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On stable patterils for
reaction-diffusion equations and systems
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Abstract

In this article, we survey results on the shape of stable steady states of reaction-diffusion
equations and systems. Specifically, we survey results on instability criteria which can be
determined by the shape of steady states. In particular, instability criteria of steady states to
shadow reaction-diffusion systems of activator-inhibitor type are investigated. In the appendix,
we explain a method analyzing an eigenvalue problem related to the stability of steady states
to shadow systems of activator-inhibitor type. '

§1. Introduction

In this article, we survey instability criteria of steady states to reaction-diffusion
equations and systems with the Neumann boundary condition in homogeneous media
which can be determined by the shape of steady states. In particular, we study insta-’
bility ¢riteria for steady states to shadow systems of activator-inhibitor type.

All the mathematical results in the article are already known except slight im-
provements. However, investigating the technique that has been used before seems to
be useful to develop new technique.

This article consists of three sections. Section 1 has two subsections. In Subsec-
tion 1.1, we explain the motivation: Why do we consider. instability criteria? We state
known results for scalar equations. In Subsection 1.2, we state known results for systems
with a special structure. Section 2 has three subsections. In Subsection 2.1, we state
assumptions on the non-linear terms. In Subsection 2.2, we state abstract instability
criteria. of steady states of shadow systems. According to the abstract instability cri-
teria, if a steady state of shadow systems of activator-inhibitor type is stable, then the
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I J| | Scalar equations | (Shadow) systems
1D intervals |  [Ch75] | [N94, NPY01, FRO1]
N dimensional [CHT78, Ma79] | [KW85, IM94, Lo96]
domains (N > 2) _ [Y02a, Mi06b, Mi06c] |

Table 1. Instability results in the case of convex domains.

Morse index of a solution of the first equation should be 1. In Subsection 2.3, we give
several necessary eonditions that solutions to elliptic equations have Morse index 1. We
explain a conjecture (Conjecture 2.10) in Subsection 2.3 which is related to the shape
of stable patterns. Section 3 is an appendix. In the appendix, we explain a method
* analyzing the spectrum of a linear operator.

§1.1. Motivation and instability criteria for scalar equations

One of the main concerns in the non-linear analysis is pattern formation. Finding
all the stable patterns is a way to understand patterns. We study reaction-diffusion
equations and systems in this article. If the domain is a one-dimensional interval, then
there are cases such thaf all the steady states can be found, since we can use phase plane
(or space) arguments. However, in the case of high dimensional domains, it is difficult
in general to find all the steady states. Hence we change the setting of our problem. If
the steady state is stable, then what shape is it? In other words, we want to know the
shape of all the stable steady states.

Our strategy is the following: We find necessary conditions for steady states to
be stable. In order to obtain the necessary condition, we find sufficient conditions for
steady states to be unstable. Then the contrapositive of the sufficient condition becomes
a desired necessary condition. Therefore we want sufficient conditions that capture many
unstable steady states, because the contrapositive narrows the candidates of the stable
steady states.

We divide the problem into four cases as described-in Table 1. The reason for
treating independently the case of a one-dimensional interval is ‘because we can use
phase plane (or space) arguments and the Stirm-Liouville theory.

1.1.1. Scalar equatlons in intervals N. Chafee [Ch75 Theorem 6.2] has proven
the following under some technical condition:
Theorem 1.1 (RD equations in mterva.ls) Let 1 be an interval. All the non-
constant steady states to the problem g

(1.1) up = Dug, + f(u) in f, u; =0 on 9I

4



ON STABLE PATTERNS FOR RD EQUATIONS AND 'SYSTEMS 61

are unstable. Thus the contraposztwe is the following: If a steady state is stable, then it
is constant.

Note that we do not impose assurnption on f except the regularity.
Fortunately, this instability criterion captures all the non-constant steady states.
- Hence only constant functions can be stable.

~ Proof. Let u be a non-constant steady state of (1.1). ‘ Let A; denote the first
" eigenvalue of L with the Neumann boundary condition, where L := DA+ f'(u). We
define # -] by

e Hls= [ {-Da)? + 1/} i
We have
Hlus) = [ {~Dlus)® + f(w0} do
- /1 s (Dtizas + f'(8)tig) 4% — [Dtigtigg]} = 0,

- because Duggs + f'(u)u, = 0. We have

N sup M5 Ml o

‘ YyeH?! ||'¢“2 [l :c"z
where || - ||, denotes the usual L?-norm. We show that A; > 0. Suppose the contrary, i.e.,
A1 = 0. Then u, is an eigenfunction corresponding to A;, and the boundary condition
is satisfied: ugg = 0 at  =.0, 1. Since Uzzy + f(w)uz = 0 in I, u, is constant, where
we use the uniqueness of ODEs. Since u satisfies the Neumann boundary condition, u
is also constant. We obtain a contradiction. a

1.1.2. Scalar equations in multi-dimensional convex domains R. Casten and
C. Holland [CH78] and H. Matano [Ma79] independently have shown the same type
instability criterion as Theorem 1.1 in the case of high dimensional bounded convex
domains. .

