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Abstract

It has been speculated that Turing pattern formation mechanism is working during chick

feather bud formation, and candidates for activator and inhibitor molecules are specified. Al‐

though difference of diffusion coefficients of activator and inhibitor is crucial for pattern for‐

mation process, it has not been assayed in detail both from experimental and theoretical point
of view. In the present study, we measured diffusion coefficient of activator and inhibitor in

Matrigel, which mimics the extracellular matrix (ECM) environment of biological tissues by
applying fluorescently‐labelled proteins in the gel. We found transient high concentration re‐

gion near the source of the activator molecule, which suggests the diffusion is not classic Fickian

diffusion. We show that this diffusion pattern is reproduced when some part of the molecules

are trapped by ECM. We also show that we can reproduce Turing instability with the 3‐species
model, but we need to rescale reaction term when morphogen trapped in ECM do not bind to

its receptor.

§1. Introduction

Various spontaneous pattern formation phenomena take place during mammalian

development. Examples include animal coat markings [1], feather bud [2], feather ridge
formation [3], limb skeleton [4, 5, 6], lung branching morphogenesis [7], vasculogenesis

[8, 9] etc. Spontaneous pattern formation has been studied mainly in chemistry and

physics (convection, crystal formation, BZ reaction etc.[10]), but accumulating phe‐

nomenological and molecular data makes biological system promising area for future

research.

The most well‐studied biological example of pattern formation is Turing instabil‐

ity during development [11]. In 1952 Alan Turing formulated a hypothetical chemical
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interaction which can generate a periodic pattern out of initial homogeneous state.

The model assumes existence of two molecules, the activator and the inhibitor, and

activator promotes its own production and that of inhibitor. The inhibitor suppresses

activator production and diffuses faster than activator. In such a system certain range of

wavenumbers becomes unstable, which lead to periodic pattern formation (an intuitive

explanation can be found in [12, 13] and mathematical analysis is described in [14]).
In some biological systems, the candidates for activator and inhibitor have already

been specified. For example, in limb bud cells, transforming growth factor beta (\mathrm{T}\mathrm{G}\mathrm{F} $\beta$)
is assumed to work as an activator molecule [6]. In chick feather bud formation, fibrob‐

last growth factor (FGF) works as an activator and bone morphogenetic protein (BMP)
works as an inhibitor [2]. In chick skin ridge formation, FGF also works as an activator

and BMP act as an inhibitor [3]. Interestingly, the key players in this mechanism fall

into limited number of �toolkit� molecules‐FGF, \mathrm{T}\mathrm{G}\mathrm{F} $\beta$ superfamily including BMP,
sonic hedgehog (Shh) and Wnt, which appear repeatedly in many developing organs

[15].
Although difference in diffusion coefficient is necessary for the formation of Turing

pattern, the difference has not been assayed directly in biological systems. Molecu‐

lar weights of these toolkit molecules are around  10-30\mathrm{k}\mathrm{D}\mathrm{a} . Therefore, according to

Einstein‐Stokes equation, diffusion coefficient of these molecules should not be very dif‐

ferent. [16] has assayed the diffusion coefficient of BMP4 in Xenopus and concluded the

molecule diffuses more slowly than other morphogen molecules. Recently, morphogen

gradient formation in Drosophila embryo has been studied extensively by visualizing
distribution of extracellular protein [17] and several factors that affect diffusion of mor‐

phogen molecules are specified. However, these studies concentrate on formation of

monotonic gradient and comparison of diffusion coefficient with spontaneous pattern

formation has not been done.

In the present study, we measured the diffusion coefficient of two key morphogen

molecules, BMP and FGF. We found that the effective diffusion coefficient of FGF is

much slower than BMP in Matrigel, which mimics the extracellular matrix component of

biological tissue. During diffusion process region of high morphogen concentration was

observed, which suggests the diffusion cannot be explained by classic Fickian scheme.

