
RIMS Kôkyûroku Bessatsu B3

(2007), 011023

Construction of approximate solutions for rigorous
numerics of symmetric homoclinic orbits

By

Yasuaki Hiraoka *

§1. Introduction

In the paper [5], the author proposed a new rigorous numerical method to prove

the existence of symmetric homoclinic orbits in an S‐reversible system (definition of the

reversibility is given in Section 2):

(1.1) \displaystyle \frac{d_{X}}{dt}=f(x) , f(Sx)=-Sf(x) , x\in \mathrm{R}^{N}
Here we assume that the vector field f is smooth and has a hyperbolic fixed point at

the origin. Let us suppose that we have an approximate numerical homoclinic solution

(1.2) { ($\xi$^{i}, t_{i})|$\xi$^{i}\in \mathrm{R}^{N}, t_{i}\in \mathrm{R}, i=0 , 1, \cdots, K ,
and t_{i}<t_{i+1} },

which is usually obtained by numerical simulations. In this setting, he gives a rigorous
numerical method to prove the existence of symmetric homoclinic orbits of (1.1) in a

neighborhood of the numerical solution (1.2). We refer to the original paper [5] for the

background and motivations of this work.

In the method, it is essential to show the following two steps based on the expo‐

nential dichotomy property: (i) the existence of orbits on the stable manifold of the

origin in a neighborhood of an approximate solution w(t) , t\in \mathrm{R} ,
which is determined

by (1.2), (ii) the intersection of the stable manifold and the S‐invariant subspace. It is

remarked in the paper that we need to construct a suitable approximate solution w(t)
in the sense of C^{r}(\mathrm{R}) , r\geq 1 ,

since the fundamental matrix solution of the variational

equation with respect to w(t) is affected by the hyperbolicity in a neighborhood of the

origin and it makes difficult numerical verifications of the above two steps.

In this paper, we consider how to practically construct a good approximate solution

w(t) for the rigorous numerical method [5] in detail. First of all, it is shown that we
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need a very accurate approximate numerical solution (1.2) in order to obtain appropriate

polynomial interpolations. A multiple precision arithmetic in numerical computations,
for example [4], becomes necessary for this purpose. Then we compare several techniques
to obtain approximate numerical homoclinic solutions such as the spectral method,
the Chebyshev method, the finite difference method, and the shooting method. We

conclude that the shooting method is the most adequate technique for our purpose.

The subjects in this paragraph are discussed in Section 4. The algorithm proposed in

[5] is summarized in Section 2 with a numerical example in Section 3 in order for this

paper to be self‐contained.

There are several other rigorous numerical methods to show the existence of ho‐

moclinic and heteroclinic orbits in dynamical systems. Oishi [10] proposes a method in

which we transform the original problem into a boundary value problem and study a

corresponding contraction mapping principle. Wilczak and Zgliczyński [12] use topo‐

logical arguments based on covering relations. On the other hand, since our method is

based on the rigorous numerics of Melnikov functions, the method may be also applied
to the stability analysis of traveling pulses in reaction diffusion equations with one space

dimension [7]. Namely, it may be possible that we verify not only the existence of a

traveling pulse, which corresponds to a homoclinic or heteroclinic orbit in the moving

coordinate, but also its stability simultaneously. This potential to the stability analysis
seems remarkable comparing to the above mentioned rigorous numerical methods.

§2. Algorithm

The algorithm proposed in the paper [5] consists of the following four steps for the

numerical verifications of homoclinic orbits:

Step 1. Construction of an approximate solution

Step 2. Enclosure of a fundamental matrix solution

Step 3. Characterization of orbits on the stable manifold

Step 4. Analysis for an intersection of the stable and unstable manifolds

The basic strategy is to rigorously perform the techniques in the Melnikov theory by

using an approximate numerical homoclinic solution (1.2) and an exponential dichotomy

property. We refer to the paper [8] for a comparison to the original Melnikov type

argument. In this section, we explain the algorithm in [5] in order for this paper to be

self‐contained.

We impose the following hypotheses on the dynamical system (1.1):

(H1): We assume N=2n and S‐reversibility. That is to say, the vector field satisfies

f(Sx)=-Sf(x) for a linear map S:\mathrm{R}^{2n}\rightarrow \mathrm{R}^{2n} with S^{2}=I_{2n} . Here I_{2n}
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is the identity map on R.