Theorem 1.2 (RD equations in convex domins of R¥Y). LetQ C RY bea bounded
and conver domain with smooth boundary. Then all the non-constant steady states to
the problem

=DAu+f(u) in Q, d,u=0 on 09

are unstable. The contraposztwe is the following: If a steady state is stable, then it is
constant. "
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The proofs of [CH78] and [Ma79)] are essentially the same, They use the fact that
(1.3) 8, |Vul> <0 on 89,

provided that  is convex. See [CH78] for the proof of (1.3).

Proof. We use essentially the same method as one used in the proof of Theo-
rem 1.1. First, we have ‘

H [ug;] = A.z (—D |V, |2 + f'(u)uﬁj) dz
S = f g, (DAug, +f'('u.)u,,j) d:v'—D/ Ug; Oz do.
Q - Jon

Since DAug; + f'(w)uz; = 0, we have

v b |
) ;u[uz,.]b? /ma.,IVulzda.

We use (1.3). Since the right-hand side of (1.4) is not negative, thereis & € {1,2,... ,N}
such that H [uz,] > 0. Let \; denote the first eigenvalue of L := DA + f'(u) with the
Neumann boundary cordition. Using a variational characterization of A;, we have

A1 = sup 7{[1.1)2] 2 ] 2
ver ||¥llz lluz. Iz

We show that Ay > 0. Suppose the contrary, i.e., Ay = 0. The function u,, attains
supyep H [¥]/I1¥ll,- Any function that attains the supremum does not vanish in Q
(see [KWT75, p. 570]). However, there is a point on &Q such that u,, vanishes, because
2 is convex. This is a contradiction. \ ‘ O

In the proof, the positiveness of

- / Ug; Oy Ug; do
o0

is a key. Therefore the analysis of u on the boundary is important for proving that the
Morse index is larger than 1.
§1.2. Instability criteria for systems with a special structure
We consider a reaction-diffusion system
u = DyAu+ f(u,v). in , vy = DyAv + g(u,v) in Q,

(FS) .
S,u=0 on. N, d,v=0 on 99,
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where u = u(z, t), v = v(z,t). We also consider the shadow limit (D, — +c0)

g e DburiwO o ret=|§z—| /ﬂ g(u,a)df in 9

du=0 on 99,

L

where v = u(g,t), { = £(t). We call (SS) the shadow system of (FS), following [N82].
Not only the shapes of steady states of (FS) and (SS) but also the dynamics of those
are close to each other [Mi06a]. . :

The stability properties of éteagl‘y states to reaction-diffusion systems (or shadow
systems) are different from those of scalar equations. In ordeér to see this, we consider
a specific system called the Gierer-Meinhardt system [GM72]

uf u
(GM) ut=D,,Au—u+F in Q, Tvt=D,,Av—v+$ in Q

Oyu=0 on 0%, 8,v=0 on 89,

and its shadow system

o , . ‘
up = DyAu—u+— in Q, T7é = — +——/u’da: in Q,
(SGM) e ve “=—tt e U,

du=0 on 9.

When D, and 7 are small and D, is large, the system (GM) has an inhomogeneous stable
steady state even if the domain is convex (For the existence, see [W97]. For the stability,
see [DKO02] for 1D intervals, [NTY01] for 2D balls and [Mi05] for general domains. See
[Li01, LT01, NT91, NT93] for the shape of steady states). The system (SGM) also has
an inhomogeneous stable steady state under the same assumptions except that D, is
large. These inhomogeneous stable steady states are called a boundary one-spike layer.
From the existence of stable inhomogeneous steady states in convex domains, several
questions naturally arise.

Problem 1.3. (i) There is a reaction-diffusion system having inhomogeneous
stable steady states. Therefore in order to obtain instability criteria for all the.inho-
- mogeneous steady states, we have to restrict the class of non-linear terms. Under what
" conditions on the nonlinearity can we obtain this type of instability criteria?
(ii) Under what conditions on the nonlinearity does the system have inhomogeneous
stable steady states? In that case, what shape is an inhomogeneous stable steady state?
(iif) In the case of scalar equations, the stability property does not change with respect
to the time constant r. However, in the case of systems, the stability property may

"change. Clarify the relation between the stability and the time constant 7 of the second
(or first) equation.
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Hereafter in this section, we state known results in the research direction of Prob-
lem 1.3 (i).

S. Jimbo and Y. Morita [JM94] have obtained an instability result. They con31der
the gradient system. See also [L096]

Theorem 1.4 (Gradient systems). Let @ C RN be a bounded and convez do-
main with smooth boundary. Let u:= (uM,u® ... u®) be a steady state to

u§?’=DAu(f)+%( Wu®, u®) in @ for §=1,2,.5: ,k,
. Bu¥ =0 on 80 for j=1,2,...,k

If u is not constant, then u is unstable.

Note that the time constant 7 is fixed to 1 in Theorem 1.4 and that all the diffusion
coefficients are equal.

Proof. * We omit the proof. See [JM94]. O

.E. Yanagida [Y02a)] constructs a general theory of skew-gradient systems. In partic-
ular, the stability of steady states is investigated. He considers 2n-components systems.
However, we treat 2-corj:1ponents systems for simplicity. One of the main results is the
following instability criterion:

Theorem 1.5 (Skew-gradient systems).  Let @ C RV be o bounded and convez
domain with smooth boundary. Let (u,v) be a steady state to

, oF . - oF .
(15) u = D,Au+ E(u, v) in Q, ) TV, = DyAv 5 (u,v) in Q,
du=0 on 09, d,v=0 on 09.