The diffusion pattern can be understood by including immobile fraction of morphogen
molecule in the model. Numerical simulation and mathematical analysis show that

by including immobile fraction of activator molecule we can construct a system which

shows Turing instability even when the diffusion coefficients of activator and inhibitor

are the same.
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§2. Materials& Methods

§2.1. Preparation of Alexa \mathrm{F}\mathrm{l}\mathrm{u}\mathrm{o}\mathrm{r}-488‐labelled protein

Morphogen molecules are purchased from Peprotech (FGF) and R&D systems

(BMP), and labelled with Alexa Fluor‐488 microscale labelling kit (Molecular Probes)
according to the manufacturer�s instructions. Since gel filtration method provided by
the manufacturer results in considerable amount of unbound dye, we use polyacry‐
lamide gel electrophoresis for isolating labelled protein. After electrophoresis, the gel
was observed with UV transilluminator and labelled protein can be detected as a band

with molecular weight around 20-30\mathrm{k}\mathrm{D}\mathrm{a} . The band was dissected out as the source of

florescently‐labelled morphogen protein.

§2.2. Numerical simulation

All the numerical simulations were done with Mathematica with the explicit finite

difference scheme. All the simulations were done in one‐dimensional domain with pe‐

riodic boundary conditions. Simulation parameters are described in figure legends. In

some cases, numerical simulation was implemented using NDSolve function. Mathe‐

matica source codes are available on request.

§3. Results

§3.1. Turing system in skin feather bud formation

In previous works [2] the molecular circuit for feather bud formation has been

established, and here we deal with the most authentic ones ‐ activator as FGF and

inhibitor as BMP. We use simplest possible governing equation for Turing instability.

(3.1) u'=f_{u}u+f_{v}v+d_{u}\triangle u

v'=g_{u}u+g_{v}v+d_{v}\triangle v

u represents relative concentration of activator (FGF) and v represents relative

concentration of inhibitor (BMP). However, molecular weights of these molecules are

not very different ‐ they are around 10-20\mathrm{k}\mathrm{D}\mathrm{a} , which means d_{u} and d_{v} are almost

identical from chemical point of view. Therefore, we experimentally observe whether

diffusion of activator and inhibitor are very different under biological settings.
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§3.2. Diffusion pattern of morphogens in Matrigel

When we applied a small piece of polyacrylamide gel which contains fluorescently‐
labelled protein in thin layer of Matrigel, we could observe a gradual release of mor‐

phogen protein from polyacrylamide gel into Matrigel. With some proteins like BMP4,
diffusion profile seems to obey Fick�s law‐ protein diffuses outside PAG and changes
diffusion coefficient outside the gel.

In morphogen molecules like FGF, we could observe very high concentration of

morphogen at the interface‐it was even higher than original FGF concentration inside

the polyacrylamide gel (Fig. 1). Obviously, BMP diffuses faster than FGF in this case,

so this is consistent with the hypothesis that FGF acts as activator and BMP acts as

inhibitor. However, this distribution pattern cannot be reproduced by Fickian diffusion,
which should not locally increase concentration of diffusible molecule.

§3.3. Biological background‐ FGF can bind HSPG in Matrigel

The proteins which show strange behaviour belong to heparin‐binding proteins.

Heparin is glycosaminoglycan which is widely used to stop blood coagulation process.

A type of extracellular matrix protein‐ heparan sulfate proteoglycan (HSPG) consists

of protein core and glycosaminoglycan side chains which consist of heparin. Therefore,

heparin‐binding proteins are known to bind to HSPG and to be immobilized [18].

§3.4. Modelling diffusion pattern by considering immobile fraction

The observed pattern can be understood by incorporating the above biological

settings. We divide morphogen into mobile (u) and immobile (w) fraction, and suppose

the immobile fraction is trapped by HSPG and does not move. We set association and

dissociation rate constants as k_{a} and k_{d} ,
and ECM (HSPG) density as e . Usually, HSPG

has numerous binding sites for morphogen molecules, so we neglect the effect of binding
site saturation. Then the system is represented as follows:

(3.2) u'=d_{u}\triangle u+k_{d}w-keu

w'=-k_{d}w+k_{a}eu.

In this situation e is dependent on space. In polyacrylamide region e is zero, while

in Matrigel region they have some value.

Numerical simulation of this system can reproduce the observed pattern (Fig. 2).
In this system, free FGF obey simple diffusion equation and immobile FGF bind to

HSPG at Matrigel region. Therefore, distribution of total FGF is amplified in Matrigel

region, which makes the high FGF concentration at the interface of PAG and Matrigel

region.
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Figure 1. (a) Experimental setting. A thin layer of Matrigel was sandwiched by slide‐

glasses, and a piece of polyacrylamide gel was placed in Matrigel. (b) Distribution of

fluorescently‐labelled BMP4 molecule after 60 \displaystyle \min . of incubation. (c) Distribution of

fluorescently‐labelled FGF10 molecule after 60 \displaystyle \min . of incubation. (d) Concentration

profile of (c). A region of high FGF10 can be observed outside the polyacrylamide gel.
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Figure 2. (a). Model description. Mobile FGF (u) binds to HSPG (e) by certain

association/dissociation rate (k_{a}, k_{d}) . (b). Result of numerical simulation at t=10.

