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Geometry and Combinatorics of Crystal Melting

By

Masahito YAMAZAKI *

Abstract

We survey geometrical and especially combinatorial aspects of generalized Donaldson‐

Thomas invariants (also called BPS invariants) for toric Calabi‐Yau manifolds, emphasizing
the role of plane partitions and their generalizations in the recently proposed crystal melting
model. We also comment on equivalence with a vicious walker model and the matrix model

representation of the partition function
1

§1. Introduction

The study of plane partitions, a three‐dimensional generalization of partitions,
has a long history of more than a century in mathematics [1, 2]. There has recently
been a renewed interest in this old topic, both among mathematicians and physicists

alike, due to the pioneering discovery that topological \mathrm{A}‐model [3] on toric Calabi‐Yau

manifolds [4] can be described by a statistical mechanical model of plane partitions

[5, 6]. In more mathematical language, plane partitions count Donaldson‐Thomas (DT)
invariants [7, 8], whose partition function is equivalent [9, 10] to that of the Gromov‐

Witten invariants under suitable parameter identifications.

There is an interesting twist to this story, which is the topic of more recent stud‐

ies in this field. There we study �generalized Donaldson‐Thomas invariants�� [11, 12],
which depend on moduli (mathematically stability conditions, or physically complexi‐
fied Kähler moduli 2). These �invariants� are invariant under a generic deformation of
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moduli, but canjump when we cross real codimension loci (called walls of marginal sta‐

bility, which divide the moduli space into chambers) in the moduli space. This jumping
is called the wall crossing phenomena, and there are general formulas [11, 12, 13] which

govern this jumping phenomena. Generalized DT invariants are indeed generalizations
of the original DT invariants, in the sense that the former coincide with the latter only
in a specific chamber (hereafter called the topological string chamber) of the moduli

space.

Given the richness of these new invariants, the natural question is whether there

are combinatorial counterparts to this geometric story. The goal of the present article

is to provide an answer to this question. Generalized DT invariants on toric Calabi‐

Yau manifolds are described by a statistical mechanical model of �crystal melting��

[14, 15, 16], formulated here as an enumeration problem of plane partitions and their

generalizations. We will also comment on the equivalence with a vicious walker model,

following [17]. No prior knowledge in this field is assumed, and this paper is intended

to be self‐contained, at least as far as the combinatorial aspects are concerned.

This article is organized as follows. In section 2 we define our combinatorial parti‐
tion function as a sum over suitable evolution of partitions. In section 3 we comment on

the representation of the partition function as a unitary matrix integral. The derivation

of this matrix integral is given in section 4, based on an equivalence with a vicious

walker model. Appendix contains an introduction to generalized Donaldson‐Thomas

invariants, which readers can consult for geometric side of the story.

§2. Definition of the Model

We begin with the following theorem, which states that the partition function for

generalized DT invariants Z_{\mathrm{g}\mathrm{D}\mathrm{T}} (see Appendix) on a toric Calabi‐Yau manifold can be

computed exactly by purely combinatorial methods:

Theorem 2.1 (Szendröi [14], Mozgovoy‐Reineke [15], Ooguri‐Yamazaki [16]).
For a toric Calabi‐Yau manifold, the partition function for generalized DTinvariant_{\mathcal{S}}

can be written a\mathcal{S}

(2.1) Z_{\mathrm{g}\mathrm{D}\mathrm{T}}=Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1},

where the \mathcal{S}tati_{\mathcal{S}}tical mechanical model in the right hand \mathcal{S}ide can equivalently formulated

a\mathcal{S}(1) a cry_{\mathcal{S}}tal melting model (a configuration of molten atom\mathcal{S}), (2) dimer model or

(3) a generalization of plane partition\mathcal{S} (an evolution of partition\mathcal{S})^{3}

3The third formulation is available only when the toric Calabi‐Yau manifold has no compact 4‐cycles.
All the examples in this paper fall into this category.
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The goal of this section is to define Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1} , using the plane partitions and their

generalizations. We use the third formulation, developed in [18, 19, 20, 21]. See [14, 15,

16, 22] for the first and the second description.

Remark. As we discussed in the introduction, the LHS of the equation (2.1)
depends on the value of the moduli. Correspondingly, RHS also has moduli dependence,
and we have different statistical mechanical models for different chambers of the moduli

space. The schematic relation (2.1) should be interpreted this way. See (2.16).

Let us begin with standard notations. A partition  $\lambda$=($\lambda$_{i}) is a non‐increasing

sequence of integers $\lambda$_{1}\geq$\lambda$_{2}\geq\ldots\geq 0 such that $\lambda$_{n}=0 for sufficiently large n . The

length | $\lambda$| of a partition  $\lambda$ is given by | $\lambda$| :=\displaystyle \sum_{i}$\lambda$_{i} . We define a transpose $\lambda$^{t} by

$\lambda$_{i}^{t}:=\#\{j|$\lambda$_{i}\leq j\}.

This is simply a graphical transpose of a partition, as will be clear from the following

example.