If (u,v) is not constant, then (u,v) is unstable for large 7 > 0. A similar statement
holds in the case of the shadow system with skew-gradient structure.

Proof. We omit the proof. See [Y02a]. ' O

Several instability criteria are known for steady states of.skew-gradient systems.
See [Y02b, KY03, K05].

The skew-gradient system includes a special case of the Gierer-Meinhardt system
and a reaction-diffusion system with FitzHugh-Nagumo type nonlinearity. Therefore,
Theorem 1.5 seems to contradict the existence of the stable boundary one-spike layer.
However, this theorem holds provided that 7 > 0 is large, hence an inhomogeneous
stable steady state may exist for small 7 > 0.

K. Kishimoto and H. Weinberger [KW85] have obtained an instability criterion for
cooperation-diffusion systerns

-
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-Theorem 1.6 (Coopration-diffusion systems). Let Q@ C RY be o bounded and
convez domain with smooth boundary. Let u:= (u®,u®, ... u®) be a steady state to

u = D;Aul) + f;(u), @, ,u®) in Q. forj=1,2,... ,k,
,u?) =0 on 8Q .forj=1,2...,k.

Suppose that

of; ’

==>0 for j#L

By T j#

Then every inhomogeneous steady state u is unstable. Thus if u is stable, then it is
constant.

Proof. See [KW85]. We omit the proof. 0

l,From the change of variables u ++ u, v = —v we unmedlately obtain a result for
a two-species competition-diffusion system.

§2. Stable patterns for activator inhibitor systems

§2.1. Assumptions on the nonlinearity

We explain an activator-inhibitor system, and state assumption on the non-linear
terms f and g in (SS). '

We consider (SS). In theoretical biology, u and ¢ stand for the concentrations of
biochemicals called the short range activator and the long range inhibitor, respectively. -
The activator activates the production rate of the inhibitor (9s > 0), and the inhibitor
suppresses the production rate of the activator (f, < 0). the production rate of the
inhibitor decreases as the inhibitor increases (90 < 0). However, we do not impose a
monotonicity assumption of f in u, because the activator may react autocatalytically
and f may not be monotone in u. We call (SS) the activator-inhibitor system if f and
g satisfy

(AI) ‘ fe <0, g.>0, 'and g¢ < 0.

The time constant of the inhibitor 7, which appears in the second equation of (SS),
means the ratio of the reaction speeds between the activator and the inhibitor. If T
is large, then the inhibitor reacts slowly in time, and the system behaves like a scalar
reaction-diffusion equation. In this case, we can expect and show that, if the domain
is convex, then every inhomogeneous steady state is unstable for large 7 > 0 (See
Corollary 2.4 below). On the contrary, if 7 is small, then the inhibitor reacts quickly,
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and the system tends to be stable. Hence, an inhomogeneous stable steady state can
exist. There is a possibility that a steady state that is unstable for large 7 > 0 is stable
when 7 > 0 is small. (A Hopf bifurcation occurs as 7 increases. See [NTY01, WW03] for
the case of the shadow Gierer-Meinhardt system.) Therefore, it is important to obtain
a sufficient condition, which can be determined by the shape, for steady states to be
‘unstable not only in the case for large 7 > 0 but also in the case for all 7 > 0, because
the contrapositive of the sufficient condition becomes a necessary condition for steady
states to be stable for some 7 > 0. In other words, we know the shape of all the stable
steady states. A '
Hereafter, we'assume that f and g satisfy

{N) fe <0, g¢ <0, thereis k(£) <0 such that g,(u,&) = k(£)fe(u,£)-
The- classes (AI) and (N) include several important systems.

Example 2.1. The Gierer-Meinhardt system [GM72] is (GM), where (p,q,7,5)
. satisfy p>1,¢>0,7>0,5s>0and 0 < (p—1)/g < r/(s+ 1). The assumption
on (p,g,,s) comes from a biological reason. (AI) always holds. If p = r — 1, then (N)
holds. This system is a model describing the head formation of a hydra, which is a
small creature. Specifically, [GM72] shows éxperimentally that the head appears at the
point where the activator u attains the local maximum. It is known that this system
has steady states having various shapes (see [NT91, NT93, GW00, MMO02] for example).

Example 2.2. The shadow system with the FitzHugh—Nagumo type nonlinear-
ity [Fi61, NAY62] is the following:

(FHN)  wy=DuAu+ fo(u)—cf and 76 = ﬁ / /n (Bu - 7€) dady,

where @, 8 and <y are positive constants and fo(u) is the so-called cubic-like function.
A typical example of fg is u(1—u)(u—6) (0 < 6 < 1). (Al) and (N) hold. When 7 =0,
it is known that the full system of (FHN) has an inhomogeneous stable steady state .
(003]. : '

§2.2. Abstract instability results

In this subsection, we study instability criteria of steady states to the shadow
system (SS). The main result in this:subsection is the following:

Lemma 2.3 (Abstract instability criteria).  Let (u,£) be a steady state of (SS),
and let po denote the second eigenvalue of the eigenvalue problem

(2.1). DuAd+ fu(u,€)p=pé in Q,  8,6=0 on A
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(1) Assume that (N) holds. If ua > 0, then (u,&) is unsteble for v > 0.
(i) Assume that (AI) holds. If py > 0, then there is 79 > 0 such that (u,€) is unstable
for T > 1. '

(ii) of Lemma 2.3 is slightly improved than Lemma, 3.2 (ii) of [Mi06b].

