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Abstract

In this article, we survey results on the shape of stable steady states of reaction‐diffusion

equations and systems. Specifically, we survey results on instability criteria which can be

determined by the shape of steady states. In particular, instability criteria of steady states to

shadow reaction‐diffusion systems of activator‐inhibitor type are investigated. In the appendix,
we explain a method analyzing an eigenvalue problem related to the stability of steady states

to shadow systems of activator‐inhiUitor type.

§1. Introduction

In this article, we survey instability criteria of steady states to reaction‐diffusion

equations and systems with the Neumann boundary condition in homogeneous media

which can be determined by the shape of steady states. In particular, we study insta‐

bility criteria for steady states to shadow systems of activator‐inhiUitor type.
All the mathematical results in the article are already known except slight im‐

provements. However, investigating the technique that has been used before seems to

be useful to develop new technique.
This article consists of three sections. Section 1 has two subsections. In Subsec‐

tion 1.1, we explain the motivation: Why do we consider instability criteria? We state

known results for scalar equations. In Subsection 1.2, we state known results for systems
with a special structure. Section 2 has three subsections. In Subsection 2.1, we state

assumptions on the non‐linear terms. In Subsection 2.2, we state abstract instability
criteria of steady states of shadow systems. According to the abstract instability cri‐

teria, if a steady state of shadow systems of activator‐inhiUitor type is stable, then the
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Table 1. Instability results in the case of convex domains.

Morse index of a solution of the first equation should be 1. In Subsection�2.3, we give
several necessary conditions that solutions to elliptic equations have Morse index 1. We

explain a conjecture (Conjecture 2.10) in Subsection 2.3 which is related to the shape
of stable patterns. Section 3 is an appendix. In the appendix, we explain a method

analyzing the spectrum of a linear operator.

§1.1. Motivation and instability criteria for scalar equations

One of the main concerns in the non‐linear analysis is pattern formation. Finding
\mathrm{a} $\Pi$ the stable patterns is a way to understand patterns. We study reaction‐diffusion

equations and systems in this article. If the domain is a one‐dimensional interval, then

there are cases such thaf all the steady states can be found, since we can use phase plane

(or space) arguments. However, in the case of high dimensional domains, it is difficult

in general to find all the steady states. Hence we change the setting of our problem. If

the steady state is stable, then what shape is it? In other words, we want to know the

shape of all the stable steady states.

Our strategy is the following: We find necessary conditions for steady states to

be stable. In order to obtain the necessary condition, we find sufficient conditions for

steady states to be unstable. Then the contrapositive of the sufficient condition becomes

a desired necessary condition. Therefore we want sufficient conditions that capture many

unstable steady states, because the contrapositive narrows the candidates of the stable

steady states.

We divide the problem into four cases as describedr in Table 1. The reason for

treating independently the case of a one‐dimensional interval is.because we can use

phase plane (or space) arguments and the Sturm‐Liouville theory.

1.1.1. Scalar equations in intervals N. Chafee (Ch75, Theorem 6.2] has proven

the following under some technical condition:

Theorem 1.1 (RD equations in intervals). Let I be an interval. All the  non\leftrightarrow

constant steady states to the problem

(1.1)  u_{t}=D\mathrm{u}_{xx}+f(\mathrm{u}) \mathrm{i}\mathrm{n} I, ?1_{x}=0 \mathrm{o}\mathrm{n} \partial I



ON STABLE PATTERNS FOR RD EQUATIONS AND SYSTEMS 61

are unstable. Thus the contrapositive is the following: If a steady state is stable, then it

is constant.

Note that we do not impose assumption on f except the regularity.
Fortunately, this instability criterion captures all tbe non‐constant steady states.

Hence only constant functions can be stable.

Proof. Let u be a non‐constant steady state of (1.1). : Let $\lambda$_{1} denote the first

eigenvalue of L with the Neumann boundary condition, where L:=D $\Delta$+f^{\ovalbox{\tt\small REJECT}}(u) . We

define \mathcal{H}[\cdot] by

(1.2) \displaystyle \mathcal{H}[ $\psi$] :=\int_{I} \{-D($\psi$_{x})^{2}+f^{\ovalbox{\tt\small REJECT}}(u)$\psi$^{2}\}dx.
We have

\displaystyle \mathcal{H}[u_{x}]=\int_{I}\{-D(u_{xae})^{2}+f^{\ovalbox{\tt\small REJECT}}( $\tau$ r)?$\iota$_{x}^{2}\}dx
=\displaystyle \int_{J}u_{x}(Du_{xxx}+f^{\ovalbox{\tt\small REJECT}}(u)u_{\mathrm{i}\mathrm{B}})dx-[Du_{X}u_{\mathrm{J}jx}]_{0}^{1}=0,

because Du_{xxx}+f^{J}(u)u_{x}=0 . We have

$\lambda$_{1}= $\psi$\displaystyle \in H^{1}\mathrm{s}\mathrm{u}\mathrm{p}\frac{\mathcal{H}[ $\psi$]}{\Vert $\psi$\Vert_{2}^{2}}\geq\frac{\mathcal{H}[u_{x}]}{||u_{x}||_{2}^{2}}=0,
where \Vert\cdot\Vert_{2} denotes the usual L^{2}‐norm, We show that $\lambda$_{1}>0 . Suppose the contrary, i.e.,

$\lambda$_{1}=0 . Then u_{x} is an eigenfunction corresponding to $\lambda$_{1\}} and the boundary condition

is satisfied: u_{xx}=0 at x=0 , 1. Since u_{xxx}+f(u)u_{x}=0 in I, w_{x} is constant, where

we use the uniqueness of ODEs. Since satisfies the Neumann boundary condition, u

is also constant. We obtain a contradiction. \square 

1.1.2. Scalar equations in \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\leftrightarrow dimensional convex domains R. Casten and

C. Holland [CH78] and H. Matano [Ma79] independently have shown the same type

instability criterion as Theorem 1.1 in the case of high dimensional bounded convex

domains.

Theorem 1.2 (RD equations in convex domins of \mathbb{R}^{N} ). Lel  $\Omega$\subset \mathbb{R}^{N} be a bounded

and convex domain with smooth boundary. Then all the non‐constant steady states to

the problem

u_{t}=D $\Delta$ u+f(u) in  $\Omega$, \partial_{ $\nu$}u=0 on \partial $\Omega$

are unstable. The contrapositive is the following: If a steady state is stable, then it is

constant.
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The proofs of [CH78] and [Ma79] are essentially the same, They use the fact that

(1.3) \partial_{\mathrm{J}/}|\nabla u|^{2}\leq 0 on \partial $\Omega$,

provided that  $\Omega$ is convex. See [CH78] for the proof of (1.3).

Proof. We use essentially the same method as one used in the proof of Theo‐

rem 1.1. First, we have

\displaystyle \mathcal{H}[u_{x_{\dot{f}}}]=\int_{ $\Omega$}(-D|\nabla u_{x_{\mathrm{j}}}|^{2}+f^{\ovalbox{\tt\small REJECT}}(\mathrm{t} $\iota$)u_{x_{\mathrm{j}}}^{2})dx
=\displaystyle \int_{ $\Omega$}\uparrow 4_{x_{j}}(D\triangle u_{x_{j}}+f^{\ovalbox{\tt\small REJECT}}(u)u_{x_{j}}) dx — D \displaystyle \int_{\partial $\Omega$}u_{x_{\mathrm{j}}}\partial_{ $\nu$}u_{x_{\mathrm{j}}}d $\sigma$.

Since D\triangle u_{x_{\mathrm{j}}}+f^{J}(u)u_{x_{\mathrm{j}}}=0 , we have

(1.4) \displaystyle \sum_{j=1}^{N}\mathcal{H}[u_{x_{\mathrm{j}}}]=-\frac{D}{2}\int_{\partial $\Omega$}\partial_{ $\nu$}|\nabla u|^{2}d $\sigma$.
We use (1.3). Since the right‐hand side of (1.4) is not negative} there is k\in\{1,2, . . . , N\}
such that \mathcal{H}[u_{\mathcal{I}k}]\geq O. Let $\lambda$_{1} denote the first eigenvalue of L :=D\triangle+f'(?4) with the

Neumann boundary coridition. Using a variational characterization of $\lambda$_{1} , we have

$\lambda$_{1}=\displaystyle \sup_{ $\psi$\in H^{1}}\frac{\mathcal{H}[ $\psi$]}{\Vert $\psi$||_{2}^{2}}\geq\frac{\mathcal{H}[u_{\mathfrak{B}k}]}{\Vert\uparrow$\gamma$_{xk}||_{2}^{2}}\geq O.

