri rule

e_{n}s_{($\lambda$_{1},$\lambda$_{2},\ldots,$\lambda$_{n})}=s_{($\lambda$_{1}+1,$\lambda$_{2}+1,\ldots,$\lambda$_{n}+1)} we can restrict ourselves to Schur polynomials
of the form s_{(k+1,$\lambda$_{2},\ldots,$\lambda$_{n-1},0)} . From the denition of I_{n,k} it then follows that

s_{(k|b)}=h_{k+1}e_{b}-h_{k+2}e_{b+1}+\cdots+(-1)^{b}h_{k+b+1}=0

for all b=0 , 1, 2, . . .

,
n-2 and, thus, we can conclude with the help of (4.11) that

s_{(k+1,$\lambda$_{2},\ldots,$\lambda$_{n-1},0)}=0 for all k+1\geq$\lambda$_{2}\geq\cdots\geq$\lambda$_{n-1} as required.
The converse inclusion I_{n,k}\subset \mathcal{I}(\mathrm{V}(J_{n,k})) is easily derived along similar lines:

0=s_{(k|0)}=s_{(k+1,0,\ldots,0)}=h_{k+1},

0=s_{(k|1)}=h_{k+1}e_{1}-h_{k+2}=-h_{k+2},

0=s_{(k|n-2)}=h_{k+1}e_{n-2}-\cdots+(-1)^{n-2}h_{k+n-1}=(-1)^{n-2}h_{k+n-1}

This shows that the ideal of Goodman and Wenzel coincides with the ideal of Gepner
and using [10, p247, result (4)] we arrive at (4.9). \square 

Remark. The two isomorphisms (4.8) and (4.9) lead to dierent expressions for

the fusion coecients in terms of Littlewood‐Richardson coecients. We will discuss

the case (4.8) below. Goodman and Wenzl used their presentation (4.9) to derive the

Kac‐Walton formula [13] [20] (compare with [10, p247, result (6)]),

(4.12) \displaystyle \mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k)\wedge}=\sum_{w\in\hat{W}} $\epsilon$(w)c_{ $\lambda \mu$}^{(w\cdot\wedge)'},
where \hat{W} denotes the ane Weyl group,  $\epsilon$(w) the signature of w, w\cdot\hat{v}=w(\hat{v}+\hat{ $\rho$})-\hat{ $\rho$} is

the shifted Weyl group action with \displaystyle \hat{ $\rho$}=\sum_{i}\hat{ $\omega$}_{i} being the ane Weyl vector and (w\cdot\hat{v})'
is the partition obtained under the bijection (1.2).

Example 4.5. Set n=3 and k=4 and consider the ane weights \times=\hat{ $\omega$}_{0}+
2\hat{ $\omega$}_{1}+\hat{ $\omega$}_{2}, \hat{ $\mu$}=\hat{ $\omega$}_{0}+\hat{ $\omega$}_{1}+2\hat{ $\omega$}_{2} in P_{k}^{+} . The corresponding partitions under (1.2) are
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 $\lambda$=(3,1) and  $\mu$=(3,2) . Employing the Littlewood‐Richardson rule (see e.g. [6])
yields the partitions

(4.13)  $\rho$=(6,3,0) , (6,2,1), (5,4,0), (5,3,1), (5,3,1), (5,2,2), (4,4,1),

(4,3,2), (4,3,2), (3,3,3), (5,2,1,1), (4,3,1,1), (4,2,2,1), (3,3,2,1):

Discarding all partitions of length >n and removing all n‐columns from the partitions
v we obtain the following su(n) tensor product decomposition

 $\lambda$\otimes $\mu$=(6,3)\oplus(5,1)\oplus(5,4)\oplus 2(4,2)\oplus(3,0)\oplus(3,3)\oplus 2(2,1)\oplus(0,0)_{:}

Here we have identied highest weight modules with the corresponding partitions. We

wish to consider the fusion coecient of the ane weight \hat{v}=2\hat{ $\omega$}_{1}+2\hat{ $\omega$}_{2} with partition

v=(4,2) . From (4. 12) we find

(4.14) \mathcal{N}_{\wedge\hat{ $\mu$}}^{(k)\wedge}\wedge=c_{ $\lambda \mu$}^{(4,2)}-c_{ $\lambda \mu$}^{(6,3)}=2-1=1,
since s_{0}\cdot\overline{(6,3)}=s_{0}\cdot(-2\hat{ $\omega$}_{0}+3\hat{ $\omega$}_{1}+3\hat{ $\omega$}_{2})=\hat{v} with s_{0} denoting the ane Weyl reection.