In the decade, the stability of steady states to various shadow systems including
Gierer-Meinhardt system has attracted great attention. In étuglying an eigenvalue prob-
lem which is (2.2) below, the main technical difficulty is the eigenvalue analysis of partial
differential operators with non-local term (see (2.3) below). In order to overcome the
difficulty, authors develop several miethods. Some of the methods are closely related.
We want to clarify the relation among them. The method analyzing the eigenvalue
problems (2.2) used in this subsection is based on [Mi05, Mi06b].

Proof. Let (u,€) be a steady state of (SS), and let {-, -) denote the usual inner
product of .L2.. ‘We consider the linearized eigenvalue problem

. L fe é\ _ ¢
(22 ((gu, -)(gs,l)) (n) =2 (Tlﬂln)’

where L := DyA + f, and (¢,7) € H(2) x R. ;From the second equality of (2.2) we
have

(A7 Q| - (95: 1)) = (9u, ) -
Hereafter, we assume that A # (g¢, 1) /(7]©|). Then we have

o lwd)
10l — (g6, 1)

Substituting this equality into the first equation-of (2.2), we have

o et

This is an eigenvalue problem with non-local term. Moreover, this is not a standard
eigenvalue problem, because A appears in the second term. This derivation of (2.3)
is essentially the same as that in [W99, NTY01]. However, they study only Gierer-
Meinhardt system. [W99] studies the case that 7 = 0.

We establish instability criteria. It is enough, if we show that (2.3) has an eigenpair
(¢, A) such that A € R and A > 0. We suppose that A &€ o(L), where ¢(L) denotes
the set of the eigenvalues of L with the Neumann boundary condition. Substituting
¢ = (L ~ A)"t[fe] into (2.3), we have ‘

2.4 ~ (1 4 (o - A)‘1[f£]>) fe=0.

AT 19 - (g¢, 1)
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Figure 1. The graphs of the both sides of (2.6) in the case that k(¢) < 0 and (f¢,%3) = 0.

We want to prove the existence of A(> 0) satisfying (2.4). Let {(%¥n, £ts)},>, denote
the set of the eigenpairs of L. Then

(2.5) @-n7)= Y ity
n>1

Using (2.5), we can write (2.4) as

(f{: "/Jn) (%n"l’n)
Y- <ge,1>Z .

Therefore, we will ﬁnd intersections of the following two functions:

(2'6) AT IQI (gﬁ) 1) Z A—(_ h(’\)): where a, = (f&a 'ﬁbn) (yua¢n)
n>1

See Figure 1. We assume that (AI) holds. Then a; # 0, because %; does not
change the sign. Therefore, when 7 is large, there is Ag > 0 such that (2.6) is satisfied
at A = X, because p; > 0. Thus we obtain Lemma 2.3 (ii). When Je = —9u, (SS) has
the skew-gradient structure. In this case, Lemma 2.3 (i) and (ii) are already obtained
by [Y02c] and [Y02a] respectively. When f¢ = : u, (SS) may have the gradient structure.
In this case, [JM94] proves that every non-constant steady state is unstable.

We assume that (N) holds. The case that k(¢) = 0 is trivial. We assume that
k(&) # 0. If (gu,2) = 0, then (t2,u3) is an eigenpair of (2.3). Thus Lemma 2.3 (i)
holds. If (g, %2) # 0, then ay and a3 are the same sign, and one of the following holds:

(1) lim_AQ)=oo, lim h(})=~oo, h(A) € C*((uz, 1)),
—p1— A—=pat

(2) \Im h(A)=-oo, lim h(})= oo, h(2) € C*((2, 1))
—Hpy— —pat

-
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Therefore even if which case occurs, (2.6) has a positive root provided that ps > 0.
Lemma 2.3 (i) is proven. 0O

~ When we want instability criteria, it is enough to show that there’i_s an eigenvalue
with a positive real part. On the contrary, when we want, the stability of a steady state,
we have to prove the non-existence of the Spectrum on the right half plane. We consider
this problem in the appendix.
The results and the proofs of [Fr94a, Fr94b, Y02c] are easﬂy understood if one see
Figure 1.

Corollary 2.4.  Assume that Q is bounded end convez and that (AI) holds. Let
(u,€) be o steady state of (SS). If u is not constant, then there is 7o > 0 such that (u, )
is unstable for T > 9.

Proof. Theorems 1.1 and 1.2 say that py > 0 if u is not constant. The statement
immediately follows from Lemma 2.3 (ii). O

In the statement of Corollary 2.4, the largeness of 7 is needed. However, the
case that 7 is large is trivial in some sense, as stated in an intuitive discussion in
Subsection 2.1. We want to know instability criteria in the case that 7 is small. We can
obtain such criteria, using Lemma 2.3 (i). In order to use Lemma 2.3 (i), we need the
sign of u2, which is the second eigenvalue of (2.1).