We show that $\lambda$_{1}> O. Suppose the contrary, i.e., $\lambda$_{1}= O. The function u_{x}\mathrm{k} attains

\displaystyle \sup_{ $\psi$\in H^{1}}\mathcal{H}[ $\psi$]/\Vert $\psi$\Vert_{2} . Any function that attains the supremum does not vanish in St

(see [KW75, p. 570 However, there is a point on \partial $\Omega$ such that  u_{x}k vanishes, because

 $\Omega$ is convex. This is a contradiction. \square 

In the proof, the positiveness of

-\displaystyle \int_{\partial $\Omega$}u_{x_{j}}\partial_{ $\nu$}u_{x_{j}}d $\sigma$
is a key. Therefore the analysis of on the boundary is important for proving that the

Morse index is larger than 1,

§1.2. Instability criteria for systems with a special structure

We consider a reaction‐diffusion system

\mathrm{u}_{\mathrm{t}}=D_{\mathrm{u}}$\Delta$_{74}+f(u^{l}u) in  $\Omega$,
(FS)

\partial_{ $\nu$}u=0 on. \partial$\Omega$_{\mathrm{J}}

 $\tau$ v_{t}=D_{v} $\Delta$ v+g(?A, v) in  $\Omega$,

\partial_{ $\nu$}v=0 on \partial $\Omega$,



ON STABLE PATTERNS FOR RD EQUATIONS AND SYSTEMS 63

where u=\mathrm{u}(x,t) , v=v(x_{\}}t) . We also consider the shadow limit (D_{v}\rightarrow+\infty)

\mathrm{u}_{\mathrm{t}}=D_{\mathrm{u}}\triangle u+f(\mathrm{n},  $\xi$) in  $\Omega$,  $\tau \xi$_{t}=\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$}g(u,  $\xi$)dx in  $\Omega$,
(SS)

\partial_{ $\nu$}u=0 on \partial $\Omega$, \prime

where  u\cdot=u(x,t) ,  $\xi$= $\xi$(t) . We call (SS) the shadow system of (FS), following [N82].
Not only the shapes of steady states of (FS) and (SS) but alSo the dynamics of those

are close to each other [\mathrm{M}\mathrm{i}06\mathrm{a}].
The stability properties of steady states to reaction diffusion systems (or shadow

systems) are different from those of scalar equations. In ordèr to see this, we consider

a specific system called the Gierer‐Meinhardt system [GM72]

u_{t}=D_{u} $\Delta$ v-u+\displaystyle \frac{u^{\mathrm{p}}}{v^{q}} in  $\Omega$,
(GM)

\partial_{ $\nu$}u=0 on \partial $\Omega$,

and its shadow system

 $\tau$ v_{t}=D_{v} $\Delta$ v-v+\displaystyle \frac{u^{f}}{v^{3}} in  $\Omega$,

\partial_{ $\nu$}v=0 on \partial $\Omega$,

u_{f}=D_{\mathrm{u}}\displaystyle \triangle\uparrow_{\backslash } $\iota$-\mathrm{u}+\frac{u^{\mathrm{p}}}{v^{q}} \mathrm{i}\mathrm{n}  $\Omega$,  $\tau \xi$_{t}=- $\xi$+\displaystyle \frac{1}{| $\Omega$|$\xi$^{s}}\int_{ $\Omega$}u^{r}dx \mathrm{i}\mathrm{n}  $\Omega$,
(SGM)

\partial_{$\nu$^{\uparrow 4}}=0 on \partial $\Omega$.

When D_{u} and  $\tau$ are small and  D_{v} is large, the system (GM) has an inhomogeneous stable

steady state even if the domain is convex (For the existence, see [W97], For the stability,
see [DK02] for 1\mathrm{D} intervals, [NTYOI] for 2\mathrm{D} balls and [Mi05] for general domains. See

[ \mathrm{L}\mathrm{i}01 , LTOI, NT91, NT93] for the shape of steady states). The system (SGM) also has

an inhomogeneous stable steady state under the same assumptions except that D_{v} is

large. These inhomogeneous stable steady states are called a boundary one‐spike layer.
From the existence of stable inhomogeneous steady states in convex domains, several

questions naturally arise.

Problem 1.3. (i) There is a reaction‐diffqsion system having inhomogeneous
stable steady states. Therefore in order to obtain instability criteria for all the.inho‐

mogeneous steady states, we have to restrict the class of non‐linear terms. Under what

conditions on the nonlinearity can we obtain this type of instability criteria?

(ii) Under what conditions on the nonlinearity does the system have inhomogeneous
stable steady states? In that case, what shape is an inhomogeneous stable steady state?

(iii) In the case of scalar equations, the stability property does not change with respect

to the time constant  $\tau$ . However, in the case of systems, the stability property may

change. Clarify the relation between the stability and the time constant  $\tau$ of the second

(or first) equation.
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Hereafter in this section, we state known results in the research direction of Prob‐

lem 1.3 (i).
S. Jimbo and Y.. Morita [JM94] have obtained an instability result. They consider

the gradient system. See also [Lo96].

Theorem 1.4 (Gradient systems). Let  $\Omega$\subset \mathbb{R}^{N} be a bounded and convex do‐

main with smooth boundary. Let u:=(u^{(1)}, u^{(2)}, \ldots, u^{(k)}) be a steady state to

u_{t}^{(j)}=D\displaystyle \triangle u^{(\mathrm{j})}+\frac{\partial F}{\partial u^{(j)}}(u^{(1)}, u^{(2)}, \ldots, u^{(k)}) in St for j=1 , 2, . .:, k_{f}

\partial_{ $\nu$}u^{(j)}=0 on \partial $\Omega$ for  j=1 , 2, . . .

, k.

If \mathrm{u} is not constant, then u is unstable.

Note that the time constant  $\tau$ is fixed to 1 in Theorem 1.4 and that all the diffusion

coefficients are equal.

Proof. We omit the proof. See [JM94]. \square 

E. Yanagida [\mathrm{Y}02\mathrm{a}] constructs a general theory of skew‐gradient systems. In partic‐

ular, the stability of steady states is investigated. He considers 2n‐components systems.

However, we treat 2‐components systems for simplicity. One of the main results is the

following instability criterion:

Theorem 1.5 (Skew‐gradient systems). Let  $\Omega$\subset \mathbb{R}^{N} be a bounded and convex

domain with smooth boundary. Let (u, v) be a steady state to

?t_{f}=D_{\mathrm{t}\mathrm{J}} $\Delta$\displaystyle \uparrow $\iota$+\frac{\partial F}{\partial u}(u, v) \mathrm{i}\mathrm{n}  $\Omega$,
(1.5)

\partial_{ $\nu$}\mathrm{u}=0 on \partial $\Omega$,

 $\tau$ v_{t}=D_{v} $\Delta$ v-\displaystyle \frac{\partial F}{\partial v}(u,v) in $\Omega$_{f}

\partial_{ $\nu$}v=0 on \partial $\Omega$.

If (u, v) is not constant, then (u, v) is unstable for large  $\tau$> O. A similar statement

holds in the case of the shadow system with skew‐gradient structure.

Proof. We omit the proof. See [\mathrm{Y}02\mathrm{a}]. \square 

Several instability criteria are known for steady states of. skew‐gradient systems.
See [ \mathrm{Y}02\mathrm{b} , KY03, K05].

The skew‐gradient system includes a special case of the Gierer‐Meinhardt system
and a reaction‐diffusion system with FitzHugh‐Nagumo type nonlinearity. Therefore,
Theorem 1.5 seems to contradict the existence of the stable boundary one‐sp.ike layer.
However, this theorem holds provided that  $\tau$>0 is large, hence an inhomogeneous
stable steady state may exist for small  $\tau$>0.