In fact, the entire fusion product expansion is computed to

(4.15)

§4.1. Algorithm to compute fusion coecients

Based on the presentation (4.8) derived from the Bethe ansatz equations we now for‐

mulate an alternative algorithm how to compute fusion coecients in terms of Littlewood‐

Richardson numbers.

1. Compute the expansion s_{$\lambda$^{t}}s_{$\mu$^{t}}=\displaystyle \sum_{$\rho$^{t}}c_{ $\lambda \mu$}^{ $\rho$}s_{$\rho$^{t}} via the Littlewood‐Richardson rule ;

note that c_{ $\lambda \mu$}^{ $\rho$}=c_{$\lambda$^{t}$\mu$^{t}}^{$\rho$^{t}}[6] . Discard all terms for which the partition $\rho$^{t} has length >

k.

2. For each of the remaining terms with $\rho$_{1}^{t}\geq n make the replacement s_{$\rho$^{t}}=s_{($\rho$_{2}^{t},\ldots,$\rho$_{k}^{t},$\rho$_{1}^{t}-n)}.
Whenever ($\rho$_{2}^{t}, \ldots, $\rho$_{k}^{t}, $\rho$_{1}^{t}-n) is not a partition use the straightening rules [18]

s =-s_{(\ldots,b-1,a+1,\ldots)} and s_{(\ldots,a,a+1,\ldots)}=0

for Schur polynomials to rewrite s_{($\rho$_{2}^{t},\ldots,$\rho$_{k}^{t},$\rho$_{1}^{t}-n)} as s_{$\nu$^{t}} with v^{t} a partition.

3. Collecting terms for each v one obtains the fusion coecient \mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k)\wedge}
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Example 4.6. As in example (4.5) set n=3, k=4 and consider the parti‐
tions  $\lambda$=(3,1,0) and  $\mu$=(3,2,0) . After taking the transpose partitions in (4.13) we

discard $\rho$^{t}= (2,2,2,1,1,1), (3,2,1,1,1,1), (2,2,2,2,1), (3,2,2,1,1), (3,3,1,1,1) and

(4,2,1,1,1) as they have length >k=4 . We are left with three partitions $\rho$^{t} for which

$\rho$_{1}^{t}>n , namely (4,2,2,1), (4,3,1,1), (4,3,2,0). Employing the above algorithm we

calculate

s_{(4,2,2,1)}=s_{(2,2,1,1)}, s=s, s=s=0

Removing all rows of length n=3 and collecting terms, one arrives after taking the

transpose again at the expansion (4.15), however, the expression for the fusion coef‐

ficients in terms of Littlewood‐Richardson numbers are dierent. For instance, the

coecient of v=(4,2,0) is according to the Kac‐Walton formula the dierence of two

Littlewood‐Richardson coecients, see (4.14). In contrast, here we find that

\mathcal{N}_{(3,1,0)(3,2,0)}^{(k)(4,2,0)}=c_{(3,1,0,0)} ,(3,2,0,0)
=1(4,3, 1, 1)

Thus, the Bethe ansatz equations (4.2) provide an alternative algorithm to compute

fusion coecients.

Proof of the algorithm. Consider the ring of symmetric functions \mathbb{C}[x_{1}, x_{2}, . ::, x_{k}]^{\mathrm{S}_{k}},
then s_{ $\lambda$}=0 unless \ell( $\lambda$)\leq k . This justies Step 1 of the algorithm. To deduce Step

2, assume we are given a partition  $\lambda$ with \ell( $\lambda$)\leq k and $\lambda$_{1}>n . Then we rewrite the