Let us compare (FS) and (SS). If v(z) is fixed, then the mapping u f (u,)
does depend on z explicitly. However, in the case of the shadow system, the mapping
u 3 f(u,£) does not depend on z explicitly, and the first equation of (SS) can be treated
as a scalar equation in homogeneous media provided that £ is fixed. This fact makes it
easier to know the sign of us.

We consider the second eigenvalue of (2.1). Asstated above, (2.1) can be treated as
a usual eigenvalue problem of scalar reaction-diffusion equations in homogeneous media.
Here u is a solution of an elliptic equation in homogeneous media

2.7 Au+N(u)=0 in Q, d,u=0 on 99,
and the second eigenvalue means ‘the second eigenvalue of the eigenvalue problem
(2.8) - A+ N'(u)¢p=ké in Q, 8,6=0 on O9.

§2.3. Analysis of the second eigenvalue

In this subsection, we state instability criteria in the research direction of Prob-
lem 1.3 (ii) and (iii). Specifically, we study sufficient conditions that k3 > 0.
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2.3.1. Shadow systems in intervals Y. Nishiura [N94] has obtained an instability
criterion for steady states to shadow systems in one-dimensional intervals (The same
resitlt has been obtained by P. Freitas arid C. Rocha [FRO1] for (FHN)). This result is
generalized by Ni-Polacik-Yanagida [NPYO01]. They consider the case that f = f(u,¢,t)
satisfies f(u,&,t+ T) = f(u,é,t) for some T > 0. .

Theorem 2.5 (Shadow systems in intervals).  Let I be an interval. Let (u,&) be
a steady state of the probiem

(2.9) U = D‘uu::lf‘ + f(u1 E) in Ia T&t =m "/;g(u) ﬁ)d-""a

uz =0 on &l.

Suppose that u is non-constant, non-monotone increasing, and non—mohotonc decreas-
ing. ’

(i) Suppose that (N) holds. Then (u,£) is unstable for all T > 0.

(ii) Suppose that (AI) holds. Then there is 7o > 0 such that (u,&) is unstable for T > 7.

The contrapositive of Theorem 2.5 (i) is the following:

Corollary 2.6.  Suppose that (N) holds. If the steady state (u,&) of (2.9) is stable
for some 7 > 0, then u is constant, monotone increasing, or monotone decreasing.

Proof of Theorem 2.5 (i). Suppose that u is not constant, monotone increasing,
or monotone decreasing. Then there is z¢ € I\OI such that uz(zo) = 0, uz(z) # 0 in
(0,20). Let (¢,2) be an eigenpair of (2.1) such that A < 0. We consider the case that
uz(z) > 0 in (0,xz0). We assume that ¢ > 0 in (0,zp). Then we have

0> )\/zo uzPpdr = fzo uz Lodz
0 0
_ /0 " Lugddz + Da($(0)tsae (0) — $(z0) ez (z0))-

Since Lug = 0, 434(0) > 0 and u,4(20) < 0, the right-hand side is positive. We obtain
a contradiction. Therefore ¢ has at least one Zero in [0, z9). We see that ¢(0) # 0, using
uniqueness of ODEs. Moreover, from the inequality we easily see that ¢(xo) # 0. Thus
the zeros of ¢ are in (0,zo). Using the same argument, we can show that ¢ has at least
one zero in (0,zo) in other cases. We see by induction that ¢ has at least one zero in
the interior set of any interval of non-zero level set of u:

Because of the assumption of the lemma, {u, # 0} consists of at least two intervals.
Therefore if A < 0, then the corresponding eigenfunction ¢ has at least two zeros in I.
From the Sturm-Liouville theory we see that the second eigenfunction has exactly one
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zero in I and the second eigenvalue cannot be 0 or negative. We obtain the desirable
result from Lemma 2.3. O

In the proof, the positiveness of the second eigenvalue is a key. In order to show
this, we use the zero number of u; (the lap-number of, u in the sense of [Ma82]) and
eigenfunctions.

2.3.2.° Shadow systems in 2D domains In the case of one-dimensional intervals,
the number of zeros of u, plays an important role in determining the Morse index.
Analogously, the nodal curves (the zero curves) of u,, u, anditg play an important role
in the case of two-dimensional domains. Note that 8 := —yd, + 8, and that 8, Oy
and Op commute with A(; ). If the spatial dimension is 3 or larger, the topologjr of
the non-zero level set can be very complicated. However, in the case of 2D domains,’
that is relatively simple (If the spatial dimension is 1, each nodal set should be an
interval). Moreover, the Carleman-Hartman-Wintner theory [Ca33, HW53] gives us the
information about the nodal curves of uy, u, and ug. Using these information, we can
obtain information about the number of the nodal domain of u,, uy and ug and prove
the positivity of the second eigenvalue if the shape of the domain is not complicated,
e.g., arectangle and a ball. We state several results on the shape of stable steady states.
See [Mi06c] for the proofs of the following two theorems:

Theorem 2.7 (Shadow systems in 2D rectangles). Let 2 be a rectangle R, and
let (u,€) be a non-constant steady state to (SS). Suppose that (N) holds. If (u,&) is
stable for some T > 0, then either (i) or (i) holds.