(H2): Eigenvalues of the linearized matrix f(0) at the origin are given by

\{\pm$\lambda$_{i}|i=1, \cdots, n, {\rm Re}$\lambda$_{i}>0, $\lambda$_{1}<{\rm Re}$\lambda$_{j}(j\geq 2)\}.

From the reversibility, we can show that if  $\lambda$ is an eigenvalue then so is - $\lambda$ . Therefore

hypothesis (H2) actually imposes  0<$\lambda$_{1}\in \mathrm{R} and $\lambda$_{1}<{\rm Re}$\lambda$_{j}, j=2, \cdots, n.

A homoclinic orbit h(t) in the reversible system (1.1) is called symmetric if h(-t)=
Sh(t) for all t . Since we only deal with symmetric homoclinic orbits in this paper, we

prepare a numerical homoclinic solution (1.2) as the following form

(2.1) \{($\xi$^{i}, t_{i})|i=0, \pm 1, \cdots, \pm K, $\xi$^{-i}=S$\xi$^{i}, t_{-i}=-t_{i}, $\xi$^{\pm K}\approx 0\}.

It should be noted that $\xi$^{0} is selected at a point on the S‐invariant subspace Fix(S):=
\{x\in \mathrm{R}^{2n}|Sx=x\} (see Fig. 1). Under this situation, we explain each step of the algo‐

\star-\dot{\mathrm{Q}} |_{\mathrm{B}}

Fix (S)

Fig. 1: numerical homoclinic solution

rithm in detail.

Fig. 2: approximate solution w(t)

§2.1. Step 1: Construction of an approximate solution

In this step, we construct an approximate solution w(t)\in \mathrm{R}^{2n}, t\in \mathrm{R} ,
as a con‐

tinuous curve by a given numerical homoclinic solution (2.1). A basic strategy for the

construction is given as follows (see Fig. 2):

\bullet w(t_{i}):=$\xi$^{i}
\bullet Polynomial interpolation for each time interval [t_{i}, t_{i+1}], i=0, \cdots, K-1

\bullet w(t):=$\xi$^{K}e^{-$\lambda$_{1}(t-t_{K})}, t\geq t_{K}

\bullet w(t):=Sw(-t) , t\leq 0

Namely, we adopt a polynomial interpolation for each time interval in the finite time

region [0, t_{K}] ,
and we put an exponential decay property for  t\in[t_{K}, \infty ). Here, let

us note that the decay rate is determined by $\lambda$_{1} . This is because a homoclinic orbit

generically decays along the stable subspace given by the eigenvector of -$\lambda$_{1}[3].
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In practical numerical verifications, we shall put some additional information on

coefficients of polynomial interpolations. For example, we can determine a polynomial

interpolation by specifying its differential coefficients at each end point t=t_{i} . These

derivative information will be given in such a way that an operator introduced in Step
3 becomes contractive. We will discuss this subject in Section 2.3 in detail.

§2.2. Step 2: Enclosure of a fundamental matrix solution

First of all, let us recall an exponential dichotomy property [2] on an ordinary
differential equation

(2.2) \dot{x}=A(t)x, x\in \mathrm{R}^{n}, t\in I,

where I is an interval in R. Let X(t) be its fundamental matrix solution.

Definition 2.1. The equation (2.2) is said to have an exponential dichotomy
on I if there exist positive constants M,  $\alpha$

,
and a projection matrix  P such that the

following inequalities

|X(t)PX(s)^{-1}|\leq Me^{- $\alpha$(t-s)} ,
if s\leq t and s, t\in I

(2.3) |X(t)(I-P)X(s)^{-1}|\leq Me^{- $\alpha$(s-t)} ,
if t\leq s and s, t\in I

are satisfied.

We consider the variational equation

(2.4) \dot{x}=A(t)x, A(t)=f(w(t))

with respect to the approximate solution w(t) . Then, due to [1] and [8], the following

property holds for (2.4).