Example 2.2. For  $\lambda$

Given two partitions  $\lambda$ and  $\mu$ ,
we define  $\lambda$\succ+ $\mu$ if and only if

 $\lambda$_{i}=$\mu$_{i}+1 or $\mu$_{i} for all i.

We also denote  $\lambda$\succ- $\mu$ if and only if  $\lambda$^{t}\succ+$\mu$^{t} ,
or equivalently

$\lambda$_{1}\geq$\mu$_{1}\geq$\lambda$_{2}\geq$\mu$_{2}\geq. . . .

Example 2.3. Two partitions  $\lambda$=(4,2,1) (3, 2, 1)=\ovalbox{\tt\small REJECT}
both satisfy  $\lambda$\succ+ $\mu$ and  $\lambda$\succ- $\mu$.

Now we define a plane partition (also called a 3\mathrm{d} partition) as a sequence of parti‐
tions  $\Pi$=\{ $\lambda$(n)\}_{n\in \mathbb{Z}} such that

(2.2) . . . \prec+ $\lambda$(-2)\prec+ $\lambda$(-1)\prec+ $\lambda$(0)\succ+ $\lambda$(1)\succ+ $\lambda$(2)\succ+\ldots,
and  $\lambda$(n)=\{0\} when |n| sufficiently large. Define the length | $\Pi$| of a plane partition

 $\Pi$=\{ $\lambda$(n)\} to be | $\Pi$|=\displaystyle \sum_{n}| $\lambda$(n)| . Note that this is a finite sum by the assumption
above. Our partition function is defined by

(2.3) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}(q) :=\displaystyle \sum_{ $\Pi$}q^{| $\Pi$|}.
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As is well‐known, MacMahon�s formula represents this as an infinite product

(2.4) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}(q)=\displaystyle \prod_{k>0}(1-q^{k})^{-k},
which is the same as the generalized DT partition function 4 for \mathbb{C}^{3}[3]:5

(2.5) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}(q)=Z_{\mathrm{g}\mathrm{D}\mathrm{T}}^{\mathbb{C}^{3}}(q) ,

For this reason we hereafter denote the LHS of the above equation (2.5) by Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathbb{C}^{3}}.
Remark. In the definition of a plane partition (2.2) we could have used \succ-, \prec-

instead \mathrm{o}\mathrm{f}\succ+, \prec+ . This has the effect of replacing \{ $\lambda$(n)\} by \{ $\lambda$(n)^{t}\} ,
and the partition

function is the same either way.

Remark. The choice of the weight in (2.3) is the same as in the Schur process of

[23].

We have seen that plane partitions correspond to the simplest Calabi‐Yau geometry
\mathbb{C}^{3} Our next task is to consider a set of partitions corresponding to the (resolved)
conifold. We again consider a sequence of partitions  $\Pi$=\{ $\lambda$(n)\} ,

but now with a

slightly different interlacing conditions, with plus and minus appearing alternatingly:

(2.6) . . . \prec- $\lambda$(-2)\prec+ $\lambda$(-1)\prec- $\lambda$(0)\succ+ $\lambda$(1)\succ- $\lambda$(2)\succ+\ldots .

For such a  $\Pi$
,

we define | $\Pi$|_{0} :=\displaystyle \sum_{n:\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}| $\lambda$(n)| and similarly | $\Pi$|_{1} :=\displaystyle \sum_{n:} odd | $\lambda$(n)| . The

conifold partition function is then defined by

(2.7) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}}(q_{0}, q_{1}):= \displaystyle \sum q_{0}^{| $\Pi$|_{0}}q_{1}^{| $\Pi$|_{1}}
$\Pi$_{:} satisfying (2.6)

Then (2.1) in this example states that

(2.8) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}}(q_{0}, q_{1})=Z_{\mathrm{g}\mathrm{D}\mathrm{T}}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}}(q, Q)
under the parameter identification

(2.9) q=q_{0}q_{1}, Q=q_{1}.

Infinite product expression for this partition function is known [3] from the study of the

topological string:
6

(2.10) Z_{\mathrm{g}\mathrm{D}\mathrm{T}}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}}(q, Q)=M(q)^{2}\displaystyle \prod_{k>0}(1+q^{k}Q)^{k}\prod_{k>0}(1+q^{k}Q^{-1})^{k},
4See Appendix for summary of these invariants.

5In the language of topological strings, q is related to the topological string coupling constant g_{s} by
q=-e^{-g_{s}}.

6In the topological strings, q=-e^{-g_{\mathrm{s}}}, Q=-e^{-t} , where g_{s} is the topological string coupling
constant, and t is the Kähler moduli of the resolved conifold.
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The corresponding statement for Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}} was shown combinatorially in [22].

The discussion above is a little bit imprecise because we did not specify the moduli

dependence of the generalized DT invariants. We therefore consider the following more

general partition function which includes the moduli dependence and applies to more

general toric geometries.

First, fix an integer L and a function  $\rho$ : \{1/2, 3/2, . . . , L-1/2\}\rightarrow\{\pm 1\} . We can

periodically extend  $\rho$ to a map  $\sigma$ : \mathbb{Z}_{1/2}\rightarrow\{\pm 1\} ,
where \mathbb{Z}_{1/2} is a set of half‐integers.