\ovalbox{\tt\small REJECT} \mathrm{K} . Kishimoto and H. WeinUerger [KW85] have obtained an instability criterion for

cooperation‐diffusion systems
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Theorem 1.6 (Coopration‐diffusion systems). Let  $\Omega$\subset \mathbb{R}^{N} be a bounded and

convex domain with smooth boundary. Let u:=(\mathrm{u}^{(1)},u^{(2)}, \ldots,\mathrm{u}^{(k)}) be a steady state to

\mathrm{t}\mathrm{J}_{\mathrm{t}}(j)=D_{j}\triangle $\tau \gamma$^{(j)}+f_{j}(u^{(1)},u^{(2)_{:}}\ldots , u^{(k)}) in  $\Omega$ for  j=1 , 2, \cdots

,  k,

\partial_{ $\nu$}\mathrm{s}r^{\{j)}=0 .

on \partial $\Omega$ for  j=1,  2_{;}\ldots ,  k.

Suppose that

\displaystyle \frac{\partial f_{j}}{\partial u_{l}}>0 for j\neq l.

Thbn even/ inhomogeneous steady state u is unstable. Thu^{4}s if 74 is stable, then it is

constant.

Proof See [KW85]. We omit the proof. \square 

i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}} the change of variables u\mapsto u, v\mapsto-v we immediately obtain a result for

a two‐species competition‐diffusion system.

§2. Stable patterns for activator inhibitor systems

§2.1. Assumptions on the nonlinearity

We explain an activator‐inhibitor system, and state assumption on the non‐linear

terms f and g in (SS).
We consider (SS). In theoretical biology, and  $\xi$ stand for the concentrations of

biochemicals called the short range activator and the long range inhibitor, respectively.
The activator activates the production rate of the inhibitor (g_{u}>0) , and the inhibitor

suppresses the production rate of the activator (f_{v}<0) . the production rate of the

inhibitor decreases as the inhibitor increas:es (g_{v}<0) . However, we do not impose a

monotonicity assumption of f in u
, because the.activator may react autocatalyticaly

and f may not be mon.otone in u . We call (SS) the activator‐inhiUitor system if f and

g satisfy

(AI) f_{ $\xi$}<0, g_{1\mathrm{J}}>0 , and g_{ $\xi$}<0.

The time constant of the inhibitor  $\tau$
, which appears in the second equation of (SS),

means the ratio of the reaction speeds between the activator and the inhibitor. If  $\tau$

is large, then the inhibitor reacts slowly in time, and the system behaves like a scalar

reaction‐diffusion equation. In this case, we can expect and show that, if the domain

is convex, then every inhomogeneous steady state is unstable for large  $\tau$>0 (See
Corollary 2.4 below). On the contrary, if  $\tau$ is small, then the inhibitor reacts quickly,
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and the system tends to be stable. Hence, an inhomogeneous stable steady state can

exist. There is a possibility that a steady state that is unstable for large  7^{\cdot}>0 is stable

when  $\tau$>0 is small. (A Hopf bifurcation occurs as  $\tau$ increases. See [ \mathrm{N}\mathrm{T}\mathrm{Y}01_{\mathrm{J}} WW03] for

the case of the shadow Gierer‐Meinhardt system.) Therefore, it is important to obtain

a suffcient condition, which can be determined by the shape, for steady states to be

unstable not only in the case for large  $\tau$>0 but also in the case for all  $\tau$>0 , because

the contrapositive of the sufficient condition becomes a necessary condition for steady
states to be stable for some  $\tau$>0 . In other words, we know the shape of all the stable

steady states.

Hereafter, we; assume that f and g satisfy

(N) f_{ $\xi$}<0, g_{ $\xi$}<0 , there is k( $\xi$)<0 such that g_{\mathrm{t}\mathrm{J}}(u,  $\xi$)=k( $\xi$)f_{ $\xi$}(?4, $\xi$) .

The classes (AI) and (N) include several important systems.

Example 2.1. The Gierer‐Meinhardt system [GM72] is (GM), where (p, q, r, s)
satisfy p>1, q>0, r>0, s\geq 0 and 0<(p-1)/q<r/(s+1) . The assumption
on (p, q, r, s) comes from a biological reason. (AI) always holds. If p=r-1 , then (N)
holds. This system is a model describing the head formation of a hydra, which is a

small creature. Specifically, [\mathrm{G}\mathrm{M}72\mathrm{J} shows experimentally that the head appears at the

point where the activator u attains the local maximum. It is known that this system

has steady states having various shapes (see [NT91, NT93, \mathrm{G}\mathrm{W}\dot{0}0 , MM02] for example).

Example 2.2. The shadow system with the FitzHugh‐Nagumo type nonlinear‐

ity [Fi61, NAY62] is the following:

(FHN)  u_{t}=D_{\mathrm{u}} $\Delta$ u+f_{0}(\mathrm{u})-\mathrm{a} $\xi$ and  $\tau \xi$_{t}=\displaystyle \frac{1}{| $\Omega$|}\iint_{ $\Omega$}( $\beta$ u- $\gamma \xi$)dxdy,
where \mathrm{a},  $\beta$ and 7 are positive constants and  f_{0}(14) is the so‐called cubic‐like function.

A typical exámple of f_{0} is u(1-u)(u- $\delta$)(0< $\delta$<1) . (AI) and (N) hold. When  $\tau$=0,
it is known that the full system of (FHN) has an inhomogeneous stable steady state

[003].

§2.2. AUstract instability results

In this subsection, we study instability criteria of steady states to the shadow

system (SS). The main result in this subsection is the following:

Lemma 2.3 (Abstract instability criteria). Let (u, $\xi$) be a steady state of (SS),
and let $\mu$_{2} denote the second eigenvalue of the eigenvalue problem

(2.1).  D_{1 $\iota$} $\Delta \phi$+f_{u}(\uparrow $\nu,\ \xi$) $\phi$= $\mu \phi$ \mathrm{i}\mathrm{n}  $\Omega$, \partial_{ $\nu$} $\phi$=0 \mathrm{o}\mathrm{n} \partial $\Omega$.
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(i) Assume ihat (N) holds. If $\mu$_{2}>0 , ihen (? $\iota$,  $\xi$) is?lnsinble for  $\tau$>0.

(ii) Assume that (AI) holds. If $\mu$_{1}>0 , then there is $\tau$_{0}>0 such that (u, $\xi$) is unstable

for  $\tau$>$\tau$_{0}.

(ii) of Lemma 2.3 is slightly improved than Lemma, \backslash 3.2 (ii) of [\mathrm{M}\mathrm{i}06\mathrm{b}].
In the decade, the stability of steady states to various shadow systems including

Gierer‐Meinhardt system has attracted great attention. In studying an eigenvalue prob‐
lem which is (2.2) below, the main technical difficulty is the eigenvalue analysis of partial
differential operators with non‐local term (see (2.3) below). In order to overcome the

diffculty, authors develop several methods. Some of the methods are closely related.

We want to clarify the relation among them. The method analyzing the eigenvalue
problems (2.2) used in this subsection is based on [Mi05, \mathrm{M}\mathrm{i}06\mathrm{b}].

Proof. Let (u,  $\xi$) be a steady state of (SS), and let \langle .

, } denote the usual inner

product of  L^{2} . We consider the linearized eigenvalue problem

(2.2) \left(\begin{array}{ll}
L & f_{ $\xi$}\\
\{g_{\mathrm{u}} & )\langle g_{ $\xi$)}1\}
\end{array}\right)\left(\begin{array}{l}
 $\phi$\\
 $\eta$
\end{array}\right)= $\lambda$\left(\begin{array}{l}
 $\phi$\\
 $\tau$| $\Omega$| $\eta$
\end{array}\right)\}
where L:=D_{u} $\Delta$+f_{u} and ( $\phi$,  $\eta$)\in H_{N}^{2}( $\Omega$)\times \mathbb{R}. iFrom the second equality of (2.2) we

have

 $\eta$($\lambda$_{\mathcal{T}}| $\Omega$|-\{g_{ $\xi$}, 1))=\{g_{\mathrm{t}\}\rangle}\prime $\beta$) .