Simulation parameters: domain size =60 ,
mesh size=1

, timestep=0.1, D=1, k_{a}=

5, k_{d}=1.
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§3.5. Approximation of 3‐species model by 2‐species model

Now we go back to our original question and try to find whether the three‐species
model can generate Turing instability. We suppose the model as follows:

(3.3) u'=f_{u}u+f_{v}v+d_{u}\triangle u+k_{d}w-keu

(3.4) v'=g_{u}u+g_{v}v+d_{v}\triangle v

(3.5) w'=-k_{d}w+k_{a}eu.

In this case, we suppose d_{u}=d_{v} . However, the set of (f_{u}, f_{v}, g_{u}, g_{v}) which satisfies

the diffusion‐driven instability condition in 2‐species model does not work, no matter

how we increase k_{a} ,
which should reduce effective diffusion coefficient of activator (Fig.

3).
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\circ \mathrm{Q}^{f_{\mathring{u}}} \circ

\circ

 0 \mathrm{o} \circ

 0
0

\mathrm{o} \mathring{\mathrm{u}}
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0 \mathrm{w}: activator \mathrm{i}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{b}\dot{\ovalbox{\tt\small REJECT}}\mathrm{I}\mathrm{e} fraction

\mathrm{O} 0 \mathrm{e} : ECN concentration
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V

 u' = f_{u}u+f_{v}v+d_{u}\triangle u+k_{d}w-k_{a}eu
v' = g_{u}u+g_{v}v+d_{v}\triangle v
w' = -k_{d}w+k_{a}eu.

\mathrm{b}

\mathrm{C}

Figure 3. Mere addition of immobile activator fraction does not lead to Turing instability
when d_{u}=d_{v} . (a) Model scheme. (b) u+w and v distribution at t=0 . (c) u+w

distribution at t=100 . No pattern formation occurs. Simulation parameters: domain

size=1, (f_{u}, f_{v}, g_{u}, g_{v})=(0.6, -1,1.5, -2) , d_{u}=d_{v}=0.0025, k_{a}=100, k_{d}=10, \mathrm{e}=1.
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Estimating diffusion‐driven instability condition using 3‐species model is extremely
cumbersome because characteristic polynomial is cubic. Therefore, we sought to reduce

the system to 2‐species using an approximation described in [19].
We start from simple diffusion equation (3.2). When k_{a} and k_{d} are large, i.e.,

association‐dissociation reaction of morphogen‐ECM is faster than activator‐inhibitor

interaction, equation (3.5) should quickly become equilibrium, that means

(3.6) -k_{d}w+k_{a}eu=0.

This is a biologically plausible assumption because we suppose activator‐inhibitor

interaction takes place via transcription regulation of cells which consist of the tissue,
but association/dissociation reaction should be purely chemical. From this equation we

obtain

(3.7) w=\displaystyle \frac{k_{a}e}{k_{d}}u

(3.8) u=\displaystyle \frac{k_{d}}{k_{a}e+k_{d}}(u+w) .

Then, if we define total morphogen concentration U=u+w ,
the system can be

reduced as follows.

(3.9) U'=\displaystyle \triangle(\frac{k_{d}}{k_{a}e+k_{d}}d_{u}U) .

Defining effective diffusion coefficient d(x) as \displaystyle \frac{k_{d}}{k_{a}e+k_{d}}d_{u} ,
The equation becomes

(3.10) U'=\triangle(d_{e}(x)U) .

This is different from conventional Fickian diffusion equation (U'=\nabla d\nabla U) . d_{e}=

d_{u} when e=0 ,
so this definition is also valid in PAG region. Numerical simulation

of equation (3.10) can reproduce the observed diffusion pattern of morphogen molecule

(Fig. 4).