This will determine a toric Calabi‐Yau geometry. Second, to fix a moduli dependence,
we define a bijection  $\theta$ : \mathbb{Z}_{1/2}\rightarrow \mathbb{Z}_{1/2} such that 7

(2.11)  $\theta$(h+L)= $\theta$(h)+L for all h\in \mathbb{Z}_{1/2},

and

(2.12) \displaystyle \sum_{i=1}^{L} $\theta$(i-\frac{1}{2})=\sum_{i=1}^{L}(i-\frac{1}{2})
We then define a generalized plane partition of type (L,  $\rho$,  $\theta$) (whose totality we are

going to denote by \mathcal{P}^{(L, $\rho,\ \theta$)} ) to be a sequence of partitions  $\Pi$=\{ $\lambda$(n)\} such that

 $\lambda$(i)^{ $\sigma$ 0 $\theta$(i+1/2)}\prec $\lambda$(i+1) for  $\theta$(i+\displaystyle \frac{1}{2})<0,
(2.13)

 $\lambda$(i)^{ $\sigma$ 0 $\theta$(i+1/2)}\succ $\lambda$(i+1) for  $\theta$(i+\displaystyle \frac{1}{2})>0.
We define | $\Pi$|_{i} :=\displaystyle \sum_{n\equiv i}\mathrm{m}\mathrm{o}\mathrm{d} L| $\lambda$(n)| for i=0 ,

. . .

,
L-1 . We also define

q_{i}^{ $\theta$}:=\left\{\begin{array}{ll}
q_{ $\theta$-1}(i-1/2)+1/2 q_{ $\theta$-1}(i-1/2)+3/2 & q_{ $\theta$-1}(i+1/2)-1/2 ($\theta$^{-1}(i-1/2)<$\theta$^{-1}(i+1/2)) ,\\
q_{ $\theta$-1}^{-1}(i-1/2)-1/2 q^{-1} $\theta$-1(i-1/2)-3/2 & q_{ $\theta$-1}^{-1}(i+1/2)+1/2 ($\theta$^{-1}(i-1/2)>$\theta$^{-1}(i+1/2)) ,
\end{array}\right.
where we used q_{i} for i\in \mathbb{Z} by extending q_{0} ,

. . .

, q_{L-1} periodically,

q_{i+L}=q_{i}.

Note that q_{i}^{ $\theta$=\mathrm{i}\mathrm{d}}=q_{i} . The partition function is defined by

(2.14) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{(L, $\rho,\ \theta$)} ( q_{0} , q\mathrm{l} ,
. . .

, q_{L-1} ) :=\displaystyle \sum_{ $\Pi$\in \mathcal{P}^{(L $\rho,\ \theta$)}},(q_{0}^{ $\theta$})^{| $\Pi$|_{0}}(q_{1}^{ $\theta$})^{| $\Pi$|_{1}}\ldots(q_{L-1}^{ $\theta$})^{| $\Pi$|_{L-1}}
7This notation including half‐integers looks cumbersome, but is useful to see the action of the Weyl
group of the affine Kac‐Moody algebra [28, 19, 20]. The parametrization by  $\theta$ actually covers only
half of the chambers, but sufficient for our purposes here. The partition function becomes a finite

product in the remaining half.
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Example 2.4. Let us take  L=1,  $\rho$=+1 and then the only choice for  $\theta$ is

 $\theta$=\mathrm{i}\mathrm{d}
,

and (2.13) reduces to (2.2). This means Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{(L=1, $\rho$=+1, $\theta$=\mathrm{i}\mathrm{d})}=Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathbb{C}^{3}}.
Example 2.5. Take L=2,  $\rho$(1/2)=+1 and  $\rho$(3/2)=-1.  $\theta$ can in general

written as

 $\theta$=$\theta$_{n}:\displaystyle \frac{1}{2}\mapsto\frac{1}{2}-n, \frac{3}{2}\mapsto\frac{3}{2}+n.
When  $\theta$=$\theta$_{0} , (2.13) is the same as (2.6), and the partition function (2.14) coincides

with (2.7). The case of n\neq 0 corresponds to generalized DT invariants in other cham‐

bers. The corresponding partition function is given by [24, 25, 26] (again under the

identification (2.9))

(2.15) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}}(q_{0}, q_{1};$\theta$_{n})=M(q)^{2}\displaystyle \prod_{k>0}(1+q^{k}Q)^{k}\prod_{k>n}(1+q^{k}Q^{-1})^{k}
In particular, in the limit  n\rightarrow\infty

,
this coincides with the commutative DT partition

function for the conifold [3]. In this limit our statistical mechanical model reduces to

the gluing of two crystal corners (topological vertices) as in [5, 4].

The general story goes as follows. We can construct from (L,  $\rho$) a toric Calabi‐

Yau manifold X^{(L, $\rho$)}
,

which is one of the so‐called generalized conifolds. This is a

toric Calabi‐Yau manifold without compact 4‐cycles 8, and has a connected string of

L-1\mathbb{P}^{1\prime}\mathrm{s} . Each \mathbb{P}^{1} is either a \mathcal{O}(-2,0) ‐curve or a \mathcal{O}(-1, -1) ‐curve, depending on

 $\sigma$(i-1/2)= $\sigma$(i+1/2) or  $\sigma$(i-1/2)=- $\sigma$(i+1/2) .