Hereafter, we assume that  $\lambda$\neq\langle g_{ $\xi$}, 1 ) /( $\tau$| $\Omega$|) . Then we have

 $\eta$=\displaystyle \frac{\{g_{\mathrm{u}j} $\phi$\}}{ $\lambda \tau$| $\Omega$|-(g_{ $\xi$},1\}}.
Substituting this equality into the first equation.of (2.2), we have

(2.3) (L- $\lambda$) $\phi$+\displaystyle \frac{\{g_{\mathrm{u}}, $\phi$\rangle f_{ $\xi$}}{ $\lambda$ r| $\Omega$|-\{g_{ $\xi$},1\}}=0.
This is an eigenvalue problem with non‐local term. Moreover, this is not a standard

eigenvalue problem, because  $\lambda$ appears in the second term. This derivation of (2.3)
is essentially the same as that in [W99, NTYOI]. However, they study only Gierer‐

Meinhardt system. [W99] studies the case that  $\tau$=0.

We establish instability criteria. It is enough, if we show that (2.3) has an eigenpair
( $\phi$, \mathrm{A}) such that  $\lambda$\in \mathbb{R} and  $\lambda$> O. We suppose that \mathrm{A}\not\in $\sigma$(L)_{\mathrm{J}} where  $\sigma$(L) denotes

the set of the eigenvalues of L with the Neumann boundary condition. Substituting
 $\phi$=(L- $\lambda$)^{-1}[f_{ $\xi$}] into (2.3).� we have

(2.4) (1+\displaystyle \frac{\langle g_{\mathrm{u}},(L- $\lambda$)^{-1}[f_{ $\xi$}]\rangle}{ $\lambda \tau$| $\Omega$|-\{g_{ $\xi$},1\}})f_{ $\xi$}=0.
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Figure 1. The graphs of the both sides of (2.6) in the case that k( $\xi$)<0 and \{f_{ $\xi$}, $\psi$_{3}\}=0.

We want to prove the existence of  $\lambda$(>0) satisfying (2.4). Let \{($\psi$_{n}, $\mu$_{n})\}_{n\geq 1} denote

the set of the eigenpairs of L . Then

(2.5) (L- $\lambda$)^{-1}[\displaystyle \cdot]=\sum_{n\geq 1}\frac{\{\cdot,$\psi$_{n})}{$\mu$_{n}- $\lambda$}$\psi$_{n}.
Using (2.5), we can write (2.4) as

1+\displaystyle \frac{1}{ $\lambda \tau$| $\Omega$|-\{g_{ $\xi$},1)}\sum_{n\geq 1}\frac{\langle f_{ $\xi$},$\psi$_{n}\}\langle g_{u},$\psi$_{n})}{$\mu$_{n}- $\lambda$}=0.
Therefore, we will find intersections of the following two functions:

(2.6)  $\lambda \tau$| $\Omega$|-\langle g_{ $\xi$}, 1\displaystyle \}=\sum_{n\geq 1}\frac{a_{n}}{ $\lambda-\mu$_{n}}(=:h( $\lambda$)) , where a_{n}=\{f_{ $\xi$}, $\psi$_{n} ) \{g_{\mathrm{u}}, $\psi$_{n} ).

See Figure 1. We assume that (AI) holds. Then a_{ $\iota$ 1}\neq 0 , because $\psi$_{1} does not

change the sign. Therefore, when  $\tau$ is large, there is  $\lambda$_{0}>0 such that (2.6) is satisfied

at  $\lambda$=\dot{ $\lambda$}_{0} , because $\mu$_{1}>0 . Thus we obtain Lemma 2.3 (ii). When f_{ $\xi$}=-g_{\mathrm{u}} , (SS) has

the skew‐gradient structure. In this case, Lemma 2.3 (i) and (ii) are already obtained

by [\mathrm{Y}02\mathrm{c}] and [\mathrm{Y}02\mathrm{a}\mathrm{J} respectively. When f_{ $\xi$}=.g_{\mathrm{u}} , (SS) may have the gradient structure.

In this case, [JM94] proves that every non‐constant steady state is unstable.

We assume that (N) holds. The case that k( $\xi$)=0 is trivial. We assume that

 k( $\xi$)\neq O. If \{g_{\mathrm{u}}, $\psi$_{2}\}=0 , then ($\psi$_{2},]J_{2}) is an eigenpair of (2.3). Thus Lemma 2.3 (i)
holds. If \{g_{\mathrm{u}}, $\psi$_{2}\}\neq 0 , then aí and a_{2} are the same sign, and one of the following holds:

(1)  $\lambda$\rightarrow$\mu$_{1-}\mathrm{h}\mathrm{m}h( $\lambda$)=+\mathrm{o}\mathrm{o}, \displaystyle \lim_{ $\lambda$\rightarrow$\mu$_{2}+}h( $\lambda$)=-\infty 3, h( $\lambda$)\in C^{0}(($\mu$_{2}, $\mu$_{1}

(2) \displaystyle \lim h( $\lambda$)=-\mathrm{o}\mathrm{o} , hm h( $\lambda$)=+\infty, h( $\lambda$)\in C^{0}(($\mu$_{2}, $\mu$_{1}
 $\lambda$\rightarrow$\mu$_{1-}  $\lambda$\rightarrow$\mu$_{2}+
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Therefore even if which case occurs, (2.6) has a positive root provided that $\mu$_{2}>0.
Lemma 2.3 (i) is proven.

When we want instability criteria, it is enough to show that there is an eigenvalue
with a positive real part. On the contrary, when we want, the stability of a steady state,
we have to prove the non‐existence of the spectrum on the right half plane. We consider

this problem in the appendix.
The results and the proofs of [\mathrm{F}\mathrm{T}94\mathrm{a}, \mathrm{F}\mathrm{r}94\mathrm{b}, \mathrm{Y}02\mathrm{c}] are easily understood if one see

Figure 1.

Corollary 2.4. Assume that  $\Omega$ is bounded and convex and that (AI) holds. Let

(u,  $\xi$) be a steady state of (SS). If u is not constantJ then there is $\tau$_{0}>0 such that (u,  $\xi$)
is unstable for  $\tau$>$\tau$_{0}.

Proof. Theorems 1,1 and 1.2 say that $\mu$_{1}>0 if u is not constant. The statement

immediately follows from Lemma 2.3 (ii). \square 

In the statement of Corollary 2.4, the largeness of  $\tau$ is needed. However, the

case that  $\tau$ is large is trivial in some sense, as stated in an intuitive discussion in

Subsection 2.1. We want to know instability criteria in the case that  $\tau$ is small. We can

obtain such criteria, using Lemma 2.3 (i). In order to use Lemma 2.3 (i), we need the

sign of  $\mu$_{2} , which is the second eigenvalue of (2.1).
Let us compare (FS) and (SS). If v(x) is fixed, then the mapping u\mapsto f(u,v)

does depend on x explicitly. However, in the case of the shadow system, the mapping

u\mapsto f(u,  $\xi$) does not depend on x explicitly, and the first equation of (SS) can Ue treated

as a scalar equation in homogeneous media provided that  $\xi$ is fixed. This fact makes it

easier to know the sign of  $\mu$_{2}.

We consider the second eigenvalue of (2.1). As stated above, (2.1) can be treated as

a usual eigenvalue problem of scalar reaction‐diffusion equations in homogeneous media.

Here u is a solution of an elliptic equation in homogeneous media

(2.7) \triangle u+N(u)=0 in  $\Omega$, \partial_{ $\nu$}u=0 on \partial $\Omega$,

and the second eigenvalue means the second eigenvalue of the eigenvalue problem

(2.8)  $\Delta \phi$+N^{\ovalbox{\tt\small REJECT}}(u) $\phi$= $\kappa \phi$ in  $\Omega$, \partial_{ $\nu$} $\phi$=0 on \partial $\Omega$.

§2.3. Analysis of the second eigenvalue

In this subsection, we state instability criteria in the research direction of Prob‐

lem 1.3 (ii) and (iii). Specifically, we study sufficient conditions that $\kappa$_{2}>0.
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2.3.1. Shadow systems in intervals Y. Nishiura [N94] has obtained an instability
criterion for steady states to shadow systems in one‐dimensional intervals (The same

result has been obtained by P. Freitas añd C. Rocha [FROI] for (FHN)). This result is

generalized by Ni‐Polacik‐Yanagida [ \mathrm{N}\mathrm{P}YOI]. They consider the case that f=f(u,  $\xi$,t)
satisfies f(?A,  $\xi$,t+T)=f(u,  $\xi$,t) for some T>0.

