
RIMS Kôkyaroku Bessatsu B3

.(2007), 177−192

Potential mechanisms of relapse in autoimmune

disease
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Abstract

The mechanisms of autoimmune disease have remained puzzling for a long time. For ex‐

ample, many human autoimmune diseases are characterized by relapse, although animals often

spontaneously recover from autoimmunity. Here we will investigate the potential mechanism

of relapse in terms of mathematical model.

§1. Introduction

The mechanism of autoimmune disease is said to be very complex. However, in this

study, we will propose a simple mathematical model characterized by two functions,

�target cell growth� and �personal immune response� We will show that these two

functions capture the essence of the mechanism and can explain many of the symptom

dynamics observed for autoimmune disease.

Autoimmune disease occurs when the immune system is fooled into attacking tself�.

Almost any organ or tissue in the body represents $\iota$_{\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{f}'} and can therefore be a target

for autoimmune destruction [5], [11]. Many autoimmune diseases involve specific target

cells or organs, such as pancreatic  $\beta$‐cells being destroyed in insulin‐dependent diabetes

mellitus type‐l (IDDM) or the destruction of axonal myelin sheaths in multiple sclerosis

(MS) [?] , [10], [11]. Interestingly, it is said that the symptom of IDDM represents chronic
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but one of MS represents relapse [5], [7], [11]. Although animals often spontaneously

recover from autoimmunity, many human autoimmune diseases are characterized by

relapse. It has been suggested that the relapses are caused by the stimulation of newly

recruited \mathrm{T} cells reactive to spreading� determinants (in fact, relapse in experimenta}

autoimmune encephalomyelitis do not require spreading determinants, but can be driven

Uy \mathrm{T} cells reactive to the initial dominant of myelin basic protein) [1]. Thus humans and

animals can develop various autoimmune diseases and represent relapse of.symptoms.

For more detailed discussion of autoimmune disease, see [6].
Several hypotheses (sequestered antigen, cross‐reaction, superantigen and so on)

have been.proposed to explain the development of autoimmunity and subsequent disease

in humans and animals (see [3], [7], [10]). These hypotheses are very complex but, briefly,

autoimmunity develops when a specific immune response for an autoantigen is induced.

Usually a specific immune response for a foreign antigen (adaptive immune response)
excludes the antigen from the body. However, once a specific immune response for an

autoantigen is induced, it is impossible for the immune system to completely exclude

that autoantigen from the body. Therefore, the autoaggressive immune reaction is

amplified because the autoantigens continue to be produced and so further induce the

autoaggressive immune reaction. Thus autoimmune disease develops. Autoimmunity is

said to start from \mathrm{T} cell reactions and the activation of immune cells such as cytotoxic \mathrm{T}

lymphocytes and helper \mathrm{T} cells (which activate \mathrm{B} cells or macrophages and thus induce

antibodies) is caused by tissue injury. In this paper, we will investigate the potential

mechanism of relapse.

§2. Model

We briefly explain the vicious circle of autoimmuniSy. An existing cell in vivo

becomes a key effector cell by some chance event that initiates autoimmune disease.

Next this key effector cell attacks and damages a healthy cell. At this stage, the protein

of the damaged cell (antigen) is captured by an antigen presenting cell (APC) such as a

dendritic cell (DC), \mathrm{B} cell or macrophage and the protein is shown as a self‐antigen at

the lymph vessel. Then the immune cells which are specific to the protein are induced,

and these specific immune cells attack and damage more healthy cells resulting in a

vicious circle of autoimmunity (see Fig.1). Thereafter autoimmune disease develops

because our immune system cannot completely exclude the self‐antigen from the body
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and the autoaggressive immune reaction is amplified. Although this interpretation of

the vicious circle of autoimmunity is incomplete, it is not unnatural and we use it as

a basis for our mathematical model. For example, virus‐induced cross‐reactive immune

ImmUne cell

Figure 1. A vicious cycle of autoimmunity

cells can also become the key effector cells [2], [5],. [11], [12]. In this way, virus infection

have long been associated with the exacerbation of autoimmune disease (however, there

is also evidence that viruses can actually protect against autoimmune disease [4]).
To simplify the model we assume that cells damaged by key effector cells already

exist and we do not consider the dynamics of key effector cells (this is our future work).
Moreover we assume that the number of APCs remains at a constant low level and so

we \mathrm{d}\mathrm{o}\backslash not consider APC dynamics (Wodarz \mathrm{a}\mathrm{t}^{i} el. assumed that APCs such as DCs are

variables [13]). Then, combining the dynamics of immune cells and target cells (healthy
cells), we obtain a basic model of autoimmune disease dynamics:

T^{\ovalbox{\tt\small REJECT}}=g(T)-$\beta$_{1}TC,

(2.1) D'=$\beta$_{1}TC- $\alpha$ D,

C^{\ovalbox{\tt\small REJECT}}=f(D)- $\gamma$ C
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where g(T) is a function of T and f(D) is a function of D. This model has three variables,
the population size of target cells (T) , damaged cells (antigens D) and immune cells (C) .

