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random networks
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Abstract

Entrainment of oscillator networks has been studied for the last few decades. In spa‐

tially distributed oscillators (including Belousov‐Zhabotinsky reaction diffusion systems) the

entrainment threshold for coupling intensity doesn�t depend on the system length. In contrast,
it has been recently found that in random networks the entrainment threshold grows expo‐

nentially with the system length [H. Kori and A.S. Mikhailov, Phys. Rev. Lett. 93, 254101

(2004); Phys. Rev. E74, 066115 (2006)]. In this report, we briefly review the difference in the

entrainment behavior between lattice and random networks.

§1. introduction

Pacemakers are wave sources in distributed oscillatory systems typically associated

with a local group of elements having a higher oscillation frequency. Target patterns,

generated by pacemakers, were the first complex wave patterns observed in the Belousov‐

Zhabotinsky system [1]. Pacemakers play an important role in functioning of the heart

[2] and in the collective behavior of Dictyostelium discoideum [3]. They are also ob‐

served in large‐scale ecosystems [4]. While the majority of related investigations have

so far been performed for systems with local diffusive coupling between the elements,

pacemakers can also operate in oscillator networks with complex connection topologies.
One of the most intriguing examples is the circadian (i.e., approximately daily) clock in

mammals (for details, see [5, 6]).
Is there any essential difference in the entrainment behavior from lattice and ran‐

dom oscillator networks? To answer this question, the entrainment behavior of random

oscillator networks has been investigated [5, 6]. It was found there that the entrainment
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threshold for coupling intensity between oscillators strongly depends on the depth of a

network, defined as the mean forward distance from a pacemaker (i.e., source of exter‐

nal forcing) to the network nodes [5]. Interestingly, such a property is very different

from that in spatially distributed oscillator systems, including the Belousov‐Zhabotinsky

system, where the entrainment threshold is independent of the system length. In this

report, we summarize the entrainment behavior both in lattice and random oscillator

networks to illustrate their essential differences in dynamical properties.

§2. model

We consider a system of N phase oscillators, one of them being a pacemaker. The

basic model is given by a set of evolution equations for the pacemaker phase $\phi$_{1} and the

oscillator phases $\phi$_{i}(2\leq i\leq N) ,

$\phi$_{1}=( $\omega$+\triangle $\omega$)t,

(2.1) \displaystyle \dot{ $\phi$}_{i}= $\omega$+\frac{ $\kappa$}{z}\sum_{j=1}^{N}A_{ij} $\Gamma$($\phi$_{i}-$\phi$_{j}) .

The topology of network connections is determined by the adjacency matrix A whose

elements A_{ij} are either 1 or 0 . The mean degree z is the average number of incom‐

ing connections per node, i.e. z=\displaystyle \sum_{i,j}A_{ij}/N . The element with i=1 is special
and represents a pacemaker. Its frequency is increased by \triangle $\omega$ with respect to the fre‐

quency  $\omega$ of all other oscillators. The coupling between elements inside the network

is characterized by the  2 $\pi$‐periodic function  $\Gamma$(x) and the (positive) coupling intensity
coefficient  $\kappa$ . In absence of a pacemaker, such networks usually undergo autonomous

perfect phase synchronization (i.e.,  $\phi$_{i}=$\phi$_{j} for any i and j) if the coupling is attracting,

i.e., if (d/d $\phi$) $\Gamma$( $\phi$)|_{ $\phi$=0}<0.
Without loss of generality, our model can be simplified. By going into a rotating

frame, we have  $\omega$=0 . Moreover, rescaled time  t'=t\triangle $\omega$ and rescaled coupling

strengths  $\kappa$'= $\kappa$/\triangle $\omega$,  $\mu$'= $\mu$/\triangle $\omega$ are introduced. After that, the model takes the form

of Eq. (2.1) with \triangle $\omega$=1 and  $\omega$=0 (below, we drop primes in the notations for the

rescaled quantities).
The presence of a pacemaker imposes hierarchical organization in the network ar‐

chitecture, which plays a crucial role in determining the entrainment ability. For any

node i
,
its distance l_{i} with respect to the pacemaker is defined by the length of the min‐

imum forward path separating this node from the pacemaker. We define the element

1 have distances l_{1}=1 . Among the rest elements, the elements receiving connections

from this element 1 have distances l_{i}=2 ,
etc. Thus, the whole network is divided into

a set of shells, each of which is composed of oscillators with distance h from the pace‐

maker. The shell population N_{h} is given by the number of the oscillators with distance
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h . The depth \mathrm{L} of a network is defined by the average distance from the pacemaker to

the entire network, given as

(2.2) L=\displaystyle \frac{1}{N}\sum_{i}l_{i}=\frac{1}{N}\sum_{h}hN_{h}.
Our focus is on the entrainment threshold $\kappa$_{\mathrm{c}\mathrm{r}} ,

defined as the critical coupling

intensity  $\kappa$ above which the whole network is entrained by the pacemaker (i.e., \dot{ $\phi$}_{i}= $\Omega$
for all  i ). In particular, we are interested in the dependence of $\kappa$_{\mathrm{c}\mathrm{r}} on topological

properties of the network structure.