Schur function as [18]

s_{ $\lambda$}(x_{1}, x2, . . . , x_{k})=\displaystyle \sum_{w\in \mathrm{S}_{k}}w\cdot(x_{1}^{$\lambda$_{1}}\cdots x_{k}^{$\lambda$_{k}} $\theta$(x)) ,  $\theta$(x) :=\displaystyle \prod_{1\leq i<j\leq k}\frac{1}{1-x_{j}/x_{i}}
Observing that the equations (4.2) for x_{1} are equivalent to

x_{1}^{n}\displaystyle \mathrm{Y}\frac{x_{1}}{x_{1}-x_{j}}=z\mathrm{Y}\frac{x_{j}}{x_{j}-x_{1}}
one derives the identity

x_{1}^{$\lambda$_{1}}\cdots x_{k}^{$\lambda$_{k}} $\theta$(x)=zw_{0} (x_{1}^{$\lambda$_{2}}x_{2}^{$\lambda$_{3}}\cdots x_{k}^{$\lambda$_{1}-n} $\theta$(x)) ,

where w_{0}=$\sigma$_{k-1}\cdots$\sigma$_{2}$\sigma$_{1} and $\sigma$_{i} is the transposition which permutes x_{i} and x_{i+1}.

Insertion of this identity into the above expression for the Schur function proves that

s_{ $\lambda$}=s_{($\lambda$_{2},$\lambda$_{3},\ldots,$\lambda$_{k},$\lambda$_{1}-n)}+\mathcal{I}(\mathrm{V}_{n,k}) . Step 3 then follows from (4.8). \square 

§5. Bethe vectors as idempotents

We now solve the Bethe ansatz equations (4.2) explicitly, which is possible due to

their simple form, and describe the variety \mathrm{V}_{n,k} which consists of a discrete set of points
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in \mathbb{C}[z^{1/n}]^{k} . For each partition  $\sigma$ in \mathcal{P}\leq n-1,k dene the following tuple of elements in

\mathbb{C}[z^{\pm 1/n}],

(5.1) \mathcal{P}_{\leq n-1,k}\ni $\sigma$\mapsto x^{ $\sigma$}=z^{\frac{1}{n}}$\zeta$^{\frac{| $\sigma$|}{n}}($\zeta$^{I_{1}($\sigma$^{t})}, \ldots, $\zeta$^{I_{k}($\sigma$^{t})}) ,

where  $\zeta$=\displaystyle \exp(\frac{2 $\pi$ i}{k+n}) and the exponents are the half‐integers,

(5.2) I($\sigma$^{t})= (\displaystyle \frac{k+1}{2}+$\sigma$_{k}^{t}-k, . :. , \frac{k+1}{2}+$\sigma$_{1}^{t}-1) .

A straightforward computation shows that x^{ $\sigma$} solves (4.2) for any  $\sigma$ [  15 ,
Theorem 6.4].

Theorem 5.1 (completeness of the Bethe ansatz). Fix k\geq 0 . Then the set of
vectors \{b_{ $\sigma$}:=b(x_{1}^{ $\sigma$}, \ldots, x_{k}^{ $\sigma$})\}_{ $\sigma$\in \mathcal{P}_{\leq n-1,k}} dened in terms (4\cdot 1) and (5.1) fo rms an eigen‐
basis of the transfeer (3.1) and auxiliary matrix (3.33) in the subspace \mathbb{C}P_{k}^{+} . In partic‐

ular, let S denote the modular sû(n)k S ‐matrix (1.5), then the Bethe vector b_{ $\sigma$} has the

expansion (for simplicity we now label S ‐matrix elements with partitions)

(5.3)  b_{ $\sigma$}=z^{-k}\displaystyle \sum_{\wedge,\wedge\in P_{k}^{+}}z^{$\lambda$_{1-\frac{| $\lambda$|}{n}}}\frac{S_{$\sigma$^{*} $\lambda$}}{S_{$\sigma$^{*}\emptyset}}\times
Moreover, one has the fo llowing eigenvalue equations foor the ane plactic polynomials

(3. 32) and (3. 34),

(5.4)  h_{r}(\displaystyle \mathcal{A})b_{ $\sigma$}=z^{k-r+\frac{r}{n}}\frac{S_{(r) $\sigma$}}{S_{\emptyset $\sigma$}}b_{ $\sigma$} and e_{r}(\displaystyle \mathcal{A})b_{ $\sigma$}=z^{k-r+\frac{r}{n}}\frac{S_{(1^{r}) $\sigma$}}{S_{\emptyset $\sigma$}}b_{ $\sigma$},
where (r) and (1^{r}) denote the partitions whose Young diagrams consist respectively of a

single row and a single column of length r.