Target cells, damaged cells,. immune cells die at rate  $\mu$ (see below),  $\alpha$,  $\gamma$ , respectively.
The parameter  $\beta$ describes the efiicacy of the damage process and includes the rates

at which immune cells find target cells and immune cells succeed in attacking target

cells. Thus  $\beta$ TC can be viewed as the force of damage by immune cells. The immune

system in vivo is more complex than our.assumption. For more detailed d.iscussion of

this simple model, see [6].

§3. Relapse of autoimmune disease

Several autoimmune diseases such as MS and Experimental Autoimmune Encephalo‐

myelitis (EAE) are characterized by relapse. EAE has been studied extensively to

elucidate the pathomechanism of MS. Using the EAE model, many groups investu‐

gated the mechanism of relapse and report factors that are related to this phenomenon.

Among them, epitope spreading is one of the most fascinating explanations. However

the mechanisms are not known. Here we will propose the potential mechanism of this

phenomenon in terms of our simple mathematical model.

§3.1. Target cell growth function

The differences resulting from the internal organs or tissues which initiate each

autoimmune disease (for example, MS, RA, SLE and so on) are represented by the

target cell growth function g(T) . We consider that the functional forms of target cell

growth in humans are given by the following reasonable function, g(T) ;

g(T)= $\lambda$- $\mu$ T+pT(1-\displaystyle \frac{T}{L}) .

Previously, g(T) has been investigated. by Perelson et al. (see \mathrm{i}9] ) in models for HIV

infection. In this function the parameter A is the rate at which new target cells are

produced within the body and pa is death rate of target cells (note that a is larger
than  $\mu$ because of the damage). The last term (a logistic part) implies that target

cells can also be created by proliferation of existing target cells. Here we represent the

proliferation by a logistic function in which  p is the maximum proliferation rate and L

is the target cell population density at which proliferation shuts off. Note that target
cell growth function, g(T) , is density dependent. This implies limitation of spatial
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capacity or nutrition in vivo. The interested reader is also referred to [8] and [9].
An alternative function including density dependence, g(T,D)= $\lambda$- $\mu$ T+pT(1-
(T+D)/L) , has been investigated by Liancheng Wang et al. (see [14]). However,

according to numerical simulations, the difference in the functional form does not change
the qualitative behavior of system (2.1) with g(T) . Therefore, to avoid mathematical

difficulty, we assume that the functional form which includes density dependence is

g(T) . In order to investigate the effect of this target growth function, we assume that

f(D)=kD . The, parameter k can be regarded as the (per damaged cell) average

magnitude of activation of immune response by APCs. In \mathrm{t}\mathrm{h}\mathrm{i}\v{S}^{\vee^{-}}hnear functional response

the number of immune cells induced by APCs is proportional to the number of damaged
cells. Thus kD can be viewed as the proliferation rate of immune cells by APCs at time

t.

We express the population dynamics of target cells by g(T)= $\lambda$- $\mu$ T+pT(1-T/L)
to obtain the model:

T^{\ovalbox{\tt\small REJECT}}=\displaystyle \mathrm{A}- $\mu$ T+pT(1-\frac{T}{L})- $\beta$ TC,
(3.1) D'= $\beta$ TC- $\alpha$ D,

C^{\ovalbox{\tt\small REJECT}}=kD- $\gamma$ C.

This model is also the same as an HIV model ([8],[9]). So we only consider the implica‐

tions for autoimmune disease.

We found numerical solutions of (3.1) with parameters  $\lambda$=0.1, p=3,  $\mu$=0.1,

 $\beta$=0.5 , or =1.1,  $\gamma$=0.1, L=100 , (i) k=0.001 , (ii) k=0.01 , (üi) k=0.1 and

(iv) k=1 (Fig.2). Note that target cells propagate themselves because p- $\mu$> O.