9 We can then consider the

partition function of generalized DT invariants on X^{(L, $\rho$)}.

The remaining task is to specify the moduli dependence, which in this case is given

by an element of the Weyl group of the affine Lie algebra \hat{A}_{L-1}[28] . The corresponding

partition function is denoted by Z_{\mathrm{g}\mathrm{D}\mathrm{T}}^{X^{ $\rho$}}(q, Q; $\theta$) . Now the following theorem states that

this partition function is the same as the crystal partition function of type (L,  $\rho$,  $\theta$) :

Theorem 2.6 (Nagao [28]).

(2.16) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{ $\sigma$}(qo ,
. . .

, q_{L-1}; $\theta$)=Z_{\mathrm{g}\mathrm{D}\mathrm{T}}^{X^{ $\rho$}}(q, Q; $\theta$) ,

where the parameter identifications are given by
10

q=\pm q_{0}\ldots q_{L-1}, Q_{i}=\pm q_{i} (i=1, \ldots, L-1) .

8See [27] for discussion of Calabi‐Yau geometries with a compact 4‐cycle.
9This means that the overall sign change of  $\rho$ does not change the geometry. In (2.13), this has the

effect of replacing \succ+, \prec+\mathrm{b}\mathrm{y}\succ-, \prec- . As discussed previously in the case of \mathbb{C}^{3} , this does not change
the partition function, but will change the matrix model representation of the partition function

presented in the next section.
1 \ovalbox{\tt\small REJECT} The signs are determined from  $\rho$ . See [15] and section 3.5 of [29].



GEOMETRY AND COMBINATORICS 0F CRYSTAL MELTING 199

Remark. We can consider further generalizations, by changing the boundary con‐

ditions at infinity. This generalized model counts �open generalized Donaldson‐Thomas

invariants�� See [19, 20, 30, 31].

In the following we concentrate on the case of \mathbb{C}^{3} and the resolved conifold.

§3. Matrix Model

In the following sections we show that the crystal melting partition function defined

in the previous section can be written as a unitary matrix integral:

Theorem 3.1.

(3.1) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathbb{C}^{3}}(q)=N\displaystyle \rightarrow\infty\lim\int_{U(N)}dU\det $\Theta$(U|q) ,

where dUi_{\mathcal{S}} the Haar mea\mathcal{S}ure of the unitary group and

(3.2) \displaystyle \ominus(u|q)=\prod_{k=0}^{\infty}(1+uq^{k})(1+u^{-1}q^{k+1}) .

Theorem 3.2 (Ooguri‐Sulkowski‐Yamazaki [17]).

(3.3) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}}(q, Q;$\theta$_{n})=C_{n}Z_{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}}(q, Q;n) ,

where

(3.4) C_{n}=\displaystyle \prod_{k=1}^{\infty}\frac{1}{(1-q^{k})^{k}}\prod_{k=n+1}^{\infty}(\frac{1-Q^{-1_{q}k}}{1-q^{k}})^{n},
and

(3.5) Z_{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}1\mathrm{d}}(q, Q;n)=N\displaystyle \rightarrow\infty\lim\int_{U(N)}dU\det(\frac{\mathrm{O}-(U|q)}{\mathrm{O}-(QU|q)}\prod_{k=1}^{n}(1+Q^{-1}U^{-1}q^{k})) ,

where the mea\mathcal{S}uredU and the function  $\Theta$(u|q) are the \mathcal{S}amea\mathcal{S} in Theorem 3.1.

We shall give derivations of these results in the next section, but before going there

some comments are in order.

Remark. Theorem 3.1 and Theorem 3.2 for n=0 are not new, although n\neq 0
case has not previously appeared in the literature as far as the author is aware of.

Theorem 3.1 seems to be well‐known in the literature, and can be considered as a
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reduction of a multi‐matrix model in [32]. For Theorem 3.2 with n=0 ,
see the paper

[33], which also proves similar identities for other groups. A vicious walker model similar

to the one for the conifold presented in the next section was also discussed in [34]. In

their terminology \succ+, \prec+(\succ-, \prec)- are called �normal� (�super�) time evolution, and the

model is analyzed by identifies involving semi‐standard Young tableaux and hook Schur

functions (also called supersymmetric Schur functions). They also analyze the scaling
limit of the model. See also [35].

Remark. The prefactor C_{n} simplifies in the limit n=0 and n\rightarrow\infty;C_{0}=1 and

C_{\infty}=M(q) . In particular in these cases C_{n} is independent of Q.

Remark. Z_{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}} , being a partition function of a unitary matrix integral, is a

reduction of a  $\tau$‐fUnction of a two‐dimensional integrable Toda chain [36] (see e.g. [37]).
Similar integrable structures appeared in topological strings context in [38]. See also

[39, 40] for the appearance of thermodynamic Bethe ansatz equations in the study

generalized DT invariants.