(i) There is a direction which is not parallel to the z-axis and y-azis such that u is
strictly monotone with respect to the direction. Moreover u attains its global mazimum
(minimum) at ezactly one point of the corner of R.

(ii) » depends only on z ory, and it is strictly monotone inz ory respectwely Therefore
u atlains its global mazimum (minimum) on one side of R.

Theorem 2.8 (Shadow systems in 2D balls).  Let Q be a ball B, and let (u,£)
be a non-constant steady. state to (SS). Suppose that (N) and that

(2.10) ' sup  fu(p1,p2) < Duxa,
: (p1,p2)ER?
where x4 is the fourth eigenvalue of the Neumann Laplacian in B. If (u,&) is stable for
some T >0, then B has a diameter PQ such that
(i) uis symmetnc with respect to PQ,
(ii) u 4s strictly monotone in the direction parallel to PQ, i.e., Bau > 0 on B\{P Q},
where G,u denotes the derivative in the direction,
(iii) up > 0 on one side of B\PQ, ug < 0 on thg other side, where PQ denotes the
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3

Figure 2. The shape of st‘algle steady states stated in Theorem 2.8 in the case of B

segment whose endpoints are P and Q,

(iv) w(Q) < u(z,y) < u(P) for (z,y) € B\{P,Q}.

In the case of R and B, the maximum (minimum) of u is attained on the boundary
if (u, ) is stable for some 7 > 0. ’

In the case of B, the assumption (2.10) seems to be technical. We obtain informa-
tion about the shape of % on the boundary, even if we do not assume (2.10).

Theorem 2.9 (Shadow systems in 2D balls).  Let Q be a ball B with radius R,
and let (u,§) be a non-constant steady state to (SS). Suppose that (N) holds. If (u,§) is
stable for someT > 0, then Z [Up(-)] = 2 or u is constant. Here U(0) := u(Rcos 0, Rsin)
and Z[-] denotes the cardinal number of the zero level set of 2m-periodic functions.
Therefore, Z [Ug(-)] is the lap-number of U in the sense of [Ma82)].

See [Mi06b] for details.

Theorems 2.8 and 2.9 suggest that only the steady states whose shape are like a
boundary one-spike layer can be stable, even if the diffusion coefficient is not small. See
Figure 2.

2.3.3. Conjecture We can expect that a result similar to Theorems 2.7 and 2.8
holds in the case of 2D bounded convex domains. In order to prove that, we have to
prove the following: )

Conjecture 2.10 ([Y06] Convex domains of R?). Let Q be a two-dimensional
bounded convex domain with smooth boundary, and let  be a non-constant solution of
(2.7). If there is an interior point (zo,3yo) € int(§2) such that (Zo,yo) is a critical point
of u, i.e., uz(o,Yo) = uy(Zo, Yo) = 0, then the second eigenvalue of (2.8) is positive.

The contrapositive of Conjecture 2.10 is the following: Non-constant solutions of
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| Morse index || Linear Nonlinear |
0 || The first e.f. of Ayis constant. |, Theorem 1.2
1 The “hot spots” conjecture. Conjécture 2.10
. n-—1 The shape of n—th e f of AN | The shape of u. |

Tab]e 2. The “hot spots” conjecture of J. Ra.uch and related results.

' || Equation I Domain Solution
[NT91, NT93] EAu—u+u? =0 any domain .- least-energy sol.
' I : (possibly non-convex)
Conjecture 2.10 Au+ flu)y=0 convex domain any solution

Table 3. Relations between [NT91, NT93] and Conjecture 2.10.

(2.7) with Morse index 1 do not have critical points in the interior of the domain and
attain the maximum (minimum) on the boundary if the domain is convex.

If Conjecture 2.10 holds, then we see that all the stable steady states of (SS) do not
have interior spikes or spots in the case of two-dimensional bounded convex domains
with smooth boundary.

Conjecture 2.10 is a non-linear version of the “hot spots” conjecture of J. Rauch
[R74] ([Y06]). See [BW99, BB99, JN0O, B05} for partial answers of the “hot spots”
conjecture. The “hot spots” conjecture immediately follows from Conjecture 2.10. See
Table 2. There are well-known results obtained by W. M. Ni and 1. Takagi [NT'91, NT93)
which is a sufficient condition for solutions to attain the maximum on the boundary of
" the domain. Specifically, they have shown that the least-energy-solution of

eEAu-—u+u" =0 in , d,u=0 on 09,

which is of mountain pass type, is spike-shaped and it attains the maximum at exéctly
one point on the boundary provided that ¢ is small. Note that the least-eénergy-solution
has Morse index 1. They also have shown that the peak should be at the point on the
boundary where the mean curvature of the boundary attains the global maximum. See
Table 3 for relations between [NT91, NT93] and Conjecture 2.10.

In [Mi06c], the above conjecture is proven in the case that = R and that @ = B
and (2.10) holds. A key quantity is the lap-number of U, i.e., Z[Us(-)]. This number
gives a lower bound of the number of the nodal domains of ug. Therefore, Z[Up(-)]
connects the shape of v and the Morse index, and it plays the role similar to the
lap-number in one-dimensional cases. See [Mi06b, Mi06c) for details. See [JNOO] for
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connections between Z[Upy(-)] and the “hot spots” con‘jeci;ure.