Fig.2 (i) shows tolerance of the immune response. Fig.2 (ii) shows slow progression of

the disease and mild symptoms, which means that target cells gradually decrease but

there is a relatively high level of target cells in the chronic phase. Fig.2 (iii) shows

relapse of autoimmune disease. Fig.2 (iv) shows rapid progression of the disease and

severe symptoms, which means that target cells suddenly decrease and there exist only
a few target cells in the chronic phase. Fig.2 (iii) is very interesting because disease

symptoms are periodic. This pattern corresponds to relapse of autoimmune disease and

can be observed for the case of multiple sclerosis and so on ([13]). Intuitively, the reason

for the occurrence of this relapse pattern can be explained as foll.\mathrm{o}\mathrm{w}\mathrm{s} : If  k\mathrm{i}\mathrm{s}\cdot relatively
small and the number of target cells is small, then the number of target cells increases

because of the logistic nature of 9. Then there is an associated increase in damaged
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Figure 2. (i)  k=0.001 : tolerance. (ii) k=0.01 : slow progression and mild symptoms.

(iii) k=0.1 : relapse. (iv) k=1 : rapid progression and severe symptoms.

cells and immune cells. The immune cells attack target cells and cause a decrease in

the number of target cells and the cycle repeats, Consequently, the effect of target cell

growth function may be a cause of the relapse symptom of autoimmune disease.

From mathematical point of view, system (3.1) is interesting since a positive equi‐

librium point can be unstable. Leenheer et al. investigated this system in [8]. It has

two equilibria:

\overline{E}_{0}=(\overline{T}_{0},0,0) , E_{+}^{\vee}=(\overline{T}_{+},\tilde{D}_{+},\overline{C}_{+})

and basic reproductive number \overline{R}_{0}= $\beta$ k\overline{T}_{0}/\mathrm{a}7 where \overline{T}_{0} is given by
c

\displaystyle \overline{T}_{0}=\frac{L}{2p}((p- $\mu$)\dotplus\sqrt{(p- $\mu$)^{2}+\frac{4p $\lambda$}{L}})
They showed that \mathrm{i}\mathrm{f}\overline{R}_{0}<1 then \overline{E}_{0} is GAS and if R_{0}>1 then \overline{E}+ is GAS under certain

conditions but \overline{E}+ can be unstable under certain conditions ([8]). In this system, if \overline{E}_{+}
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is locally asymptotically stable (LAS) then numerical simulations suggest that \overline{E}+ is

probably GAS. However, it is important to note that density dependent growth of target

cells can destabilize \overline{E}+ and a stable limit cycle exists ([8]).

§3.2. Immnune response function

Although the mechanism is not yet completely understood we can investigate the

relationship between immune cell inducement and the symptoms of autoimmune disease

by defining the immune response function f(D) . In order to investigate the effect of this

immune response function, we assume that g(T)=\mathrm{A}- $\mu$ T . Different people may have

different immune response functions (one can investigate the personal immune response

function experimentally) or the personal immune response function may depend on the

kind of immune cells or patient�s condition. However a reasonable function, f(D) , for

immune cell inducement is considered as follws; if there exist only a few antigens then

APCs do not induce immune cells, but if there exist relatively many antigens then

immune cells are gradually induced and the proliferation of immune cells is saturated

for sufficiently many antigens. Therefore, we will investigate the qualitative behavior of

the system for the following immune response function, f(D) given by,

f(D)=\displaystyle \frac{mD^{2}}{h^{2}+D^{2}}.
The parameter m can be regarded as the maximum proliferation rate of immune cells

caused by APCs. Moreover h is the number of damaged cells (because the antigen
is produced by damaged cells) at which the proliferation of immune cells is half of

the maximum m_{:} Thus mD^{2}/(h^{2}+D^{2}) can be viewed as the proliferation rate of

immune cells by APCs. This functional response, f(D) } is justified immunologically

because APCs hardly induce immune cells when only a few antigens exist. Although

the mechanism by which immune cells are induced is still not clear, a nonlinear personal

immune response function, f(D) , is biologically reasonable.

We express the population dynamics of immune cells by f(D)=mD^{2}/(h^{2}+D^{2})
to obtain the model:

T^{\ovalbox{\tt\small REJECT}}=\mathrm{A}- $\mu$ T- $\beta$ TC,

(3.2) D^{\ovalbox{\tt\small REJECT}}= $\beta$ TC-aD,

C'=\displaystyle \frac{mD^{2}}{h^{2}+D^{2}}- $\gamma$ C.
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In [6], we concluded that this system do not explain the relapse with  $\mu$\geq $\gamma$ . However,

we found that this system can explain the relapse if  $\mu$< $\gamma$ . That is, the effect of immune

response function may be a cause of the relapse symptom of autoimmune disease.