Theorem 2.5 (Shadow systems in intervals). Let I be an interval. Let (u,  $\xi$) be

a steady state of  th $\epsilon$ problem

(2.9)? 4_{t}=D_{\mathrm{u}}u_{xx}+f(u,  $\xi$) in I,  $\tau \xi$_{t}=\displaystyle \frac{1}{|I|}\int_{I}g(\mathrm{u}_{\}} $\xi$)dx,
u_{x}=0 on 0I.

Suppose that u is non‐constant, non‐monotone increasing, and non‐monoton.e decreas‐

ing.

(i) Suppose that (N) holds. Then (? $\iota,\ \xi$) is unstable for all  $\tau$>0.

(ii) Suppose that (AI) holds. Then there is $\tau$_{0}>0 such that (u,  $\xi$) is unstable for  $\tau$>$\tau$_{0}.

The contrapositive of Theorem 2.5 (i) is the following:

Corollary 2.6. Suppose that (N) holds. If the steady state (?4,  $\xi$) of(2.9) is stable

for some  $\tau$>0 , then u is constant, monotone increasing, or monotone decreasing.

Proof of Theorem 2.5 (iJ . Suppose that u is not constant, monotone increasing,
or monotone decreasing. Then there is x_{0}\in I\backslash \partial I such that u_{x}(x_{0})=0, \mathrm{u}_{x}(x)\neq 0 in

(0, x_{0}) . Let ( $\phi$,  $\lambda$) Ue an eigenpair of (2.1) such that \mathrm{A}\leq 0 . We consider the case that

?\mathrm{J}_{x}(x)>0 in (0, x_{0}) . We assume that l\#>0 in (0,x_{0}) . Then we have

0\displaystyle \geq $\lambda$\int_{0}^{x_{0}}u_{x} $\phi$ dx=\int_{0}^{x_{0}}u_{x}L $\phi$ dx
=\displaystyle \int_{0}^{x_{0}}Lu_{x} $\phi$ dx+D_{\mathrm{u}}( $\phi$(0)u_{xx}(0)- $\phi$(x_{0})?4_{xx}(x_{0})) .

Since Lu_{x}=0, u_{xx}(0)>0 and \mathrm{u}_{xx}(Ji\mathrm{o})\cdot<0 , the right‐hand side is positive. We obtain

a contradiction. Therefore  $\phi$ has at least one zero in [0,x_{0}] . We see that  $\phi$(0)\neq 0 , using
uniqueness of ODEs. Moreover, from the inequality we easily see that  $\phi$(x_{0})\neq 0 . Thus

the zeros of  $\phi$ are in (0, x_{0}) . Using the same argument, we can show that  $\phi$ has at least
\backslash \wedge

one zero in (0, x_{0}) in other cases. We see by induction that  $\phi$ has at least one zero in

the interior set of any interval of non‐zero level set of  u_{x:}

Because of the assumption of the lemma, \{u_{x}\neq 0\} consists of at least two intervals.

Therefore if  $\lambda$\leq 0 , then the corresponding eigenfunction  $\phi$ has at least two zeros in  I.

From the Sturm‐Liouville theory we see that the second eigenfunction has exactly one
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zero in I and the second eigenvalue cannot be 0 or negative. We obtain the desirable

result from Lemma 2.3. \square 

In the proof, the positiveness of the second eigenvalue is a key. In order to show

this, we use the zero number of u_{x} (the lap‐number of, :u in the sense of [Ma82]) and

eigenfunctjons.

2.3.2. Shadow systems in 2\mathrm{D} domains In the case of one‐dimensional intervals,
the number of zeros of u_{x}\mathrm{p}!\mathrm{a}\mathrm{y}\mathrm{s} an important role in determining the Morse index.

Analogously, the nodal curves (the zero curves) of u_{x}, u_{y}\mathrm{a}\mathrm{n}\mathrm{d}_{\mathrm{t}}\cdot iJ_{ $\theta$} play an important role

in the case \mathrm{o}\mathrm{f}\cdot \mathrm{t}\mathrm{w}\mathrm{o}‐dimensional domains. Note that \partial_{ $\theta$}:=-y\partial_{x}+x\partial_{y} and that \partial_{x}, \partial_{y}
and \partial_{ $\theta$} commute with \triangle_{(x},\mathrm{i}J). If the spatial dimension is 3 or larger, the topology of

the non‐zero level set can be very complicated. However, in the case of 2D domains,
that is relatively simple (If the spatial dimension is 1, each nodal set should be an

interval). Moreover, the Carleman‐Hartman‐Wintner theory [Ca33, HW53] gives us the

information about the nodal curves of u_{x}, l\mathrm{J}_{y} and u_{ $\theta$} . Using these information, we can

obtain information about the number of the nodal domain of u_{x}, u_{y} and u_{ $\theta$} and prove

the positivity of the second eigenvalue if the shape of the domain is not complicated,
e.g., a rectangle and a ball. We state several results on the shape of stable steady states.

See [\mathrm{M}\mathrm{i}06\mathrm{c}] for the proofs of the \mathrm{f}\mathrm{o}\mathrm{l}16_{\mathrm{W}}\mathrm{i}\mathrm{n}\mathrm{g} two theorems:

Theorem 2.7 (Shadow systems in 2\mathrm{D} rectangles). Let  $\Omega$ be a rectangle  R , and

let (u,  $\xi$) be a non‐constant steady state to (SS). Suppose that (N) holds. If (u,  $\xi$) is

stable for some  $\tau$>0 , then either (i) or (ii) holds.

(i) There is a direction which is not parallel to the x\leftrightarrow axis and y ‐axis such that u is

strictly monotone with respect to the direction. Moreover u attains its global maximum

(minimum) at exactly one point of the corner of R.

(ii) depends only on Ji or y , and it is strictly monotone in x ory respectively. Therefore
u attains its global maximum (minimum) on one side of\cdot R.

Theorem 2.8 (Shadow systems in 2\mathrm{D} balls). Let  $\Omega$ be a ball  B
, and let (?J,  $\xi$)

be a non‐constant steady. state to (SS). Suppose that (N) and that

(2.10) \displaystyle \sup_{($\rho$_{1)}$\rho$_{2})\in \mathbb{R}^{2}}f_{\mathrm{u}}($\rho$_{1}, $\rho$_{2})<D_{\mathrm{u}}$\chi$_{4},
where $\chi$_{4} is the fourth eigenvalue of the Neumann Laplacian in B. If (u,  $\xi$) is stable for
some \mathrm{T}>0 , then B has a diameter PQ such that

(i) u is symmetric with respect to PQ,

(ii) u is strictly monotone in the direction parallel to P.Q_{\mathrm{J}} i. e., \partial_{ $\alpha$}u>0 on \dot{B}\backslash \{P, Q\},
where \partial_{ $\alpha$}u denotes the derivative in the direction,

(iii) u_{ $\theta$}>0 on one side of B\backslash \overline{PQ}, u_{ $\theta$}<0 on the other side, where \overline{PQ} denotes the
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Figure?. The shape of stable steady states stated in Theorem 2.8 in the case of B

segment whose endpoints are P and Q,

(iv) \prime u(Q)<n(x, y)<u(P) for (x, y)\in B\backslash \{P, Q\}.

In the case of R and B , the maximum (minimum) of u is attained on the boundary
if (\mathrm{u}, $\xi$) is stable for some  $\tau$>0.

In the case of B , the assumption (2.10) seems to be technical. We obtain informa‐

tion about the shape of u on the boundary, even if we do not assume (2.10).

Theorem 2.9 (Shadow systems in 2\mathrm{D} balls). Let  $\Omega$ be a ball  B\mathrm{t}\mathrm{l}\mathrm{J}ith radius R_{J}
and let (u,  $\xi$) be a non‐constant steady state to (SS). Suppose that (N) holds. If ( $\tau$ x,  $\xi$) is

stable for some  $\tau$>0 , then Z[U_{ $\theta$}(\cdot)]=2 or \mathrm{u} is constant. Here U( $\theta$):=u(R\cos $\theta$, R\sin $\theta$)
and Z[\cdot] denotes the cardinal number of the zero level set of  2 $\pi$ ‐periodic functions.
Therefore, \mathcal{Z}[U_{ $\theta$}(\cdot)] is the lap‐number of U in the sense of [Ma82].