§3.6. Turing instability by immobile fraction model

From above approximation the three‐species model can be reduced as follows:
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\mathrm{b}
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Figure 4. Non‐Fickian diffusion term can reproduce the observed pattern. (a) Numerical

scheme. We assign the effective diffusion coefficient  d_{e} to each grid, and a certain fraction

of morphogen in this grid is transferred to neighbouring grids. Since mobile fraction

of morphogen is determined by d_{e} ,
amount of morphogen transferred to neighbouring

grid is proportional to d_{e}. (b) If we take a limit dx\rightarrow 0 , resulting governing equation is

(3.10), which is different from Fickian diffusion. (c) Result of numerical simulation. We

assume diffusion coefficient of morphogen is different between Matrigel region (e=1)
and PAG region (e=0) . Simulation parameters: domain size =60 ,

mesh size=1,

timestep=0.1, k_{a}=5, k_{d}=1, d_{u}=1.
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(3.11) U'=f_{u}\displaystyle \frac{k_{d}}{k_{a}e+k_{d}}U+f_{v}v+d_{u}\triangle\frac{k_{d}}{k_{a}e+k_{d}}U
(3.12) v'=g_{u}\displaystyle \frac{k_{d}}{k_{a}e+k_{d}}U+g_{v}v+d_{v}\triangle v

In this form, we can intuitively see why the above model (3.3‐3.5) does not work‐if

diffusion is reduced by association to extracellular matrix, the immobile fraction should

not reach to receptor and hence effect of morphogen molecule is decreased. To increase

the effect of morphogen molecule on activator‐inhibitor interaction, we rescaled f_{u} and

f_{v} and we can reproduce Turing instability in 3‐species model (Fig. 5).

\mathrm{C}

 $\lambda$

 f_{u}\# 6, f_{v}=-1, g_{u}=
d_{u}=d_{v}=0.0025, k_{a}=100, k_{d}=10

Figure 5. Turing instability in 3‐species model. (a) u+w and v distribution at the

beginning of simulation. (b) u+w and v distribution at t=100. (\mathrm{c}) Dispersion relation

of the system. f_{u} and g_{u} have larger value than the rest of the parameters in this system

(red box). Simulation parameters: domain size=1, (f_{u}, f_{v}, g_{u}, g_{v})=(6, -1,15, -2) ,

d_{u}=d_{v}=0.0025, k_{a}=100, k_{d}=10, \mathrm{e}=1.
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§4. Discussion

Although some biological system BMP is a good candidate for inhibitor [2], which

should have larger diffusion coefficient, [16] showed that BMP4 diffuses more slowly
than other signalling molecules during early Xenopus development. There are several

possible explanations for these seemingly contradictory data. First, BMP4 diffusion

is slower than protein molecule of the same size like lysozyme which does not interact

with the extracellular matrix, but FGF diffuses much more slowly than these molecules,

Second, there are several extracellular modifiers which affect diffusion coefficient. For

example, Noggin and Chordin are extracellular modulator of BMP function which blocks

BMP‐BMPR interaction [20], and they are shown to increase diffusion coefficient in

Drosophila embryo [17]. Therefore, diffusion coefficient of morphogen can be highly

context‐dependent and should be assayed separately under different situations.

The feather bud formation [2] and ridge formation [3] utilize common molecular

circuit (FGF‐BMP) but resulting patterns have a different spatial scale ‐ the feather

ridge is mich smaller structure than the feather bud. This difference may come from

the diffusion coefficient difference by HSPG. We can predict that amount of HSPG will

increase at later stages of skin development, which can be experimentally tested.

Modulation of diffusion coefficient can be estimated using biochemical data. Hep‐
arin binding ability of various protein molecules have been studied in detail [21]. For

example, ratio of association/dissociation constant K_{D}=k_{d}/k_{a} of heparin binding was

measured in many proteins. FGF2‐heparin binding K_{D} is 20 \mathrm{n}\mathrm{M}[22] while BMP4‐

heparin binding K_{D} is 2 \mathrm{n}\mathrm{M}[23] ,
which may reflect faster diffusion of BMP4.

The diffusion with absorption‐dissociation reaction \triangle(du) does not play a role in

this case, but in some cases activator can act to promote expression of HSPG molecule

(data not shown). In this case, activator diffusion is dependent on activator concentra‐

tion, which may help generating instability or making higher mode structure. Activator‐

related domain growth has been done recently in modelling tooth development [24], and

similar effect may occur in this system.
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