Finally, let us discuss the thermodynamic limit of our model, using the matrix

integral given above. The thermodynamic limit is the limit  g_{s}\rightarrow 0 ,
where the string

coupling constant g_{s} is related to the parameter q by q=e^{-g_{s}}11 For small g_{s} ,
the

modular transformation of  $\Theta$ with respect to  g_{s} gives

 $\Theta$(e^{i $\phi$}|e^{-g_{s}})=e2g_{s}-\underline{$\phi$^{2}} (1+O(e^{-\frac{1}{g_{s}}}))
If we ignore non‐perturbative terms in g_{s} ,

this means that the matrix model Z_{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}}^{\mathbb{C}^{3}}
reduces to a Hermitian Gaussian matrix model with unitary measure. This result was

originally derived from the Chern‐Simons theory on the conifold [41, 42] (see also [43]
for crystal melting description).

The spectral curve for this Gaussian matrix model is given by the equation [42, 44]

(3.6) e^{x}+e^{y}+e^{x-y-T}+1=0,

where T=Ng_{s} is the \mathrm{t} Hooft coupling. This is the mirror of the resolved conifold. In

the limit of  T\rightarrow\infty (which we should take since  N\rightarrow\infty ), the curve reduces to

(3.7)  e^{x}+e^{y}+1=0,

which is the mirror of \mathbb{C}^{3}

Next we discuss the spectral curve for the conifold matrix model (3.5)
12 As before,

we take the limit g_{s}\rightarrow 0,  N\rightarrow\infty with  T :=Ng_{s} fixed, but now we also take n\rightarrow\infty,

11This is the parameter counting the size | $\Pi$| :=\displaystyle \sum_{i=1}^{L-1}| $\Pi$|_{i} of a generalized plane partition  $\Pi$.
12 This is the spectral curve for the matrix model. Our statistical model can equivalently be written

as a dimer model, which has its own version of the spectral curve. See [45] and [46].
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with  $\tau$ :=ng_{s} fixed. The spectral curve is given by [17]

(3.8) e^{x+y}+e^{x}+e^{y}+Q_{1}e^{2x}+Q_{2}e^{2y}+Q_{3}=0,

where

Q_{1}=$\epsilon$^{2} \displaystyle \frac{1+ $\mu$ Q}{(1+ $\mu \epsilon$^{2})(1+Q$\epsilon$^{2})},
(3.9) Q_{2}= $\mu$\displaystyle \cdot\frac{1+Q$\epsilon$^{2}}{(1+ $\mu$ Q)(1+ $\mu \epsilon$^{2})},

Q_{3}=Q\displaystyle \cdot\frac{1+ $\mu \epsilon$^{2}}{(1+$\epsilon$^{2}Q)(1+ $\mu$ Q)},
and  $\mu$=Q^{-1}q^{n}, $\epsilon$^{2}=e^{-T} This is the mirror [47] of the so‐called closed vertex geometry,
whose web diagram is shown in Figure 1.

Figure 1. The web diagram for the close vertex geometry. Three \mathbb{P} �s with size Q_{1}, Q_{2} , Q3

appear symmetrically.

There are two interesting observations on this result. First, (3.9) coincides with the

mirror map for this geometry. Second, the curve (3.8) is symmetric under exchanges
of Q,  $\mu$=Q^{-1}q^{n} and $\epsilon$^{2}=e^{-T} Namely, (1) the original Kähler moduli Q of the

resolved conifold, (2) the chamber parameter n and (3) the \mathrm{t} Hooft parameter T ap‐

pear symmetrically in the spectral curve. This is an interesting result, which suggests
a possible connection between continuum limit of the wall crossing formulas and the

BCOV holomorphic anomaly equation [48].
In the matrix model we are interested in the limit of  N\rightarrow\infty

,
which means  T\rightarrow\infty

or equivalently  $\epsilon$\rightarrow 0 . With appropriate shifts of x and y ,
the equation (3.8) in this

limit becomes

(3.10)  $\mu$ e^{2y}+e^{x+y}+e^{x}+(1+Q $\mu$)e^{y}+Q=0.

The is the mirror of the so‐called Suspended Pinched Point (SPP) geometry, with Q and

 $\mu$ being exponentials of flat coordinates representing sizes of its two \mathbb{P}^{1\prime}\mathrm{s}
,

which encode
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two copies of the initial \mathcal{O}(-1, -1)\rightarrow \mathbb{P}^{1} geometry, see figure 2. Not only does the

spectral curve agree with the mirror curve of the SPP geometry in the limit of g_{s}\rightarrow 0,
but in fact the matrix integral reproduces the full topological string partition function

all orders in g_{s} expansion. Indeed, it is known that the SPP topological string partition
function 13, with Kähler parameters Q and  $\mu$ ,

is equal to

(3.11)  Z_{\mathrm{t}\mathrm{o}\mathrm{p}}^{\mathrm{S}\mathrm{P}\mathrm{P}}(q, Q,  $\mu$)=\displaystyle \prod_{k=1}^{\infty}\frac{(1-Qq^{k})^{k}(1- $\mu$ q^{k})^{k}}{(1-q^{k})^{3k/2}(1- $\mu$ Qq^{k})^{k}}.
On the other hand, from the explicit structure of the BPS generating function and

formulas (2.15), (3.3), (3.4) and (3.5), we find that the value of the matrix integral, in

the  N\rightarrow\infty limit, is related to the above topological string partition function as