See [\mathrm{M}\mathrm{i}06\mathrm{b}] for details.

Theorems 2.8 and 2.9 suggest that only the steady states whose shape are like a

boundary one‐spike layer can be Stable, even if the diffusion coefficient is not small. See

Figure 2.

2.3.3. Conjecture We can expect that a result similar to Theorems 2.7 and 2.8

holds in the case of 2\mathrm{D} bounded convex domains. In order to prove that, we have to

prove the following:
Conjecture 2.10 ( [\mathrm{Y}06] Convex domains of \mathbb{R}^{2} ). Let  $\Omega$ be a two‐dimensional

bounded convex domain with smooth boundary, and let  u be a non‐constant solution of

(2.7). If there is an interior point (x_{0}, y_{0})\in \mathrm{i}\mathrm{n}\mathrm{t}( $\Omega$) such that (x_{0}, y_{0}) is a critical point
of u , i.e., u_{x}(x_{0}, y_{0})=u_{y}(x_{0}, y_{0})=0 , then the second eigenvalue of (2.8) is positive.

The contrapositive of Conjecture 2.10 is the following: Non‐constant solutions of
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Table 2, The \mathrm{t}�hot spots� conjecture of J. Rauch and related results.

Table 3. Relations between [NT91, NT93] and Conjecture 2.10.

(2.7) with Morse index 1 do not have critical points in the interior of the domain and

attain the maximum (minimum) on the boundary if the domain is convex.

If Conjecture 2.10 holds, then we see that all the stable steady states of (SS) do not

have interior spikes or spots in the case of two‐dimensional bounded convex domains

with smooth boundary.

Conjecture 2.10 is a non‐linear version of the \downarrow` \mathrm{h}\mathrm{o}\mathrm{t} spots� conjecture of J. Rauch

[R74] ([Y06]). See [BW99, BB99, JN00, B05] for partial answers of the �hot spots�)
conjecture. The ([hot spots� conjecture immediately follows from Conjecture 2.10. See

Table 2. There are well‐known results obtained by W. M. Ni and I, Takagi [NT91, NT93]
which is a sufficient condition for solutions to attain the maximum on the boundary of

the domain. Specifically, they have shown that the least‐energy‐solution of

$\Xi$^{2} $\Delta$ u-u+u^{p}=0 in  $\Omega$, \partial_{ $\nu$}u=0 on \partial $\Omega$,

which is of mountain pass type, is spike‐shaped and it attains the maximum at exactly
one point on the boundary provided that  $\epsilon$ is small. Note that the least‐energy‐solution
has Morse index 1. They also have shown that the peak should be at the point on the

boundary where the mean curvature of the boundary attains the global maximum. See

Table 3 for relations between [NT91, NT93] and Conjecture 2.10.

In [\mathrm{M}\mathrm{i}06\mathrm{c}] , the above conjecture is proven in the case that  $\Omega$=R and that  $\Omega$=B

and (2.10) holds. A key quantity is the lap‐number of U , i.e., \mathcal{Z}[U_{ $\theta$}( . This number

gives a lower bound of the number of the nodal domains of u_{ $\theta$} . Therefore, Z[U_{ $\theta$}(\cdot)]
connects the shape of u and the Morse index, and it plays the role similar to the

lap‐number in one‐dimensional cases. See [\mathrm{M}\mathrm{i}06\mathrm{b}, \mathrm{M}\mathrm{i}06\dot{\mathrm{c}}] for details. See IJNOO] for
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connections between \mathcal{Z}_{\ovalbox{\tt\small REJECT}}[U_{ $\theta$}(.)] and the uhot spots� conjecture.

Remark. The author has recently proven Conjecture 2.10 in the case of a two‐

dimensional ball. Therefore, when the domain is a disk, the stable steady states of the

shadow system of activator‐inhibitor týpe (N) have exactly one maximum (minimum)
point on the boundary, and do not have a critical point in the interior of the disk, even

if (2.10) is not assumed.

§2.4. Shadow systems in high dimensional domains

In the case that the spatial dimension is 1 or 2, the number of the nodal domains

of u_{x} (?1_{y} and u_{ $\theta$} ) plays a critical role, as stated above. In order to.obtain the. suffcient

condition for the second eigenvalue to be positive, we should pay attention to a certain

quantity related to the number of the nodal domains. In the case of one‐dimensional

(resp. two‐dimensional) domains, it is the number of zeros of u_{x} (resp. \mathcal{Z}[U_{ $\theta$}( . We

now do not know what the quantity is, when the dimension is 3 or larger. However, it

may be related to the shape of u on the boundary.

§3. Appendix

Let (u,  $\xi$) be a steady state of (SS) , and let L denote the linearized operator of (SS)
at the steady state, i.e.,

L=(_{\frac{\langle g_{\mathrm{u}},\cdot\rangle L}{ $\tau$| $\Omega$|}\frac{\{g_{ $\xi$},1\}f_{ $\xi$}}{ $\tau$| $\Omega$|}})
where L:=D_{\mathrm{u}}\triangle+f_{\mathrm{u}} . Let \{$\mu$_{n}\}_{n\geq 1} denote the eigenvalue of L with the Neumann

boundary condition counting multiplicities.
In the appendix, we study the spectrum of L.

§3.1. Eigenvalues

It is well‐known that the spectrum of L with the Neumann boundary condition

consists only of eigenvalues. We briefly see this fact in this subsection.

Let us consider the eigenvalue problem
:

(3.1) (\mathcal{L}\underline{/} $\lambda$)\left(\begin{array}{l}
 $\phi$\\
 $\eta$
\end{array}\right)=\left(\begin{array}{l}
 $\Phi$\\
\mathrm{Y}
\end{array}\right) .
..

We easily see that (L-$\lambda$_{0}) has the inverse for some $\lambda$_{0} . Moreover, the inverse is compact.
See the form ( $\phi,\ \eta$) in the proof of Proposition 3.2 (ii) below for example. Operating
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(L-\mathrm{A}_{0})^{-1}0\dot{\mathrm{n}}(3.1) , we have

\{I+($\lambda$_{0}- $\lambda$)(L-$\lambda$_{0})^{-1}\}\left(\begin{array}{l}
 $\phi$\\
 $\eta$
\end{array}\right)=(L-$\lambda$_{0})^{-1}\left(\begin{array}{l}
 $\Phi$\\
 Y
\end{array}\right)
The Fhredholm alternative says that, if \{I+($\lambda$_{0}- $\lambda$)(L^{1}-$\lambda$_{0})^{-1}\} does not have the

inverse, then there is ($\phi$_{1}, $\eta$_{1}) such that

\{I+($\lambda$_{0}- $\lambda$)(L-$\lambda$_{0})^{-1}\}\left(\begin{array}{l}
$\phi$_{1}\\
 $\gamma$]1
\end{array}\right)=0\Leftarrow\Rightarrow(L- $\lambda$\backslash \left(\begin{array}{l}
$\phi$_{1}\\
$\eta$_{1}
\end{array}\right)=0.
Therefore, A is. an eigenvalue of L.

From now on, we divide the eigenvalues of L into two sets. One is the set of the

non‐real eigenvalues and the other is the set of the real eigenvalues.

§3.2. Non‐real.eigenvalues

Proposition 3.1. Suppose that (N) holds.

(i) If  $\tau$<\{g_{ $\xi$}, 1\}^{2}/(-2| $\Omega$|\langle f_{ $\xi$},g_{\mathrm{u}} then all the non‐real eigenvalues are bounded awtxy

from the imaginary axis.

(ii) If  $\tau$<\langle-g_{ $\xi$}, 1\rangle/($\mu$_{1}| $\Omega$|)_{f} then all the non‐real eigenvalues are bounded away from
the imaginary axis.