Inherent in the last result is the statement that the modular \mathrm{S}‐matrix can be

computed in terms of scalar products of the on‐shell Bethe vectors b_{ $\sigma$} and, hence,

ultimately in terms of the Yang‐Baxter algebra generator B via (4.1). Namely, from

(5.3) we obtain for z=1 that \langle b_{ $\sigma$},  $\lambda$\rangle=S_{ $\lambda \sigma$}/S_{\emptyset $\sigma$} and \langle b_{ $\sigma$}, b_{ $\sigma$}\rangle=|S_{\emptyset $\sigma$}|^{-2} . Using that

S_{\emptyset $\sigma$}>0 we find

(5.5) z=1 : S_{ $\lambda \sigma$}=\displaystyle \frac{\langle b_{ $\sigma$}, $\lambda$\rangle}{\langle b_{ $\sigma$},b_{ $\sigma$}\rangle^{\frac{1}{2}}}, b_{ $\sigma$}=B(\overline{x}_{1}^{ $\sigma$})\cdots B(\overline{x}_{k}^{ $\sigma$})\hat{ $\Omega$}

Note in particular, that for  $\sigma$=\emptyset we obtain the groundstate  b_{\emptyset}=\displaystyle \sum_{ $\lambda$\in P_{k}^{+}}\overline{S}_{\emptyset $\lambda$}/S_{\emptyset\emptyset} $\lambda$
of the quantum Hamiltonian (3.24), or equivalently the Perron‐Frobenius eigenvector
of the transfer matrix (3.1), whose components are given by the so‐called quantum
dimensions

(5.6) \displaystyle \frac{S_{ $\lambda$\emptyset}}{S_{\emptyset\emptyset}}=s_{$\lambda$^{t}}(x^{\emptyset})=\prod_{ $\alpha$>0}\frac{$\zeta$^{\frac{\langle $\alpha,\ \rho$+ $\lambda$\rangle}{2}}-$\zeta$^{-\frac{\langle $\alpha,\ \rho$+ $\lambda$\rangle}{2}}}{$\zeta$^{\frac{\langle $\alpha,\ \rho$\rangle}{2}}-$\zeta$^{-\frac{\langle $\alpha,\ \rho$\rangle}{2}}},  $\zeta$=e^{-\frac{2 $\pi$ i}{k+n}} .
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Here the product runs over all positive roots of su(n) and  $\rho$=\displaystyle \frac{1}{2}\sum_{ $\alpha$>0} $\alpha$ is the Weyl
vector. The expression in terms of Schur functions generalises to the excited states,

we have in general that  S_{ $\lambda \sigma$}/S_{\emptyset $\sigma$}=s_{$\lambda$^{t}}(X) which can be interpreted as characters

evaluated at special points; see [15] for details.

Since we have skipped the algebraic Bethe ansatz computation for T let us verify
for the simple case k=1 that the Bethe vector (4.1) is indeed an eigenvector of the

transfer matrix subject to the Bethe ansatz equations (4.2) and compute the modular

\mathrm{S}‐matrix.

Example 5.2. Take n>2 and set k=z=1 . Then it follows from (3.22) that

Q(u)B(v)\displaystyle \hat{ $\Omega$}=(1+\frac{u}{v})B(v)Q_{0,0}(u)\hat{ $\Omega$}

+\displaystyle \sum_{r\geq 0}Q_{r,r+1}(u)(D(v)-A(v))\hat{ $\Omega$}+\sum_{r\geq 0}Q_{r,r+2}(u)C(v)\hat{ $\Omega$}
Exploiting that C(v)\hat{ $\Omega$}=0 and Q_{0,0}(u)\hat{ $\Omega$}=\hat{ $\Omega$} ,

we need to choose the variable v such that

the second summand on the right hand side vanishes. Observing that (D(v)-A(v))\hat{ $\Omega$}=
(v^{n}-1)\hat{ $\Omega$} ,

we arrive at the Bethe ansatz equations (4.2) with x_{1}=v^{-1} . The solutions

are easily found to be x_{1}(s)=$\zeta$^{s/n}$\zeta$^{s}=e^{-\frac{2 $\pi$ i}{n}s} with s=0 , 1, . :.