Lemma 2.2. The variational equation (2.4) has an exponential dichotomy on

\mathrm{R}_{+}=[0, \infty) with the projection matrix

(2.5) P=\left(\begin{array}{l}
I_{n}0\\
00
\end{array}\right)
In this step, we explicitly construct an enclosure of the fundamental matrix solution

which satisfies the exponential dichotomy property on \mathrm{R}_{+} with the projection matrix

(2.5).
It should be noted that, from the asymptotic behavior of A(t) ,

there exist funda‐

mental solutions $\varphi$_{i}(t) , i=\pm 1, \pm 2, \cdots, \pm n
,

of (2.4) such that the following property
holds (\mathrm{e}.\mathrm{g}., [1]) :

(2.6) \displaystyle \lim_{t\rightarrow\infty}$\varphi$_{i}(t)e^{-$\lambda$_{i}(t-t_{K})}=p_{i} \lim_{t\rightarrow\infty}$\varphi$_{-i}(t)e^{$\lambda$_{i}(t-t_{K})}=Sp_{i}.
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Here p_{i} is an eigenvector for the eigenvalue $\lambda$_{i} and, from the reversibility, Sp_{i} corresponds
to an eigenvector for the eigenvalue -$\lambda$_{i} . Then, it is easily shown that the fundamen‐

tal matrix solution determined by X(t)=[$\varphi$_{-1}(t)\cdots$\varphi$_{-n}(t)$\varphi$_{1}(t)\cdots$\varphi$_{n}(t)] attains the

exponential dichotomy property on \mathrm{R}_{+} with (2.5). Hence, for the enclosure of X(t) ,
it

suffices to enclose all fundamental solutions $\varphi$_{i}(t) , i=\pm 1, \cdots, \pm n
,

which satisfy (2.6)
on \mathrm{R}_{+} . In what follows, by dividing into the asymptotic part [t_{K}, \infty ) and the finite

interval part [0, t_{K}] ,
we construct these enclosures on both parts, respectively.

We first explicitly construct the successive approximations $\varphi$_{i}^{(j)}(t) , j=0 , 1, \cdots

,
of

the fundamental solutions $\varphi$_{i}(t) , i=\pm 1, \cdots, \pm n
,

for  t\in[t_{K}, \infty ) by using the similar

manner discussed in Chapter 3 of [1]. Namely, we successively derive approximate
solutions $\varphi$_{i}^{(j)}(t) by taking $\varphi$_{i}^{(0)}(t)=p_{i}e^{$\lambda$_{i}(t-t_{K})} and $\varphi$_{-i}^{(0)}(t)=Sp_{i}e^{-$\lambda$_{i}(t-t_{K})} as initial

approximate solutions. It can be proved that, for each eigenvalue, there exist functions

$\varphi$_{i}(t) , i=\pm 1, \cdots, \pm n
,

to which the sequences of the approximate solutions converge,

and these functions satisfy (2.4) and (2.6). Moreover, it is important that the error

bound between the approximate solution $\varphi$_{i}^{(j)}(t) and $\varphi$_{i}(t) can be explicitly derived for

each j . Therefore, it enables us to enclose the fundamental solution $\varphi$_{i}(t) for  t\in[t_{K}, \infty )
by using the approximate solution $\varphi$_{i}^{(j)}(t) and its error bound.

Next, let us enclose the fundamental solutions in the finite interval part by using
Lohner�s method [9], which is one of the numerical verification techniques to enclose

solutions of initial value problems for a finite time interval in ordinary differential equa‐

tions. We take the enclosure of $\varphi$_{i}(t) as the set of initial values and solve (2.4) from

t=t_{K} to t=0 by Lohner�s method.

§2.3. Step 3: Characterization of orbits on the stable manifold

In this step we characterize orbits on the stable manifold of the origin in a neigh‐
borhood of w(t) . For this purpose, let us introduce a new variable v:=x-w . Then

the differential equation (1.1) is transformed into

\mathrm{V}=A(t)v+g(t, v)

(2.7) g(t, v) :=-\dot{w}(t)+f(w(t)+v)-A(t)v.

We should note that, due to the hyperbolicity of the origin and the asymptotic behavior

of w(t) ,
if v(t) is a solution of (2.7) such that \displaystyle \sup_{t\in \mathrm{R}_{+}}v(t)< $\epsilon$ for a sufficiently small  $\dagger$,

then x(t)=w(t)+v(t) stays on the stable manifold of the origin.
Let \mathrm{B}(\mathrm{R}) be the set of all continuous and bounded functions from \mathrm{R}_{+} to R.