The calculations in the proof are essentially same as those of [W99, Theorem 1.4].
We know by the proposition that a Hopf bifurcation may occur only when

 $\tau$\displaystyle \geq\max\{\frac{\langle g_{ $\xi$},1)^{2}}{-2| $\Omega$|\{f_{ $\xi$},g_{1\mathrm{A}})}, \frac{(-g_{ $\xi$},1)}{$\mu$_{1}| $\Omega$|}\}.
Proof. We consider the eigenvalue problem

(3.2) L[$\phi$_{R}+i$\phi$_{I}]+($\eta$_{R}+i$\eta$_{I})f_{ $\xi$}=($\lambda$_{R}+i$\lambda$_{I})($\phi$_{R}+iq_{3I}) ,

(3.3) (g_{\mathrm{u}}, $\phi$_{R}+i$\phi$_{\mathrm{J}}I\}+($\eta$_{R}+i$\eta$_{I})\langle g_{ $\xi$}, 1\}= $\tau$| $\Omega$|($\lambda$_{R}+i$\lambda$_{I})($\eta$_{R}+i$\eta$_{I}) ,

where

(3.4) \Vert$\phi$_{R}\Vert_{2}^{2}+\Vert$\phi$_{I}\Vert_{2}^{2}+$\eta$_{R}^{2}+$\eta$_{I}^{2}=1.

We show by contradiction that $\phi$_{R}+i$\phi$_{I}\neq 0 . Suppose the contrary, namely, $\phi$_{R}+i$\phi$_{I}=0.
Then (3.2) becomes ($\eta$_{R}+i$\eta$_{I})f_{ $\xi$}=0 . Thus $\eta$_{R}+i$\eta$_{I}=0 , which contradicts (3.4). We

can assume that ($\beta$_{R}+i\prime$\beta$_{I}\neq 0. iFrom (3.3) we have

$\eta$_{R}+i$\eta$_{I}=\displaystyle \frac{\{g_{\mathrm{u}},$\phi$_{R}+i$\phi$_{I}\}:}{(\mathrm{A}_{R}+i$\lambda$_{I}) $\tau$| $\Omega$|-(g_{ $\xi$},1\}}.
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Figure 3. All the non‐real eigenvalues of L are in the ball (3.9).

Substituting this equation into (3.2), we have

(3.5) (L-$\lambda$_{R}-i$\lambda$_{t})[$\phi$_{R}+i$\phi$_{I}]+\displaystyle \frac{\{g_{\mathrm{u}},$\phi$_{R}+i$\phi$_{I})}{($\lambda$_{R}+i$\lambda$_{I}) $\tau$| $\Omega$|-(g_{ $\xi$},1\}}=0.
Taking the real part and the imaginary part of (3.5), we have

(3.6) (L-$\lambda$_{R})[$\phi$_{R}]+$\lambda$_{\mathrm{J}}$\phi$_{I}+\displaystyle \frac{( $\tau$| $\Omega$|$\lambda$_{R}-(g_{ $\xi$},1))(g_{u},$\phi$_{R}\}f_{ $\xi$}+$\lambda$_{I} $\tau$| $\Omega$|\{g_{u},$\phi$_{I})f_{ $\xi$}}{( $\tau$| $\Omega$| $\lambda$-\{g_{ $\xi$},1\})^{2}+($\lambda$_{I} $\tau$| $\Omega$|)^{2}}=0,
(3.7) (L-$\lambda$_{R})[$\phi$_{I}]-$\lambda$_{I}$\phi$_{R}+\displaystyle \frac{( $\tau$| $\Omega$|$\lambda$_{R}-\{g_{ $\xi$},1))\{g_{\mathrm{t}\mathrm{J}},$\phi$_{I}\}f_{ $\xi$}-$\lambda$_{I} $\tau$| $\Omega$|\{g_{1\mathrm{A}},$\phi$_{R}\}f_{ $\xi$}}{( $\tau$| $\Omega$| $\lambda$-\{g_{ $\xi$},1\rangle)^{2}+($\lambda$_{I} $\tau$| $\Omega$|)^{2}}=0.
Calculating ( (3.6), $\phi$_{I})-\{(3.7), $\phi$_{R}\} , we have

(3.8) $\lambda$_{I}((i$\beta$_{R}, $\phi$_{R})+\displaystyle \{$\phi$_{I}, $\phi$_{I} +\frac{2$\lambda$_{I} $\tau$| $\Omega$|k(\langle f_{ $\xi$},$\phi$_{R}\}^{2}+\{f_{ $\xi$},$\phi$_{I}\}^{2})}{( $\tau$| $\Omega$|$\lambda$_{R}-\{g_{ $\xi$},1\rangle)^{2}+\{$\lambda$_{I}r| $\Omega$|)^{2}}=0,
where we use g_{?\mathrm{J}}(u,  $\xi$)=k( $\xi$)f_{ $\xi$}(u,  $\xi$) . Since $\lambda$_{I}\neq 0 and \Vert$\phi$_{R}\Vert_{2}^{2}+\Vert$\phi$_{I}\Vert_{2}^{2}\neq\dot{0} , we have

(3.9) (\displaystyle \mathrm{A}_{R}-\frac{\langle g_{ $\xi$},1)}{ $\tau$| $\Omega$|})^{2}+$\lambda$_{I}^{2}=\frac{-2k(\{f_{ $\xi$},$\phi$_{R}\}^{2}+\{f_{ $\xi$},$\phi$_{I})^{2})}{ $\tau$| $\Omega$|(\langle$\phi$_{R},$\phi$_{R})^{2}+\{$\phi$_{I},$\phi$_{I}\}^{2})}\leq\frac{-2k||f_{ $\xi$}\Vert_{2}^{2}}{ $\tau$| $\Omega$|},
where we use { f_{ $\xi$}, ($\beta$_{R})^{2}+\cdot\{f_{ $\xi$}, i$\beta$_{I}\rangle^{2}\leq\Vert f_{ $\xi$}\Vert_{2}^{2}(\Vert$\phi$_{R}\Vert_{2}^{2}+||$\phi$_{I}\Vert_{2}^{2}) . Hence, all the non‐real

eigenvalues are in the ball (3.9). Since -2k||f_{ $\xi$}\Vert_{2}^{2}=-2(f_{ $\xi$}, g_{\mathrm{u}}) ,
the ball is on a half

plane \{z;{\rm Re}(z)\leq\langle g_{ $\xi$}, 1)/( $\tau$| $\Omega$|)+\sqrt{-2\langle f_{ $\xi$},g_{\mathrm{u}})/ $\tau$|, $\Omega$|}\} . See Figure 3. Therefore (i) is

proven.
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We prove (ii). Calculating { (3.6, $\phi$_{R}\} +\{(3.7), $\phi$_{I}\rangle , we have

(3.10) \langle(L-$\lambda$_{R})$\phi$_{R}, $\phi$_{R}\}+\{(L-$\lambda$_{R})$\phi$_{I}, $\phi$_{1})

+\displaystyle \frac{2k( $\tau$| $\Omega$|$\lambda$_{R}-\{g_{ $\xi$},1).)(\langle f_{$\xi$_{\mathrm{J}}}$\phi$_{R}\rangle^{2}+\{f_{ $\zeta$},$\phi$_{I}\}^{2})}{( $\tau$| $\Omega$|$\lambda$_{R}-\{g_{ $\xi$}|1\})^{2}+($\lambda$_{I} $\tau$| $\Omega$|)^{2}}=0,
where we use g_{\mathrm{u}}(u,  $\xi$)=k( $\xi$)f_{ $\xi$}(\mathrm{c} $\iota$,  $\xi$) . Substituting (3.8) into. (3.10), we have

\displaystyle \frac{ $\tau$| $\Omega$|$\lambda$_{R}-\{g_{ $\xi$},1\}}{\mathcal{T}| $\Omega$|}(\Vert$\phi$_{R}\Vert_{2}^{2}+\Vert_{i}$\beta$_{I}\Vert_{2}^{2})=\{(L-$\lambda$_{R})$\phi$_{R}, $\phi$_{R})_{\backslash :}+\backslash ^{\backslash }\{(L-$\lambda$_{R})$\phi$_{I}, $\phi$_{I})

\leq($\mu$_{1}-$\lambda$_{R})(\Vert$\phi$_{R}\Vert_{2}^{2}+||$\phi$_{I}\Vert_{2}^{2}) ,

Therefore,

$\lambda$_{R}\displaystyle \leq\frac{$\mu$_{1}}{2}-\frac{\langle-g_{ $\xi$},1\rangle}{2_{\mathcal{T}}| $\Omega$|}.
The proof of (ii) is complete. \square 

Eigenvalues do not have a limit point in \mathbb{C} except \infty . Since all the non‐real eigen‐
values are in the ball (3.9), the number of all the non‐real eigenvalues is finite provided
that  $\tau$>0 is fixed.