§3. entrainment in random oscillator networks

We first summarize the results for standard random networks, also known as Erdös‐

Rényi (ER) networks [7, 8]. These networks are generated by independently assigning
with probability p for any pair i and j of the network nodes a connection between the

node i to the node j . Hence, elements A_{ij}=A_{ji} of the adjacency matrix are chosen

to be 1 with probability p and 0 otherwise, and the matrix A is symmetric. The mean

degree z becomes approximately pN.
Such a oscillator network has been studied analytically for 1\ll z\ll N[6] . It

was found that for any coupling function with $\Gamma$'(0)<0 (i.e., attracting coupling) the

entrainment threshold has the following dependence

(3.1) $\kappa$_{\mathrm{c}\mathrm{r}}\sim z^{L-1}

Thus, extremely strong coupling intensity is needed for the entrainment in a random

network with a large depth. Moreover, Eq. (3.1) implies that the entrainment threshold

increases with the system size. It is known that the typical depth of random networks

is roughly \ln(N/zN_{1})+1 [9] and we may thus estimate

(3.2) $\kappa$_{\mathrm{c}\mathrm{r}}\sim N.

As explained in the next section, such a property is very different from that in lattice

oscillator networks.

§4. entrainment in spatially distributed oscillators

In oscillator medium, such as BZ reaction diffusion systems, a pacemaker can en‐

train the whole system and this behavior is independent of its system size. As is known

and explained in the following, certain nonlinearity is responsible for this type of the

entrainment.
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The entrainment takes place also in lattice oscillator networks, and its behavior

is essentially the same as in the oscillator medium. The analytic treatment of lattice

oscillator networks is more complicated than of continuous medium. Therefore, we do

not try to make a rigorous theory for lattice networks. After a brief sketch of the

entrainment behavior in lattice oscillator networks, we take a continuous limit of such a

system, by which the entrainment behavior may be better understood. For both lattice

oscillator networks and oscillator medium, it will be shown that the entrainment can

take place regardless of the system size.

§4.1. 1\mathrm{D} lattice oscillator network

We consider a 1\mathrm{D} lattice network. For convenience, we replace the suffix i by x.

The model (2.1) then is rewritten as

$\phi$_{1}=t

(4.1) \dot{ $\phi$}_{x}= $\kappa$\{ $\Gamma$($\phi$_{x}-$\phi$_{x-1})+ $\Gamma$($\phi$_{x}-$\phi$_{x+1} for x\geq 2.

We adopt the Neumann boundary condition at x=N . We consider a sufficiently large

system size and do not care dynamics near the boundary. Note that the network depth
of this network is L=N/2 . In our analysis, we employ the following particular coupling
function:

(4.2)  $\Gamma$( $\phi$)=-\sin( $\phi$+ $\alpha$)+\sin $\alpha$,

where  $\alpha$ is a parameter. Note that  $\Gamma$(0)=0 for any  $\alpha$ and (d/d $\phi$) $\Gamma$( $\phi$)|_{ $\phi$=0}<0 for

- $\pi$/2< $\alpha$< $\pi$/2.
We seek the entrainment solution that has a homogeneous phase difference between

neighboring oscillators, i.e.,

(4.3) $\phi$_{x}=t-dx,

where d=$\phi$_{i}-$\phi$_{i+1} . We call this solution the phase wave solution. Substituting this

solution into Eq. (4.1), we obtain

(4.4) 2 $\kappa$\sin $\alpha$(1-\cos d)=1,

from which d is found. Because -1\leq\cos d\leq 1 ,
the existence condition for this solution

is  0< $\alpha$\leq $\pi$ and

(4.5)  $\kappa$\geq$\kappa$_{\mathrm{c}\mathrm{r}}\equiv 1/4\sin $\alpha$.