(3.12)  Z_{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}}(q, Q;n)=Z_{\mathrm{t}\mathrm{o}\mathrm{p}}^{\mathrm{S}\mathrm{P}\mathrm{P}}(q, Q,  $\mu$=Q^{-1}q^{n}) \displaystyle \prod_{k=1}^{\infty}(1-q^{k})^{k/2}
This result is consistent with the philosophy of the remodeling conjecture [49], which

states that a set of invariants (symplectic invariants) [50] constructed recursively from

the spectral curve coincide with topological string partition function on the same ge‐

ometry. Since symplectic invariants are defined by rewriting loop equations of matrix

models purely in the language of spectral curves, the fact that the topological string par‐

tition function can be written as a matrix model would prove the remodeling conjecture.

Indeed, this type of logic was used in [32, 51] to prove the remodeling conjecture for

toric Calabi‐Yau manifolds. It would be interesting to know whether similar recursion

relations exist in other chambers.

Figure 2. The web diagram for the SPP geometry. This geometry has two \mathbb{P}^{1\prime}\mathrm{s} with

size Q_{1} and Q_{2}.

13In our context, a topological string partition function is a generalized DT partition function in

the topological string chamber, where generalized DT invariants coincide with the original DT

invariants of [7, 8]. This chamber is the analogue of $\theta$_{n=\infty} in the conifold
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§4. Derivation of the Matrix Models

There are at least two derivations of the above‐mentioned matrix models, one using
the vertex operator formalism for free fermions [52] (see [18, 19, 21] for discussion our

context) and another using the equivalence with a vicious walker model (non‐intersecting
paths). Both are presented in [17]. Here we comment on the latter method in the case

 $\theta$=\mathrm{i}\mathrm{d} . The derivation here is a slightly simplified version of the derivation in [17]. See

also [32, 35, 51], which constructs similar matrix models in a particular chamber. In

particular [51] treats arbitrary toric Calabi‐Yau geometries.
Let us fix a sufficiently large number N . This is the same N for the size of the

unitary matrix in the previous section, and in the end we take the limit  N\rightarrow\infty . Define

(4.1)  h_{k}(t) :=$\lambda$_{N-k+1}(t)+k-1, (k=1, \ldots, N) .

Since  $\lambda$(t) is a partition, we have

(4.2) h_{k}(t)<h_{k+1}(t) ,

for all t . We also have the boundary condition,

(4.3) h_{k}(t)=k-1 when |t| large.

Moreover, (2.2) means we have, for each step t,

(4.4) h_{k}(t+1)-h_{k}(t)=0 or -1,

for t\geq 0 and

(4.5) h_{k}(t+1)-h_{k}(t)=0 or 1,

for t<0.

Suppose that we fix a large positive (negative) integer t_{\max}(t_{\min}) . We are going to

send these numbers of infinity. If we plot the value of \{h_{k}(t)\}_{tt_{\min}}^{t_{\max_{=}}} for each k
,

we have

a set of N paths. Due to the conditions (4.4), (4.5) the paths move on the graph shown

in Figure 3, and (4.3) means we have a fixed boundary condition. Finally, (4.2) means

that N paths are non‐intersecting. Summing up, we have a statistical mechanical model

of non‐intersecting paths (also called a vicious walker model [53] 14), whose partition
function is given by:

(4.6) Z\displaystyle \simeq \sum \prod q^{\sum_{i}h_{i}(t)},
\{h_{i}(t)\} : non‐intersecting paths on the graph t

where \simeq shows that we neglected an overall multiplicative constant.

 14\mathrm{W}\mathrm{e} can also regards this model as a time evolution of N particles in one dimension. In this language
the model is an exclusion process, a variant of the ASEP [54].
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1

1

1

1

=0 \mathrm{t}=1 \mathrm{t}=2 \mathrm{t}=3

Figure 3. Top: an oriented graph for \mathbb{C}^{3} Middle: an example of 3 non‐intersecting

paths shown as bold (red) arrows. The location of the k‐th path at time t gives h_{k}(t) .

Bottom: The corresponding evolution of Young diagrams.
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At first sight it seems difficult in practice to implement the non‐intersecting con‐

ditions for paths. The following theorem states that we can write the sum over non‐

intersecting paths as a determinant of a matrix, whose element is defined by a single

path:

Theorem 4.1 (Lindström [55], Gessel‐Viennot [56]; Karlin‐McGregor [57]). Sup‐

po\mathcal{S}e we are given an oriented graph without oriented loop_{\mathcal{S}}. Suppo\mathcal{S}e moreover that each

edge ecome\mathcal{S} with a weight w(e) . For a path p on the graph, we define w(p) to be the

product of the weigh_{\mathcal{S}} for all the edge\mathcal{S} on the path: w(p) :=\displaystyle \prod_{e\in p}w(e) . We define F by
\mathcal{S} umming over all non-inter\mathcal{S} ecting p ath_{\mathcal{S}}\{p_{i}\} (each p_{i}\mathcal{S}tart_{\mathcal{S}} from a_{i} and end_{\mathcal{S}} at b_{i} ):