This function space becomes a Banach space under the norm defined by ||v||:=\displaystyle \sup_{t\in \mathrm{R}_{+}}|v(t)|.
Then, the following lemma holds due to the exponential dichotomy.
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Lemma 2.3. ([8]) The differential equation (2.7) is equivalent to

(2.8)

v(t)=X(t)P\displaystyle \{X(0)^{-1}v(0)+\int_{0}^{t}X(s)^{-1}g(s, v)ds\}-\int_{t}^{\infty}X(t)(I-P)X(s)^{-1}g(s, v)ds
on B(\mathrm{R}_{+}) .

We now define an operator on \mathrm{B}(\mathrm{R}) which depends on a parameter  $\eta$\in \mathrm{R}^{2n} as

follows:

(2.9)

(T_{ $\eta$}(v))(t) :=X(t)P\displaystyle \{X(0)^{-1} $\eta$+\int_{0}^{t}X(s)^{-1}g(s, v)ds\}-\int_{t}^{\infty}X(t)(I-P)X(s)^{-1}g(s, v)ds
Note that a fixed point v=T(v) becomes a solution of (2.7) and  $\eta$ controls the initial

value of the fixed point. In addition, we can also show that  T_{ $\eta$} : B(\mathrm{R}_{+})\rightarrow \mathrm{B}(\mathrm{R}) from

the exponential dichotomy.
Let B_{M}(\mathrm{R}_{+}) :=\{v\in B(\mathrm{R}_{+})|||v||\leq M\} be the closed ball with the radius M.

Then, by using the similar arguments in [13], we can prove the following proposition
about the shadowing of orbits converging to the origin.

Proposition 2.4. Suppose Y, Z>0 are taken for  $\eta$\in \mathrm{R}^{2n} and  $\epsilon$>0 such that

||T_{ $\eta$}(0)||\displaystyle \leq Y, \sup ||T_{ $\eta$}'(w_{1})w_{2}||\leq Z.
w_{1},w_{2}\in B_{ $\epsilon$}(\mathrm{R}_{+})

If  Y+Z< $\epsilon$ ,
then there exists the unique fixed point  v_{ $\eta$} of T_{ $\eta$} in B_{Y+Z}(\mathrm{R}_{+}) .

Let us note that Y and Z appearing in the proposition can be explicitly calculated

for each  $\dagger$ and  $\eta$ ,
and hence this proposition enables us to study the existence of the

fixed point of  T_{ $\eta$} . In fact, by the explicit form of w(t) and X(t) treated in Step 1 and

Step 2, we can estimate T(0) and T_{ $\eta$}'(w_{1})w_{2} for a given B_{ $\epsilon$}(\mathrm{R}_{+}) . Namely, we derive

these estimates by numerical verifications for [0, t_{K}] ,
and by the asymptotic forms of

w(t) and the enclosure of X(t) for [t_{K}, \infty ), respectively.
In addition, let us remark that, if there exist  Y, Z

,
and  $\dagger$ satisfying the sufficient

condition  Y+Z< $\epsilon$ for any  $\eta$ in some subset  D\subset \mathrm{R}^{2n} ,
the stable manifold of the origin

in a neighborhood of w(0) can be described by w(0)+v_{ $\eta$}(0) for  $\eta$\in D ,
where v_{ $\eta$} expresses

the unique fixed point of T_{ $\eta$} . Thus, in the practical numerical verification, we try to

construct a suitable subset D\subset \mathrm{R}^{2n} given by the product of intervals such that the

sufficient condition is satisfied for any  $\eta$\in D ,
and characterize the stable manifold. This

stable manifold will be finally analyzed to show the existence of symmetric homoclinic

orbits in the next step.

Before discussing Step 4, let us briefly summarize the relationship of the contrac‐

tiveness of T_{ $\eta$} ,
the choice of the approximate solution w(t) ,

and  $\dagger$ . In general, it is
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obvious that we can not expect  T_{ $\eta$} to be contractive. One of the reasons is that, since

the fundamental matrix solution X(t) possesses the exponential dichotomy property, the

fundamental solutions $\varphi$_{-i}(t) ,
i=1

, 2, \cdots, n
, grows exponentially as t decreases from

t_{K} . This causes Y and Z to be large unless g(s, v) and g_{v}(s, w_{1})w_{2}, w_{1}, w_{2}\in B_{ $\epsilon$}(\mathrm{R}_{+}) ,

are sufficiently small, where g_{v}(s, v) denotes the derivative of g(s, v) with respect to v.