,
n-1 and the Bethe

vector thus reads

b_{s}:=B(x_{1}(s)^{-1})\displaystyle \hat{ $\Omega$}=\sum_{r=0}^{n-1}e^{\frac{2 $\pi$ i}{n}rs}(1^{r})
The modular \mathrm{S}‐matrix is then easily computed to be

e^{\frac{2 $\pi$ i}{n}rs}
S_{(1^{r})(1^{\mathrm{s}})}= \overline{\sqrt{n}}

Given the eigenvalue equations (5.4) it is natural to dene ane plactic Schur

polynomials via the familiar Jacobi‐Trudi formula (we exploit once more the integrability
condition (3.21) which guarantees that the determinant is well‐dened),

(5.7) s_{ $\lambda$}(\mathcal{A}):=\det(h_{$\lambda$_{i}-i+j}(\mathcal{A}))_{1\leq i,j\leq n-1}

It is then not dicult to show that the ane plactic Schur polynomials satisfy the eigen‐
value equation s_{ $\lambda$}(\mathcal{A})b_{ $\sigma$}=(S_{ $\lambda \sigma$}/S_{\emptyset $\sigma$})b_{ $\sigma$} which leads to the next result [15, Proposition
6.11 and Theorem 6.12].

Corollary 5.3 (combinatorial product). Introduce a product on the subspace \mathbb{C}P_{k}^{+}
by setting

(5.8) x_{*\wedge:=s_{ $\lambda$}(\mathcal{A})\wedge}, \forall\times, \wedge\in P_{k}^{+}
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Then forz=1(\mathbb{C}P_{k}^{+}, *) is a unital, associative and commutative2 algebra isomorphic
to the fusion or Verlinde algebra \mathcal{F}_{n,k}^{\mathbb{C}} . Moreover, the renormalised Bethe vectors \hat{b}_{ $\lambda$}=
b_{ $\lambda$}/\langle b_{ $\lambda$}, b_{ $\lambda$}\rangle^{\frac{1}{2}} are idempotents with respect to this product, i.e.

(5.9) \hat{b}_{ $\lambda$}*\hat{b}_{ $\mu$}=$\delta$_{ $\lambda,\ \mu$}\hat{b}_{ $\lambda$}, \forall $\lambda$,  $\mu$\in \mathcal{P}\leq n-1,k

Thus, the completeness of the Bethe ansatz is equivalent to the semi‐simplicity of the

fusion algebra.

Proof. The proof of the result (5.8) can be given in one line, hence we repeat it

here for the reader�s convenience,

s_{ $\lambda$}(\displaystyle \mathcal{A}) $\mu$=\sum_{ $\sigma$}\frac{\langle b_{ $\sigma$}, $\mu$\rangle}{\langle b_{ $\sigma$},b_{ $\sigma$}\rangle}s_{ $\lambda$}(\mathcal{A})b_{ $\sigma$}=\sum_{ $\sigma$}\frac{\overline{S}_{\emptyset $\sigma$}S_{ $\mu \sigma$}S_{ $\lambda \sigma$}}{S_{\emptyset $\sigma$}}b_{ $\sigma$}=\sum_{ $\nu$}(\sum_{ $\sigma$}\frac{S_{ $\lambda \sigma$}S_{ $\mu \sigma$}\overline{S}_{ $\nu \sigma$}}{S_{\emptyset $\sigma$}})v
We already pointed out above that (5.3) implies that \langle b_{ $\sigma$},  $\lambda$\rangle=S_{ $\lambda \sigma$}/S_{\emptyset $\sigma$} and \langle b_{ $\sigma$}, b_{ $\sigma$}\rangle=
|S_{\emptyset $\sigma$}|^{-2} ,

whence \displaystyle \hat{b}_{ $\sigma$}=S_{\emptyset $\sigma$}\sum_{\times}\overline{S}_{ $\lambda \sigma$}\times . It now follows that