(4.7) F(\displaystyle \{a_{i}\}, \{b_{i}\})=\sum_{n\{p_{i}:a_{i}\rightarrow b_{i}\}:on-intersecting}\prod_{i}w(p_{i}) ,

and an N\times N matrix G(a_{i}, b_{j}) by

(4.8) G(a_{i}, b_{j})= \displaystyle \sum w(p) .

p : a path from ai to b_{j}

Then

(4.9) F ( \{a_{i}\} , {bi }) =\det i,j(G ( a_{i} , bj ) ) .

Proof. When we expand the determinant \det_{i,j} (G ( a_{i} , bj) ) ,
we have contributions

from non‐intersecting as well as intersecting paths. However, contributions from the

latter cancel out because they always come in pairs with an opposite sign (Figure 4)
15 \square 

\mathcal{T}--, \sim-\succ\ovalbox{\tt\small REJECT}

Figure 4. When we expand \det G , intersecting paths always come in pairs with an oppo‐

site sign. The reason is that we can exchange the label for paths after the intersection,
without changing the paths themselves.

15When more than two paths intersect at a single point, we need to pick two of them according to a

fixed ordering and apply the same argument.
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Example 4.2. Consider an oriented graph with weights w_{1} ,
. . .

, w_{6} as shown in

Figure 5. It is easy to see that

(4.10) F(\{a_{1}, a_{2}\}, \{b_{1}, b_{2}\})=(w_{1}w_{4})(w_{3}w_{5}) ,

(4.11) G(a_{i}, b_{j})=(_{w_{2}w_{4}}^{w_{1}w_{4}}
and

w_{2}w_{6}+w_{3}w_{5}w_{1}w_{6})
We indeed have \det G=w_{1}w_{4}(w_{2}w_{6}+w_{3}w_{5})-(w_{2}w_{4})(w_{1}w_{6})=F.

Figure 5. An example of an oriented graph.

Remark. The fact that paths are non‐intersecting is a manifestation of free

fermions, and the determinant is interpreted as a Slater determinant.

Therefore we have

(4.12) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathbb{C}^{3}}(q)=\det i,j(G_{i,j}(q)) ,

where G_{i,j}(q) is defined as a weighted sum over all possible paths which start at height
i at t=t_{\min} and end at height j at t=t_{\max} . As we can see from Figure 3, G(a_{i}, b_{j})
depend only on the difference i-j ,

and we thus have

(4.13) Z_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{a}1}^{\mathbb{C}^{3}}(q)=\det i,j(G_{i-j}(q)) .

It turns out to be easier to write a generating function for G_{n} than to write each

G_{n} separately:

(4.14) f(\displaystyle \mathrm{z}):=\sum_{n}G_{n}\mathrm{z}^{n}=\prod_{n}(1+\mathrm{z}q^{n})\prod_{n}(1+\mathrm{z}^{-1}q^{n+1}) .

Proof. To see this, note that a term in the expansion of the product is in one‐to‐

one correspondence with a path. For example, for t<0 we take either 1 or \mathrm{z}q^{t} from the

product, and the choice corresponds to the two possibilities in (4.5). The change of the
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horizontal coordinates is measured by \mathrm{z}
,

and taking the coefficient in front of \mathrm{z}^{n} means

summing paths with height change n . The product in (4.14) is over all non‐negative

integers n when we send t_{\min}\rightarrow-\infty, t_{\max}\rightarrow\infty. \square 

Finally, we have the following theorem:

Theorem 4.3 (Heine [58], Szegö [59]). Suppo\mathcal{S}e that f(\displaystyle \mathrm{z})=\sum_{n}G_{n}\mathrm{z}^{n} We then

have

(4.15) \displaystyle \int_{U(N)}dU\det f(U)=\mathrm{d},\mathrm{e}\mathrm{t}G_{i-j}1\leq ij\leq N

Remark. The RHS of the equation is often called a Toeplitz determinant of f.

Proof. Diagonalize the unitary matrix U to be (e^{\sqrt{-1}$\phi$_{1}}, \ldots, , e^{\sqrt{-1}$\phi$_{N}}) Then the

integral \displaystyle \int dU reduces to \displaystyle \int\prod d$\phi$_{i}\det_{i,j}(e^{\sqrt{-1}i$\phi$_{j}})\det_{i,j}(e^{-\sqrt{-1}i$\phi$_{j}}) ,
while the integrand

becomes a product \displaystyle \prod_{i}f(e^{\sqrt{-1}$\phi$_{i}}) . After expanding the two determinants using the

definition of the determinant, we can easily carry out the integral, and the result follows.