The stability analysis can be done as follows. We consider small perturbation from

the solution,

(4.6) $\phi$_{x}=t-dx+ $\epsilon \psi$_{x}.
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Substituting this into Eq. (4.1), linearizing it for small  $\epsilon$
,

we get

(4.7) \dot{ $\psi$}_{x}=-($\psi$_{x}-$\psi$_{x-1})\cos(-d+ $\alpha$)-($\psi$_{x}-$\psi$_{x+1})\cos(d+ $\alpha$) .

We expand $\psi$_{x} as

(4.8) $\psi$_{x}=\displaystyle \sum_{p}c_{p}e^{$\lambda$_{p}t+ipx}
We then find

$\lambda$_{p}=-(1-e^{-ip})\cos(-d+ $\alpha$)-(1-e^{ip})\cos(d+ $\alpha$)
(4.9) =-2 $\kappa${ \cos $\alpha$\cos d(1-\cos p)+i\sin $\alpha$\sin dsin  p}.

Thus, the phase wave solution is stable if \cos $\alpha$>0 . Together with the existence

condition (4.5), it is found that the stable phase wave solution exists for \cos $\alpha$>0 and

 $\kappa$\geq$\kappa$_{\mathrm{c}\mathrm{r}}.

Importantly, the entrainment threshold $\kappa$_{\mathrm{c}\mathrm{r}} does not depend on the system size

(or length) N in this lattice network [see Eq. (4.5)]. Direct numerical simulations of

the model (4.1) support this observation. Such a property is actually shared also in

continuum medium and may be better understood if we take the continuum limit of the

model (4.1), as done in the next subsection.

§4.2. continuum medium

Here, we derive a continuum version of the model (4.1) and seek the phase wave

solution of it. The space dimension is arbitrary. To begin with, we change the notation

of our model:

\displaystyle \dot{ $\phi$}_{i}=\frac{ $\kappa$}{l^{2}}\sum_{i'}\{\sin($\phi$_{i'}-$\phi$_{i}- $\alpha$)+\sin $\alpha$\},
(4.10) $\phi$_{0}=t,

where \displaystyle \sum_{i} , denotes the summation over the nearest neighbors of the oscillator i
,

and l is

a lattice interval (which was unity in the lattice network). Now we take the continuous

limit l\rightarrow 0 and $\phi$_{i'}-$\phi$_{i}\rightarrow 0 while keeping ($\phi$_{i'}-$\phi$_{i})/l finite. In the lowest order

approximation, i.e. for small phase gradient ($\phi$_{i'}-$\phi$_{i})/l\ll 1 ,
the model (4.10) results

in

(4.11) \dot{ $\phi$}(r, t)= $\kappa$\cos $\alpha$\nabla_{r}^{2} $\phi$+ $\kappa$\sin $\alpha$(\nabla_{r} $\phi$)^{2},
(4.12)  $\phi$(0, t)=t,

where r\in\Re^{D} denotes the coordinate and a pacemaker is placed at r=0.
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We look for the phase wave solution, i.e., \nabla_{r} $\phi$ is constant, sourced from the pace‐

maker (r=0) . Substituting \nabla_{r} $\phi$=d into Eq. (4.11) and putting \dot{ $\phi$}=1 (the entrain‐

ment condition), we obtain

(4.13) d=\displaystyle \frac{\mathrm{l}}{ $\kappa$\sin $\alpha$}.
The stability of this solution is found straightforwardly: it is stable for \cos $\alpha$>0 . Thus,
the stable phase wave solution exist for \sin $\alpha$\neq 0 and \cos $\alpha$>0 ,

and this condition

is regardless of the system size N . Such a property is distinct from that in random

networks.

Note that the nonlinear term (\nabla_{r} $\phi$)^{2} effectively changes the system�s base fre‐

quency when there is a constant phase gradient (i.e., a phase wave or a target pattern)
sourced from the pacemaker [10]. This is the reason why non‐zero \sin $\alpha$ is needed for

the entrainment by the phase wave.

§5. discussion

As is briefly reviewed, the types of the entrainment behavior in random and lattice

networks are very different. In lattice networks, the entrainment threshold does not

depend on the network length if the coupling function admits the phase wave solution

[e.g., Eq. (4.2) with  0< $\alpha$< $\pi$/2]. In contrast, in random networks, the entrainment

threshold strongly depend on the network size and grows exponentially with the network

depth.
What happens in networks whose property is between lattice and random networks?

Is there well‐defined transition somewhere in‐between? Analysis of the entrainment

behavior in small‐world networks (e.g., Watts‐Strogatz model [11]) would be of great
interest. The study on this direction is now in progress by Naoki Masuda and H.K..
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