Hence, let us here explain how we guarantee the contractiveness of the operator T_{ $\eta$} by

controlling g(s, v) and g_{v}(s, v) .

Let us first discuss how to make Y small. Since Y is obtained by an upper estimate

of

(2.10)

(T_{ $\eta$}(0))(t)=X(t)P\displaystyle \{X(0)^{-1} $\eta$+\int_{0}^{t}X(s)^{-1}g(s, 0)ds\}-\int_{t}^{\infty}X(t)(I-P)X(s)^{-1}g(s, 0)ds
for  $\eta$\in D and D is usually taken as a small subset in \mathrm{R}^{2n}

,
if we have small g(t, 0) ,

then

we can derive small Y . Here g(t, 0) is given from (2.7) as

(2.11) g(t, 0)=f(w(t))-\dot{w}(t) .

As is mentioned right after Proposition 2.4, |T_{ $\eta$}(0)(t)| is estimated for [0, t_{K}] by the

numerical verification. Especially, the rigorous calculations of the integral parts are

performed for each time step [t_{i}, t_{i+1}], i=0, \cdots, K-1 . Hence, if g(t, 0) is small for

each time step, then the estimates of the integrals become small.

Let us note that, by Taylor�s theorem, g(t, 0) , t\in[t_{i}, t_{i+1}] ,
can be expressed as

g(t, 0)=g(t_{i})+\displaystyle \frac{dg}{dt}(t_{i}, 0)(t-t_{i})+\cdots+\frac{d^{m-1}g}{dt^{m-1}}(t_{i}, 0)\frac{(t-t_{i})^{m-1}}{(m-1)!}+\frac{d^{m}g}{dt^{m}}(t_{ $\theta$}, 0)\frac{(t-t_{i})^{m}}{m!},
where t_{ $\theta$}\in[t_{i}, t_{i+1}] . From this expression, if

(2.12) \displaystyle \frac{d^{k}g}{dt^{k}}(t_{i}, 0)=0, k=0, 1, \cdots, m-1
holds, then g(t, 0) satisfies

(2.13) g(t, 0)\displaystyle \in\frac{1}{m!}\frac{d^{m}g}{dt^{m}}([t_{i}, t_{i+1}], 0)[0, (t_{i+1}-t_{i})^{m}].
It means that g(t, 0) can be suppressed by the m‐th order of the time step.

Now, as we explained in Step 1, the coefficients of the polynomial interpolations
for w(t) are adjusted so as to satisfy (2.12). Namely, we successively determine the

differential coefficients \displaystyle \frac{d^{k+1}w}{dt^{k+1}}(t) by (2.11) in such a way that (2.12) holds, and obtain

the polynomial interpolation for each time step [t_{i}, t_{i+1}] . In Section 4, an example where

w(t) is C^{1}(\mathrm{R}) and m=3 is treated. From this process, we can expect to obtain small Y,
if we set sufficiently small time steps. Let us comment that this process corresponds to
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adding the derivative information to w(t) in order to approximate the true homoclinic

orbit.

Next we consider the estimate of Z . In this case, since (T_{ $\eta$}'(w_{1})w_{2})(t) is given as

(T_{ $\eta$}'(w_{1})w_{2})(t)=\displaystyle \int_{0}^{t}X(t)PX(s)^{-1}g_{v}(s, w_{1})w_{2}ds-\int_{t}^{\infty}X(t)(I-P)X(s)^{-1}g_{v}(s, w_{1})w_{2}ds,
w_{1}, w_{2}\in B_{ $\epsilon$}(\mathrm{R}_{+}) ,

we wish to have small g_{v}(t, w_{1})w_{2} for w_{1}, w_{2}\in B_{ $\epsilon$}(\mathrm{R}_{+}) . Here, let us consider a formal

expansion of g_{v}(t, w_{1})w_{2} at w(t) . Then the following estimate holds:

g_{v}(t, w_{1}(t))w_{2}(t)=f_{x}(w(t)+w_{1}(t))w_{2}(t)-Aw(t)

=f_{xx}(w(t))w_{2}(t)w_{1}(t)+\displaystyle \cdots+\frac{1}{(n-1)!}f_{nx}(w(t))w_{2}(t)w_{1}(t)^{n-1}+\cdots
\subset f_{xx}(w(t))[-$\epsilon$^{2}, $\epsilon$^{2}]+O($\epsilon$^{3})

It means that g_{v}(t, w_{1})w_{2} can be estimated by the second order with respect to  $\dagger$.