§3.3. Real eigenvalues

Proposition 3.2. Suppose that (N) holds.

(i) \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{L})\cap\{ $\lambda$\in \mathbb{R}; $\lambda$>$\mu$_{1}\}=\emptyset.
(ii) $\mu$_{1}\not\in \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(L) .

(iii) If

(3.11)  $\tau$| $\Omega$| $\lambda$-\langle g_{ $\xi$}, 1\displaystyle \}<k\sum_{n\geq 1}\frac{\{f_{ $\xi$},$\psi$_{n}\rangle^{2}}{ $\lambda-\mu$_{n}} for  $\lambda$\in[0, $\mu$_{1} ),
then \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(L) has no eigenvalues in \{ $\lambda$\in \mathbb{R};0\leq $\lambda$<$\mu$_{1}\}.

The techniques used in the proof of Proposition 3.2 are developed in [Mi05]. See

Figure 4,

Proof. We prove (ii). We consider

(3.12) (L- $\lambda$)\left(\begin{array}{l}
 $\phi$\\
 $\eta$
\end{array}\right)=\left(\begin{array}{l}
 $\Phi$\\
\mathrm{Y}
\end{array}\right)\mathrm{J}
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Figure 4. The graphs of the both sides of (3.11) in the case that k( $\xi$)<0. (i) , (ii) and

(iii) of Proposition 3.2 cover corresponding parts in the graph.

when  $\lambda$=$\mu$_{1} . Since $\mu$_{1} is a simple eigenvalue of L, (L-$\mu$_{1})^{-1}[ $\Phi$-\displaystyle \frac{\{ $\Phi,\psi$_{1}\rangle}{\mathrm{t}f_{$\xi$_{1}}$\psi$_{1})}f_{ $\xi$}] exists,
where $\psi$_{1} is an eigenfunction corresponding to $\mu$_{1} . Let ( $\phi$,  $\eta$) be

 $\phi$=(L=$\mu$_{1})^{-1}[ $\Phi$-\displaystyle \frac{\{ $\Phi,\psi$_{1}\rangle}{\langle f_{ $\xi$)}$\psi$_{1})}f_{ $\xi$}]+c_{0}f_{ $\xi$},  $\eta$=\frac{\langle $\Phi,\psi$_{1}\}}{\{f_{ $\xi$},$\psi$_{1}\}},
where

\displaystyle \mathrm{c}_{0}=\frac{1}{\langle g_{\mathrm{u}},$\psi$_{1})}\{T| $\Omega$|Y-\frac{( $\Phi,\psi$_{1})}{\{f_{ $\xi$},$\psi$_{1})}(\{g_{ $\xi$}, 1\}- $\tau$| $\Omega$|$\mu$_{1})
-\displaystyle \langle g_{1t}, (L-$\mu$_{1})^{-1}[ $\Phi$-\frac{\{ $\Phi,\psi$_{1}\rangle}{\langle f_{ $\xi$},$\psi$_{1})}f_{ $\xi$}]\}\}.

Then ( $\phi$,  $\eta$) satisfies (3.12), which means that \dot{ $\mu$}_{1}\not\in \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(L) .

We prove (iii). We consider (3.12) in the case when  $\lambda$\in[0, $\mu$_{1} ). A similar calculation

in the proof of Lemma 2.3 derives

(3.13) (L+A_{ $\lambda,\ \tau$}-\displaystyle \ovalbox{\tt\small REJECT} $\lambda$) $\phi$= $\Phi$+\frac{ $\tau$| $\Omega$|Yf_{ $\xi$}}{ $\lambda \tau$| $\Omega$|-(\dot{g}_{ $\xi$},1)},
where

A_{$\lambda$_{1} $\tau$} $\phi$:=\displaystyle \frac{\langle g_{\mathrm{u}}, $\phi$\}f_{ $\xi$}}{$\lambda$_{\mathcal{T}}| $\Omega$|-\{g_{ $\xi$},1)}.
Here  $\lambda$ appears in  A)_{r} , hence (3.13) is not a standard eigenvalue problem. Note that

 $\lambda \tau$| $\Omega$|-\{g_{ $\xi$}, 1)\neq 0 . Since A_{ $\lambda,\ \tau$} is a rank‐one operator, we see by the Sherman‐Morrison

formula that

(L+A_{ $\lambda,\ \tau$}- $\lambda$)^{-1}=.(1+\displaystyle \frac{(L- $\lambda$)^{-1}A_{ $\lambda,\ \tau$}}{H( $\lambda$)})(L-\mathrm{A})^{-1},
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where

H( $\lambda$):=1+\displaystyle \frac{k\langle f_{ $\xi$},(L- $\lambda$)^{-1}[f_{ $\xi$}]\}}{\dot{ $\lambda$} $\tau$| $\Omega$|-(g_{ $\xi$},1\}}=1-\frac{k}{ $\lambda \tau$| $\Omega$|-\{g_{ $\xi$},1\}}\sum_{n\geq 1}\frac{\{f_{ $\xi$},$\psi$_{n}\rangle^{2}}{ $\lambda-\mu$_{n}}.
Because of (3.11) H( $\lambda$) does not vanish in [0, $\mu$_{1} ) ana (L+A_{\ovalbox{\tt\small REJECT}}\mathrm{x}_{ $\tau$}- $\lambda$)^{-1} . exists for

 $\lambda$\in[0, $\mu$_{1}) . Hence (3.13) has unique solution  $\phi$ . Using the second equation of (3.12),
we have

 $\eta$=\displaystyle \frac{\{g_{u}, $\phi$)- $\tau$| $\Omega$|Y}{ $\lambda \tau$| $\Omega$|-\{g_{ $\xi$},1\}}.
i

The pair ( $\phi$,  $\eta$) obtained here is a unique solution of (3.12). The proof of (iii) is complete.
We prove (i). We show that (2.6) has no root in \{ $\lambda$\in \mathbb{R}; $\lambda$>$\mu$_{1}\} . Since  $\lambda$>$\mu$_{1},

the right‐hand side of (2.6) is negative. Because of (N), the left‐hand side of (2.6) is

positive. Hence, (2.3) has no root if  $\lambda$>$\mu$_{1} , and H( $\lambda$) also has no root. The problem
(3.12) has a unique solution. The proof \mathrm{o}\mathrm{f}\cdot(\mathrm{i}) is complete. \square 

When one studies the eigenvalue problem (3.12), eigenvalues of a differential oper‐

ator with non‐local term have to be analyzed. The Sherman‐Morrison formula is useful.

A brief history of the Sherman‐Morrison formula can Ue seen in [HS81].
Because of Proposition 3.2, we have to check (3.11) when we prove the stability of

(u,  $\xi$) . A necessary condition is that $\mu$_{2}\leq 0<$\mu$_{1} . Hence, the Morse index of should

be 1 if (u,  $\xi$) is stable for some  $\tau$>0 . However, checking (3.11) is difficult in general. In

the case of the stable boundary one‐spike layer of the shadow Gierer‐Meinhardt system

(SGM), (3.11) holds if  $\tau$>0 is small. See [Mi05],

Corollary 3.3. Suppose that (N) holds. If $\mu$_{2}<0 and if

\{g_{ $\xi$}, 1)>\langle g_{\mathrm{u}_{\mathrm{J}}}L^{-1}[f_{ $\xi$}]\rangle,

then, for small  $\tau$>0 , the steady state (u, $\xi$) is stable.

Remark. If 0\not\in \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(L) and if \langle g_{\mathrm{t}s}, L^{-1}[f_{ $\xi$}]\rangle\neq\langle g_{ $\xi$} , 1), then 0\not\in \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(L) . Hence,
if a steady state that is stable for small  $\tau$>0 becomes unstable for large  $\tau$>0 , then,
as  $\tau$ increases, eigenvalues do not pass the origin in \mathbb{C} , and should pass the imaginary
axis. Therefore, a Hopf bifurcation may occur as  $\tau$ increases.
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