Remark. The author has recently proven Conjecture 2.10 in the case of a two-
dimensional ball. Therefore, when the domain is a disk, the stable steady states of the
shadow system of activator-inhibitor type (N) have exactly one maximum (minimum)
point on the boundary, and do not have a critical point in the:interior of the disk, even
if (2.10) is not assumed. '

§2.4. Shadow sysfems in high dimensional domains

In the case that the spatial dimension is 1 or 2, the number of the nodal domains
of u; (u, and ug) plays a critical role, as stated above. In order to obtain the sufficient
condition for the second eigenvalue to be positive, we should pay attention to a certain
quantity related to the number of the nodal domains. In the case of one-dimensional
(resp. two-dimensional)‘domains, it is the number of zeros of u, (resp. Z[Up(-)]). We
now do not know what the quantity is, when the dimension is 3 or larger. However, it
may be related to the shape of u on the boundary.

§3. Appendix

Let (u,£) be a steady state of (SS), and let £ denote the linearized operator of (SS)
at the steady state, i.e.,

’ L fe
L= (gm') (95»1)) ’
Tl rel
where L := DyA + f,. Let {un}n>1 denote the eigenvalue of L with the Neumann
boundary condition counting multiplicities.
In the appendix, we study the spectrum of L.

§3.1. Eigenvalues

It is well-known that the spectrum of £ with the Neumann boundary condition
consists only of eigenvalues. We briefly see this fact in this subsection.
Let us consider the eigenvalue problem

(1) | (£~ (ﬁ) - (i)

We easily see that (£— o) has the inverse for some \p. Moreover, the inverse is compact.
See the form (4,7) in the proof of Proposition 3.2 (ii) below for example. Operating
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(L~ Xo)~! on (3.1), we have

{T+ (o= ML - 20)~) (j) = (£ = do)™! (3) .

The Fredholm alternative says that, if {I + (Ao — ML - Xo)~'} does not have the
inverse, then there is (@1,7) such that ”

{'1+(,\(J =L =)} ("’.1) =0 < (L~ (¢1) =0.
\h . . 771‘

Therefore, A is.an eigenvalue of £.
From now on, we divide the eigenvalues of £ into two sets. One is the set of the
non-real eigenvalues and the other is the set of the real eigenvalues.

§3.2. Non-real eigenvalues

Proposition 3.1.  Suppose that (N) holds.
(i) If 7 < (ge, 1)? /(-2 19¢ fer9u)), then all the non-real eigenvelues are bounded away
from the imaginary azis.

(i) If 7 < (—g¢,1) /(11 19]), then all the non-real eigenvalues are bounded away from
the imaginary axis.

The calculations in the proof are essentially same as those of [W99, Theorem 1.4].
We know by the proposition that a Hopf bifurcation may occur only when

(9, 1”  (-gc,1)
’Zma"{-zmi (Fes g}’ 2 192 }

Proof. 'We consider the eigenvalue problem

(3.2) L[¢r +ids] + (nr +ins) fe = (Ar +iA1)(dr + 1),
(33) (9u> dr + id1) + (nr + in1) (9e, 1) = 71Q| (Mg + z}\z)@n + in1),
where |

(3.4) g3 + lézllz +nE +nf = 1.

- We show by contradiction that ¢g-+i¢; # 0. Suppose the contrary, namely, ¢p+ig; = 0.
Then (3.2) becomes (nr + inr) fe = 0. Thus ng + inr = 0, which contradicts (3.4). We
can assume that g + igs # 0. ;jFrom (3.3) we have

(gm dr+ i¢!) : ]
Ar+2A)7 (9] - (g6, 1)

MR+ =
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Figure 3. All the non-real eigenvalues of £ are in the ball (3.9).

Substituting this equation into (3.2), we have

. . (gua ér + 1¢I) =
(3.5) (L = Ar —iA1) [pr + id1] + Or+ D)7 — (ge, 1) 0

v

Taking the real part and the imaginary part of (3.5), we have

. 1910k — (96, 1) (9us 88) fi + AT 90 (9w, 1) fe _
(3.6) (L=Ar)lga] +Mrdr + IR A — (g6, 1)) + Our O =0,
_ _ (7 192 Ar = (9¢: 1)) {gus 81) f& — AT [ (gu, $r) fe
G0 L=l = Aidnt T o e D)2 + Cur 1P =

Calculating ((3.6), 1) — ((3.7), #r), we have

i) k((fg»tﬁR) + (fg,sbz) )
(38) /\1((¢R» ¢R) + (¢f: ¢I)) + ( |Q| ’\R <g€’1))2 + (AI"' |QD2 0

where we use gy (u,£) = k(£) fe(u, ). Since /\1 # 0 and ||¢|2 + |l61]3 # 0, we have