From the above argument, since the right hand side of the sufficient condition in

Proposition 2.4 is given by  $\dagger$ (linear), we can expect the contractiveness of the operator

(2.9) by taking small time steps and  $\dagger$.

§2.4. Step 4: Analysis for an intersection of the stable and unstable

manifolds

This is the final step of the algorithm, and we investigate an intersection of the

stable and unstable manifolds of the origin. Here we explicitly use the reversibility of

the vector field f(x) ,
which makes easy the analysis for an intersection of the stable

and unstable manifolds. Therefore, let us first briefly recall some of the fundamental

properties of reversible systems (e.g., see [11]).
Suppose a dynamical system \dot{x}=f(x) is S‐reversible, i.e., f(Sx)=-Sf(x) .

It is obvious that, if x(t) is a solution, so is Sx(-t) . Thus, x(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S) leads to

x(t)=Sx(t) from the uniqueness of the initial value. Let x=0 be a fixed point and

W^{s}(0) , W^{u}(0) be the stable and unstable manifolds of the origin, respectively. Then, if

x(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S)\cap W^{s}(0) ,
then x(0)\in W^{u}(0) by \displaystyle \lim_{t\rightarrow-\infty}x(t)=\lim_{t\rightarrow-\infty}Sx(-t)=0.

Namely, it becomes the symmetric homoclinic orbit.

From these properties, we can verify the existence of symmetric homoclinic orbits

by investigating an intersection of the stable manifold constructed in Step 3 and Fix (S)
without explicitly deriving the unstable manifold. This is the reason that we only
treated \mathrm{R}+\mathrm{s}\mathrm{o} far. Moreover, it is known that symmetric homoclinic orbits in reversible

systems are structurally stable [6]. Hence, it is not necessary to deal with the analysis
as bifurcation problems.
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Now we consider how to verify an intersection of the stable manifold and Fix (S) .

Suppose that we succeeded in verifying the fixed points of (2.9) for  $\eta$ belonging to some

subset  D . In order to show x_{ $\eta$}(0)=w(0)+v_{ $\eta$}(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S) ,
it is sufficient to check that

there exists  $\eta$\in D such that v_{ $\eta$}(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S) ,
since w(0)=$\xi$^{0}\in \mathrm{F}\mathrm{i}\mathrm{x}(S) . Therefore, for

analyzing v_{ $\eta$}(0) ,
let us introduce the following decomposition

\mathrm{R}^{2n}=\mathrm{F}\mathrm{i}\mathrm{x}(S)\oplus V, V:=\{x\in \mathrm{R}^{2n}| Sx=-x\}

and the projection Q:\mathrm{R}^{2n}\rightarrow \mathrm{F}\mathrm{i}\mathrm{x}(S) .

Here we define the following operator

E:\mathrm{F}\mathrm{i}\mathrm{x}(S)\oplus V\rightarrow V,

E($\eta$_{1}, $\eta$_{2}) :=(I - Q)Ẽ ($\eta$_{1}, $\eta$_{2}) , ($\eta$_{1}, $\eta$_{2})\in \mathrm{F}\mathrm{i}\mathrm{x}(S)\oplus V,

(2.14) Ẽ ( $\eta,\ \eta$_{2}) :=v_{ $\eta$}(0)=X(0)(PX(0)^{-1} $\eta$-\displaystyle \int_{0}^{\infty}(I-P)X(s)^{-1}g(s, v_{ $\eta$})ds) ,

where $\eta$_{1}=Q $\eta$,  $\eta$_{2}=(I-Q) $\eta$ . From this definition,  $\eta$\in D satisfying E($\eta$_{1}, $\eta$_{2})=0
leads to v_{ $\eta$}(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S) . Therefore, we finally transform the operator E into some

fixed point form on D in order to study the existence of its fixed point by numerical

verifications.