\displaystyle \hat{b}_{ $\rho$}*\hat{b}_{ $\sigma$}=S_{\emptyset $\rho$}\sum_{ $\lambda$}\overline{S}_{ $\lambda \rho$}s_{ $\lambda$}(\mathcal{A})\hat{b}_{ $\sigma$}=\frac{S_{\emptyset $\rho$}}{S_{\emptyset $\sigma$}}\sum_{ $\lambda$}\overline{S}_{ $\lambda \rho$}S_{ $\lambda \sigma$}\hat{b}_{ $\sigma$}=$\delta$_{ $\sigma,\ \rho$}\hat{b}_{ $\sigma$},
where in the last step we have used unitarity, S\cdot S^{*}=1 ,

of the modular \mathrm{S}‐matrix. \square 

§5.1. Fusion matrices as ane plactic Schur polynomials

It is well‐known that the fusion matrices N_{\hat{ $\lambda$}}^{(k)} :=(\mathcal{N}_{\hat{ $\lambda$}\hat{ $\mu$}}^{(k),\hat{ $\nu$}})_{\wedge,t\in P_{k}^{+}} form a representa‐

tion of the fusion ring. From the existence of the eigenbasis (5.3) and (5.8) one deduces

the next corollary which states that the ane plactic Schur polynomials (5.7), when

restricted to the subspace \mathbb{C}P_{k}^{+} ,
are identical with the fusion matrices.

Corollary 5.4. Denote by \mathcal{F}_{n,k}'\subset \mathrm{E}\mathrm{n}\mathrm{d}(\mathbb{C}P_{k}^{+}) the subalgebra generated by the

(restricted) ane plactic Schur polynomials \{s_{ $\lambda$}(a)_{k}\}_{ $\lambda$\in \mathcal{P}_{\leq n-1,k}} . The map s_{ $\lambda$}(a)_{k}\mapsto[s_{$\lambda$^{t}}]
provides an isomorphism (z=1) , \mathcal{F}_{n,k}'\cong \mathbb{C}[e_{1;}. ::, e_{k}]/\mathcal{I}(\mathrm{V}_{n,k}) . In particular, one has

(5.10) s_{ $\lambda$}(a)_{k}s_{ $\mu$}(a)_{k}=\displaystyle \sum_{ $\nu$\in \mathcal{P}_{\leq n-1,k}}\mathcal{N}_{\wedge\hat{ $\mu$}}^{(k),\hat{ $\nu$}}\wedge s_{ $\nu$}(a)_{k}
Remark. It is common knowledge within the statistical mechanics community

that a set of commuting transfer matrices is the distinguishing property of an integrable

2For arbitrary z the product is still associative but ceases to be commutative. This is dierent from

[15, Theorem 6.12, eqn (6.33)] where the product was dened in terms of s\times(A) with \times being the

partition obtained from  $\lambda$ by adding  k-$\lambda$_{1} columns of height n . This introduces an additional

z‐dependence which renders the product commutative.
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or exactly solvable lattice model [1]. Due to the development of the quantum inverse

scattering method by the Faddeev school, it is the noncommutative structures, the Yang‐
Baxter algebras discussed in Section 3, which have been the centre of attention. The

result (5.10) shows that also the commutative (sub)algebra, the \backslash 

integrals of motion�,
have an interesting structure with applications in representation and, here, conformal

field theory.

§6. Recursion formulae for fusion coecients

The quantum mechanical interpretation via the Hamiltonian (3.24) identies the

fusion ring as the k‐particle superselection sector of the state space \mathbb{C}P^{+} . The physical

picture of creating and destroying particles via the maps (3.3) and (3.4) suggests to

investigate how fusion coecients at dierent levels are related.

Let us start from the simple observation that according to (3.35) the operator A(u)
does not depend on a_{n} . We thus find from (3.7) that A(u)$\varphi$_{1}=$\varphi$_{1}A(u) and, hence,

(6.1) $\varphi$_{1}T(u)$\varphi$_{1}^{*}=$\varphi$_{1}A(u)$\varphi$_{1}^{*}+z$\varphi$_{n}$\varphi$_{1}A(u)$\varphi$_{1}^{*}=T(u) :

Similarly, we can argue that Q_{0,0}(u)$\varphi$_{n}^{*}=$\varphi$_{n}^{*}Q_{0,0}(u) in (3.39) and exploiting once more