_ o)\, o ~2({fe8R) + (e, 01)7) _ —2k ISl
(3.9) (A" ’fIOI'> N o (b brP + Grdr)) Il

where we use (f¢, or)> +( foon® <l fell2 (||¢R||2 + ||¢I||2) Hence, all the non-real
eigenvalues are in the ball (3.9). Since —2k ||f,§||2 = -2 fe»9u), the ball is on a half
plane {z; Re(z) < {9¢,1) /(7 [2]) + /=2 {f¢, 9u)/7|Q}. See Figure 3. Therefore (i) is
proven. ' ' ’
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" We prove (ii). Calculating ((3.6, o) + ((3.7), #1), we have

(3.10) {((L— AR)ér, ¥R} + (L — Ar)ér, 1)

2k(T|Q|AR <g§)1))((f€)¢ﬂ) +(f€)¢1))
(71 Ar — (95,1))2+()\IT|Q|)2 '

where we use Gu(n, §) k(&) fe(u,€). Substituting (3 8) into. (3.10), we have

TIQM: |$—Zl(g£,1) (||¢R||2+ ||¢I||z) = (L= M), ér) +((L - )\R)¢I:¢1)

< (=) (||¢R||2+ lgl3)

=0,

Therefore,
M1 (_gi‘t 1)
M= —-="
R=7 27|Q|

The proof of (ii) is complete. 0

Eigenvalues do not have a limit point in C except co. Since all the non-real eigen-
values are in the ball (3.9), the number of all the non-real eigenvalues is finite provided
that 7 > 0 is fixed. :

§3.3. Real eigenvalues

Proposition 3.2. Suppose that (N) holds.
(i) Spec(L)N{AeR; A> 1} =0.
(i) s & Spec(L).
(i) If

(3.11) - e <k DLt e,
n>1

then Spec(L) has no eigenvelues in {A € R; 0 < A < 11}

The techniques used in the proof of Proposition 3.2 are developed in [Mi05). See
Figure 4.

Pr‘oof. We prove (ii). We consider

(3.12) ' (L= (:) - (;‘j) ,
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(ii)

i

Figure 4. The graphs of the both sides of (3.11) in the case that k(£) < 0. (i), (ii) and
(ii) of Proposition 3.2 cover corresponding parts in the graph.

when A = p;. Since p, is a simple eigenvalue of L, (L — p)7? [<I> - é}%‘%‘% fg'] exists,
where 9, is an eigenfunction corresponding to uy. Let (¢,n) be -

— (7 = iy-1 g _ (B1%) {2, 91)
= (L= m) [‘I’v <f<,¢1>ff]+°°f€’ M= et

where

co = m {7-|Q]Y - ((z’j;l))((yg,l) =79 1)

ot =G5

Then (¢, n) satisfies (3.12), which means that 4, ¢ Spec(L).
We prove (iii). We consider (3.12) in the case when X € [0, ¢1). A similar calculation
in the proof of Lemma, 2.3 derives

: TIQY fe
3.13 L+Ay, - ANp=0+ ———=—,
(319) O A TR

where

. <gtn ¢) f 3
Asrpi= i L
AT IQI - <g§) 1)
1
Here A appears in Aj ,, hence (3.13) is not a standard eigenvalue problem. Note that
AT |2 —(g¢, 1) # 0. Since Ay, is a rank-one operator, we see by the Sherman-Morrison
formula that

L+ A, -N1= (1 + %) (L -3,
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where

L e = NTRD <f,¢,.>
HY =1+ =0y~ wmie <g¢,1>Z e

Because of (3.11) H()) does not vanish in [0,11) and (L + Aa; — )~ exists for
A € [0, 1) Hence (3.13) has unique SOlllthl’l ¢. Using the second equation of (3.12),
we have

n= (gtn¢) -7 |QIY
AT IQI - <g€a 1)

The pair (45, 7) obtained here is a unique solution of (3.12). The proof of (iii) is complete.

We prove (i). We show that (2.6) has no root in {A € R; A > i3}. Since A > p,
the right-hand side of (2.6) is negative. Because of (N), the left-hand side of (2.6) is
positive. Hence, (2.3) has no root if A > p;, and H(X) also has no root. The problem
" (3.12) has a unique solution. The proof of (i) is complete. O

When one studies the eigenvalue problem (3.12), eigenvalues of a differential oper-
- ator with non-local term have to be analyzed. The Sherman-Morrison formula is useful.
A brief history of the Sherman-Morrison formula can be seen in [HS81].

Because of Proposition 3.2, we have to check (3.11) when we prove the stability of
(u,€). A necessary condition is that py < 0 < ;. Hence, the Morse index of u should
be 1 if (u, £) is stable for some 7 > 0. However, checking (3.11) is difficult in general. In
the case of the stable boundary one-spike layer of the shadow Gierer-Meinhardt system
(SGM), (3.11) holds if 7 > 0 is small. See [Mi05].

Corollary 3.3.  Suppose that (N) holds. If ua < 0 and if
(gEt 1) > (gm L_l[f€}> )

then, for small T > 0, the steady state (u,&) is stable.

Remark. If 0 ¢ Spec(L) and if {gu, L™ 2[f¢]) # {g¢, 1), then 0 ¢ Spec(L). Hence,
if a steady state that is stable for small 7 > 0 becomes unstable for large 7 > 0, then,
as T ihcreases, eigenvalues do not pass the origin in C, and should pass the imaginary
axis. Therefore, a Hopf bifurcation may occur as 7 increases.
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