In fact, from (2.14), let us define

R:=\displaystyle \frac{\partial}{\partial$\eta$_{2}}\{(I-Q)X(0)PX(0)^{-1} $\eta$\}
as an approximate matrix to \displaystyle \frac{\partial}{\partial$\eta$_{2}}E($\eta$_{1}, $\eta$_{2}) and introduce the following Newton type

operator as a fixed point form of E($\eta$_{1}, $\eta$_{2})=0 :

(2.15) F($\eta$_{1}, $\eta$_{2}) :=R^{-1}\{R$\eta$_{2}-E($\eta$_{1}, $\eta$_{2})\}.

It is obvious that F($\eta$_{1}, $\eta$_{2})=$\eta$_{2} is equivalent to E($\eta$_{1}, $\eta$_{2})=0 and the fixed point of

F can be easily studied by numerical verification techniques, since F is an operator on

the finite dimensional space.

§3. Numerical example

In this section, we apply the numerical verification method to a practical problem
in order to check the validity of the algorithm. Let us consider the following two

dimensional reversible system

(3.1) \displaystyle \frac{du}{dt}=f(u) , f(u)=\left(\begin{array}{ll}
 & u_{2}\\
4u_{1} & -3u_{1}^{2}
\end{array}\right)
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as an example. Here the vector field is reversible with respect to S(u_{1}, u_{2})=(u_{1},- u2) .

This dynamical system is obtained from the \mathrm{K}\mathrm{d}\mathrm{V} equation under a moving coordinate

and the existence of 1‐soliton solutions, which correspond to symmetric homoclinic

orbits, is known. Here, by applying Newton�s method to (3.1), we prepare a homoclinic

numerical solution

\{($\xi$_{1}^{i}, $\xi$_{2}^{i}, t_{i})|i=0, \pm 1, \cdots, \pm K\},
which is shown in Fig. 3. Here we take K=6000, t_{K}=4.0 . In addition, we adopt

Fig. 3: numerical homoclinic solution for (3.1)

cubic polynomial interpolations for the construction of the approximate solution w(t) .

First of all, about the sufficient condition of Proposition 2.4, when we choose  $\epsilon$=

0.00005 and D=[-10^{-10}, 10^{-10}]\times[-10^{-5}\times 10^{-5}] ,
we have obtained

Y=0.000013012, Z=0.000002167

for  $\eta$\in D ,
so  Y+Z< $\epsilon$ have been verified.

Next, we study an intersection of the stable manifold and Fix (S) by investigating
the fixed point of (2.15) with respect to  $\eta$_{2} . The image of D have been rigorously
calculated as follows

 F(D)\subset [0.0000050527, 0.0000051626] \subset D_{$\eta$_{2}},

where D_{$\eta$_{2}}:=(I-Q)D . Due to Brouwer�s fixed point theorem, this inclusion shows

the existence of the fixed point and, hence the existence of the symmetric homoclinic

orbit have been verified by our method.

§4. Construction of approximate solutions

In this section, let us explain how to practically construct a suitable approximate
solution w(t) for the algorithm. As we discussed in Section 2.3, we determine the
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coefficients of polynomial interpolations for w(t) by (2.12) so as to make |g(t, 0)| small

for each small interval [t_{i}, t_{i+1}] . For example, let us construct each component of w(t)=
(w_{1}(t), \cdots, w(t)) as C^{1}(\mathrm{R}) and adopt a fifth order polynomial for each small time step

[t_{i}, t_{i+1}] satisfying (2.13) with m=3 . We here denote them by

w_{j}(t)=$\alpha$_{i,j}^{(5)}t^{5}+$\alpha$_{i,j}^{(4)}t^{4}+$\alpha$_{i,j}^{(3)}t^{3}+$\alpha$_{i,j}^{(2)}t^{2}+$\alpha$_{i,j}^{(1)}t+$\alpha$_{i,j}^{(0)}, t\in[t_{i}, t_{i+1}].
Then, the equations to determine $\alpha$_{i,j}^{(l)}, l=0,  1\cdots

, 5,  j=1, \cdots, n
,

are given by

w_{j}(t_{i})=$\xi$_{j}^{i}, w_{j}(t_{i+1})=$\xi$_{j}^{i+1}, \displaystyle \frac{dw_{j}}{dt}(t_{i})=f_{j}(w(t_{i})) , \displaystyle \frac{dw_{j}}{dt}(t_{i+1})=f_{j}(w(t_{i+1})) ,

\displaystyle \frac{d^{2}w_{j}}{dt^{2}}(t_{i})=\frac{df_{j}}{dt}(w(t_{i})) , \displaystyle \frac{d^{3}w_{j}}{dt^{3}}(t_{i})=\frac{d^{2}f_{j}}{dt^{2}}(w(t_{i})) .