(3.7) we arrive with the help of (3.13) at

(6.2) $\varphi$_{n}Q(u)$\varphi$_{n}^{*}=Q(u)

We stay in the particle picture and set z=1 . Then the action of h_{k}(\mathcal{A})|_{\mathbb{C}P_{k}^{+}} is par‐

ticularly simple: all particles on the sû(n) Dynkin diagram are shifted by one position,

h_{k}(\mathcal{A})m=(m_{n}, m_{1}, m_{2}, . ::, m_{n-1}) . Because of (3.21), the above commutation rela‐

tions (6.1) and (6.2) generalise for z=1 to the maps $\varphi$_{i}, $\varphi$_{i}^{*} with 1\leq i\leq n . If we recall

that T and Q are the generating functions of the ane plactic elementary and complete

symmetric polynomials we obtain immediately the following:

Proposition 6.1 (recursion formulae). For any \hat{ $\mu$}, \hat{v}\in P_{k}^{+} we have the identi‐

ties

(6.3) \mathcal{N}_{-}^{(k+1),$\varphi$_{i}^{*}\wedge}=\mathcal{N}^{\underline{(k)},\hat{ $\nu$}} and \mathcal{N}^{\underline{(k}+1),$\varphi$_{i}^{*p}}=\mathcal{N}^{\underline{(k}),\hat{ $\nu$}},
(1^{r})$\varphi$_{i}^{*}\wedge (1^{r})\wedge (r)$\varphi$_{i}^{*}\wedge (r)\wedge

where  0\leq r\leq k and i=1
, 2, . .

:;
n.

Example 6.2. Set n=5 and  $\mu$= (2,2,1,0). Then for r=3 we find with help
of the algorithm of Section 4.1 the following expansion at level k=2,
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To verify the first identity in (6.3) for i=1 observe that the first two terms in the

following expansion for $\varphi$_{1}^{*} $\mu$=(3,2,1) at level k=3,

are obtained from the k=2 expansion by adding a one‐column.

Another set of relations follows from the recursion relations (6.1) and (6.2). As we

discussed earlier, the boundary parameter z allows us to project on the finite plactic

algebra \mathcal{A}' by setting z=0 . With the help of (3.36), (3.41) and (5.8) one proves the

following statement.

Proposition 6.3. Let \hat{ $\mu$}, \hat{v}\in P_{k}^{+} and  $\mu$, v the corresponding partitions under

(1.2), then we have forr=0 , 1, . . .

;
n1 the following expression in terms of Littlewood‐

Richardson numbers

if either $\mu$_{1}=v_{1} and v/ $\mu$=(1^{r})
(6.4) \mathcal{N}^{\underline{(k)},\hat{ $\nu$}}(1^{r})\wedge^{=}\left\{\begin{array}{l}
1,\\
or$\mu$_{1}+1=v_{1} and $\varphi$_{n}^{*}v/$\varphi$_{1}^{*} $\mu$=(1^{r-1}) .\\
0, else
\end{array}\right.
In case of an horizontal strip of length r=0 , 1, . :.

,
k one has instead the recursion

relation

(6.5) \displaystyle \mathcal{N}\frac{(k}{(r)}=),\hat{ $\nu$}\hat{\wedge}\left\{\begin{array}{l}
1, if $\mu$_{1}=v_{1} and v/ $\mu$=(r)\\
\mathcal{N}^{\underline{(k-1})}' $\varphi$_{1}\hat{ $\nu$} else\\
(r-1)$\varphi$_{n}\hat{ $\mu$},
\end{array}\right.
Example 6.4. Again we set n=5 and  $\mu$= (2,2,1,0). Then at level k=4 one

computes via the above algorithm the expansion

Since for all partitions v appearing in the expansion one has v_{1}>$\mu$_{1} , only the second

case in (6.5) applies and, thus, we find the following nonzero fusion coecients at level

k=3,

\mathcal{N}^{(3),(2,2,2,1)}=\mathcal{N}^{(3),(3,2,1,1)}=\mathcal{N}^{(3),(3,2,2)}=1
(2) (21) (2) (21) (2) (2,2,1)

The latter can be veried by using again the presentation (4.8) in the ring of symmetric
functions and the resulting algorithm or the Verlinde formula.
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Remark. Setting z=0 in (4.4) it appears at first sight that we should expect to

obtain the cohomology ring of the Grassmannian,

H^{*}(Gr_{n-1,n+k-1})\cong \mathbb{Z}[e_{1}, . . . , e_{n}]/\langle h_{n} ,
. . .