\square 

This theorem, together with the form of f(\mathrm{z}) in (4.14), completes the derivation of

the matrix model for \mathbb{C}^{3}

The analysis for the conifold is essentially the same, so let us summarize the result

briefly. By defining h_{k}(n) again as in (4.1), we again have (4.2) and (4.3), except that

(4.4), (4.5) are going to be replaced by

1. When t is odd,

(4.16) h_{k}(t+1)-h_{k}(t)=\left\{\begin{array}{ll}
0, 1 & (t<0) ,\\
0, -1 & (t\geq 0) .
\end{array}\right.
2. When t is even,

(4.17) . . . \leq h_{k-1}(t+1)<h_{k}(t)\leq h_{k}(t+1)<h_{k+1}(t)\leq\ldots.

for t<0 and

(4.18) . . . \leq h_{k-1}(t)<h_{k}(t+1)\leq h_{k}(t)<h_{k+1}(t+1)\leq\ldots.

for t\geq 0.
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\mathrm{t}=_{-}3|| \mathrm{f}^{1}=-2| $\iota$^{1}-| \mathrm{t}=0|| \mathrm{t}=1\mathrm{l}\mathrm{l} \mathrm{t}=2|| \mathrm{t}=3||

11

1 |

\mathrm{t}=_{-}3 \mathrm{t}=_{-}2 \mathrm{t}=_{-}1 \mathrm{t}=0 \mathrm{t}=1 \mathrm{t}=2 \mathrm{t}=3

Figure 6. Top: an oriented graph for the conifold. Middle: an example of 3 non‐

intersecting paths on the graph shown in red. Bottom: the corresponding evolution of

Young diagrams.
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These conditions mean \{h_{k}(n)\} move on the graph shown in Figure 6. Note that the

structure of the graph is different depending on whether t is even or odd.

Again by using Theorems 4.1 and 4.3, we have

(4.19) Z=\displaystyle \int dU\det f(U) ,

where

(4.20) f(U)=\displaystyle \prod_{n}\frac{1+(q_{0}q_{1})^{n}\mathrm{z}}{1-(q_{0}q_{1})^{n}q_{1}\mathrm{z}}\prod_{n}\frac{1+(q_{0}q_{1})^{n+1_{\mathrm{Z}}-1}}{1-(q_{0}q_{1})^{n+1}q_{1^{\mathrm{Z}-1}}}.
This is nothing but the expression (3.5) for n=0.
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§A. Generalized Donaldson‐Thomas Invariants

In this appendix we briefly summarize the ingredients of the generalized Donaldson‐

Thomas invariants. Our discussion in this section is far from rigorous and at best

schematic, since the main focus of this paper is more on combinatorial aspects presented
in the main text.

For the definition of generalized DT invariants, we need the following:

\ovalbox{\tt\small REJECT} X : a Calabi‐Yau 3‐fold.

\ovalbox{\tt\small REJECT} \mathrm{a} �charge lattice��:

H_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}(X;\mathbb{Z})=H_{0}(X;\mathbb{Z})\oplus H_{2}(X;\mathbb{Z})\oplus H_{4}(X;\mathbb{Z})\oplus H_{6}(X;\mathbb{Z}) .

\ovalbox{\tt\small REJECT} complexified Kähler moduli of X :

t_{i}=B_{i}+\sqrt{-1}k_{i}, (i=1, \ldots, \dim H_{2}(X;\mathbb{Z})) ,

where the real part B_{i} (imaginary part k_{i} ) denotes the \mathrm{B} ‐field flux through (the
volume of) the i‐th 2‐cycle.
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\ovalbox{\tt\small REJECT} A central charge function Z_{ $\gamma$}(t) ,
which depend on t :=\{t_{i}\} and linearly on  $\gamma$\in

 H_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}(X;\mathbb{Z})16

With these data we can define �generalized DT invariants��

 $\Omega$( $\gamma$;t)\in \mathbb{Q}.

For concreteness, in this paper we restrict ourselves to the following situations:

\ovalbox{\tt\small REJECT} X : a toric 17 Calabi‐Yau 3‐fold without compact 4‐cycles. For example, X can be

\mathbb{C}^{3} or the (resolved) conifold.

\ovalbox{\tt\small REJECT} In the charge lattice H_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}(X;\mathbb{Z}) we only consider the following set of charges 18_{:}

H_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}(X;\mathbb{Z})=H_{0}(X;\mathbb{Z})\oplus H_{2}(X;\mathbb{Z})\oplus H_{4}(X;\mathbb{Z})\oplus H_{6}(X;\mathbb{Z})

 $\gamma$= (n,  $\beta$=\{$\beta$_{i}\}, 0, 1) .

We then have a set of integer invariants

 $\Omega$( $\gamma$=(n,  $\beta$, 0,1);t)\in \mathbb{Z}.

Instead of studying these invariants separately, it is useful to define their generating
function:

(A.1) Z_{\mathrm{g}\mathrm{D}\mathrm{T}}(q, Q;t)=\displaystyle \sum_{n, $\beta$} $\Omega$( $\gamma$=(n,  $\beta$, 0,1);t)q^{n}Q^{ $\beta$},
where Q :=\{Q_{i}\} denotes a set of parameters and Q^{ $\beta$} :=\displaystyle \prod_{i}Q_{i}^{$\beta$_{i}} This is the partition
function for generalized DT invariants studied in the main text.
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