Then some elementary calculations show that each coefficient is given by the following
form

(4.1) $\alpha$_{i,j}^{(l)}=\displaystyle \frac{C_{l,j}($\xi$^{i},$\xi$^{i+1})}{(t_{i+1}-t_{i})^{5}},
where C_{l,j}($\xi$^{i}, $\xi$^{i+1}) are constants depending on $\xi$^{i}, $\xi$^{i+1}.

It is obvious from (4.1) that we need at least the same accuracy for $\xi$^{i} and $\xi$^{i+1} as

o((tt)) in order to numerically obtain $\alpha$_{i,j}^{(l)} . Namely, if we set a small time step in

order to make |g(t, 0)| small, then it requires us to prepare very accurate approximate
numerical solutions $\xi$^{i} . The same argument also holds when we increase the degree of

polynomial interpolations. This causes the following problems.

\bullet limitations of double precision arithmetic in numerical computations
\bullet choice of numerical methods to obtain an approximate numerical homoclinic

solution

We can cope with the first problem by using multiple precision arithmetic softwares

(e.g., exflib [4]). By using these softwares, we can easily calculate basic operations of

floating point numbers under very high accuracy.

Next, we consider the second problem. Let us recall that $\xi$^{K} is expected to be very

close to the subspace Spanp, since w(t) is constructed by w(t)=$\xi$^{K}e^{-$\lambda$_{1}(t-t_{K})},  t\geq

 t_{K} (see Section 2.1), where p_{-1} is an eigenvector with respect to -$\lambda$_{1} . The distance

between $\xi$^{K} and \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{p_{-1}\} directly affects the estimate of Y(0) , especially the estimate

of g(s, 0) for s\geq t_{K} in (2.10) (see the paragraph after Proposition 2.4). Moreover

let us note that $\xi$^{0} is assumed to be on Fix (S) . The numerical homoclinic solution

\{($\xi$^{i}, t_{i})|i=0, 1, \cdots, K\} satisfying these two restrictions can be derived by solving the

following boundary value problem:

\displaystyle \frac{dx}{dt}=f(x) , t\in[0, t_{K}], x(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S) , x(t_{K})\in \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{p_{-1}\}.
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Therefore summarizing the discussion in the last few paragraphs yields the following

requirements on \{($\xi$^{i}, t_{i})|i=0, 1, \cdots, K\}.

(1) it should be a good approximate solution of \displaystyle \frac{dx}{dt}=f(x)
(2) K may be very large

(3) it satisfies the boundary conditions

Here, let us compare several numerical methods to obtain \{($\xi$^{i}, t_{i})|i=0, 1, \cdots, K\}
satisfying the above three requirements. First of all, the finite difference method is not

a good choice because of (2). Similarly, the Chebyshev Series method for boundary
value problems does not admit (2). These two methods generally need K\times K matrices

for computations. On the other hand, for example, when we derive numerical standing

pulse solutions of reaction diffusion equations, which correspond to homoclinic orbits

in appropriate settings, the spectral method is often used for computations. By adding
some modifications, the spectral method can manage (2). However, it is impossible to

treat boundary conditions except for the periodic case.

One possibility which deals with the above three requirements is the shooting
method. Let us remark that the computational cost for the shooting method linearly

depend on K
,

so we can take large K . Moreover, the boundary condition x(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S)
should be satisfied rigorously, but it is practically sufficient that x(t) is very close

to \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{p_{-1}\} . Thus, it turns out that, in the practical numerical computations,

x(0)\in \mathrm{F}\mathrm{i}\mathrm{x}(S) is given as initial condition at t=0 and perform the shooting method in

order to derive a solution which approximately satisfies x(t_{K})\in \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{p_{-1}\}.
From the arguments in this section, we understood that (i) multiple precision arith‐

metic and (ii) the shooting method are unavoidable to apply the rigorous numerical

method proposed in the paper [5] into a wide class of reversible systems. In fact, we

have some examples to which the method in [5] does not work well without (i) or (ii).
The practical numerical verifications based on the arguments in this paper are now on

the experiments and will be published elsewhere in the near future.
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