,  h_{n+k-1}\rangle .

However, because of the  z‐dependence entering the construction of the eigenvectors

(5.3) one cannot conclude that the product (5.8) specialises to the cup product in

H^{*}(Gr_{n-1,n+k-1}) . Hence, the structure constants of the algebra dened via (5.8) be‐

come in this special case Littlewood‐Richardson coecients with the additional con‐

straint that $\mu$_{1}=v_{1}.

§7. Conclusions

While we have focussed here on a particularly simple integrable model and a very

special ring, the observations made should generalise to a wider class of exactly solvable

lattice models. Let us outline the general concept.

Starting point in the construction of exactly solvable lattice models are in gen‐

eral solutions to the Yang‐Baxter, or more generally, the star‐triangle equation. The

overwhelming majority of these solutions can be constructed with the help of repre‐

sentations of some noncommutative algebras, such as q‐deformed enveloping algebras
of Kac‐Moody algebras (Drinfel�d‐Jimbo �quantum groups�) or elliptic generalisations
thereof. For the example at hand the noncommutative algebras in question are the

phase and ane plactic algebra and it has been explained in [16] how these have their

origin in the q‐deformed enveloping algebra U_{q}\hat{\mathfrak{s}(}(2) . Once the solutions are known ex‐

plicitly one can interpret their matrix elements as the Boltzmann weights of a statistical

vertex model‐ depending on a free parameter‐ and construct the corresponding trans‐

fer matrices to compute its partition function. Because the Boltzmann weights satisfy
the Yang‐Baxter equation the transfer matrices commute, thus dening a commutative

(and associative) algebra or ring despite being built from the generators of a noncom‐

mutative algebra. We have seen how the transfer matrices are generating functions for

polynomials in the alphabet (al, . .

:, a_{n} ) and while the letters a_{i} of this alphabet do not

commute the ane plactic Schur polynomials (5.7) do.

Via the Bethe ansatz one then computes the idempotents of this commutative

algebra, showing that it is semi‐simple, and also its structure constants, the fusion

coecients and their expression in terms of the Verlinde formula. While the algebraic
Bethe ansatz employed here is special to the U_{q}\hat{\mathfrak{s}(}(2) case, generalisations of it which

are applicable to higher rank, such as the nested, analytic or coordinate Bethe ansatz

might be used instead. It is true for the majority of models solvable by the Bethe

ansatz that the Bethe ansatz equations determining the eigenvectors of the transfer
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matrix (or the idempotents of the commutative algebra) are given in terms of some

elements in a commutative polynomial ring \mathcal{R} and hence dene an ane variety V. In

the example discussed here the polynomial ring \mathcal{R} has been the the ring of symmetric
functions \mathcal{R}=\mathbb{C}[e_{1}, . :. ; e_{k}] . In the next step one determines the nullstellen ideal \mathcal{I}(\mathrm{V})
and considers the quotient \mathcal{R}/\mathcal{I}(\mathrm{V}) which is isomorphic to the ring generated by the

transfer matrices, namely we saw in the model discussed here that the eigenvalues of the

ane plactic Schur polynomials for fixed particle number or level k could be identied

with elements in the quotient ring; see Corollary 5.4.

In general it is not true that the Bethe ansatz equations can be solved, i.e. the

variety V is not known explicitly. Nevertheless one might still be able to determine the

nullstellen ideal \mathcal{I}(\mathrm{V}) and perform computations in \mathcal{R}/\mathcal{I}(\mathrm{V}) ,
similar to the computations

of the fusion coecients performed in Section 4, where we only used the abstract from

of the polynomial equations (4.4) but not the explicit solutions (5.1).
From these observations a natural classication question arises: can the commuta‐

tive algebras arising from integrable vertex models associated with the quantum groups

U_{q}\hat{\mathfrak{g}} be identied and do their structure constants have a similar representation theoretic

interpretation? We hope to address this question in future work.
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