We show that some equilibrium becomes unstable by Hopf bifurcation. This system

has three equilibria:

\hat{E}_{0}=(\hat{T}_{0},0,0) , Ê+= ( T\hat{}+ , D\hat{}+ , C\hat{}+ ), \hat{E}_{-}=(\hat{T}_{-},\hat{D}_{-}, C

In particular, we can show that \^{E}_{0} is always stable. From a direct calculation, the

coordinates of \^{E}_{\pm^{s}} are given by

\displaystyle \hat{ $\tau$}_{\pm}=\frac{ $\gamma \alpha$(h^{2}+\hat{D}_{\pm}^{2})}{ $\beta$ m\hat{D}\pm}, \hat{c}_{\pm}=\frac{m\hat{D}_{\pm}^{2}}{ $\gamma$(h^{2}+\hat{D}_{\pm}^{2})}
and \hat{D}\pm are the roots of the following equation:

 $\alpha$( $\mu \gamma$+ $\beta$ m)D^{2}- $\lambda \beta$ mD+ $\mu \gamma \alpha$ h^{2}=0.

In particular, D_{\pm}\text{へ is given by

\displaystyle \hat{D}\pm^{d}=\frac{ $\lambda \beta$ m\pm\sqrt{$\lambda$^{2}$\beta$^{2}m^{2}-4 $\mu \gamma \alpha$^{2}h^{2}( $\gamma \mu$+ $\beta$ m)}}{2 $\alpha$( $\mu \gamma$+ $\beta$ m)}.
Remark that the exsistence condition of Ê\pm is

$\lambda$^{2}$\beta$^{2}m^{2}-4 $\mu \gamma \alpha$^{2}h^{2}( $\mu \gamma$+ $\beta$ m)> \mathrm{O} .

The Jacobian matrix of (3.2) at Ê\pm is

 J(\^{E}\pm)=\left\{\begin{array}{lll}
- $\mu$- $\beta$ C\pm \text{へ} & 0 & - $\beta$\hat{T}\pm\\
 $\beta$\hat{C}\pm & - $\alpha$ &  $\beta$\hat{T}\pm\\
.0 & \frac{2mh^{2}\hat{D}\pm}{(h^{2}+\hat{D}_{\pm}^{2})^{2}} & - $\gamma$
\end{array}\right\}
The characteristic equation of J(Ê\pm ) is

 s^{3}+a_{1}s^{2}+a_{2}s+a_{3}=0

where

a_{1}= $\alpha$+ $\gamma$+\mathrm{m}\mathrm{p}+ $\beta$\hat{c}_{\pm},

\displaystyle \mathrm{f}Ii2= $\alpha \gamma$+( $\mu$+ $\beta$\hat{C}_{\pm})( $\alpha$+ $\gamma$)-\frac{2 $\gamma \alpha$ h^{2}}{h^{2}+\hat{D}_{\pm}^{2}},
a_{3}=( $\mu$+ $\beta$ C_{\pm}) $\alpha \gamma$-\displaystyle \frac{2 $\gamma \mu \alpha$ h^{2}}{h^{2}+\hat{D}_{\pm}^{2}}\text{へ．



POTENTIAL MECHANISMS OF RELAPSE 185

Here s denotes the indeterminate of the polynomial. Therefore from Routh‐Hurwitz

criteria, all eigenvalues have negative real parts if and only if

a_{1}>0, a_{3}>0, a_{l}a_{2}
— \mathrm{a}3 > \mathrm{O} .

From a direct calculation, we can show that Ê‐is always unstable if it exists and a_{3}>0
for Ê+\cdot Finally, we. investigate whether \mathrm{r}x_{1}a_{2}-a_{3}>0 or \mathrm{n}0\mathrm{t} . In fact, we can show

a_{1}a_{2}-a_{3}>0 under some conditions. Fo example, we can calculate as follows:

a_{1}a_{2}-a_{3}=( $\alpha$+ $\gamma$)\displaystyle \{ $\alpha \gamma$+( $\mu$+ $\beta$\hat{C}_{+})( $\alpha$+ $\gamma$)+( $\mu$+ $\beta$\hat{C}_{+})^{2}\}-\frac{2 $\alpha \gamma$ h^{2}}{h^{2}+\hat{D}_{+}^{2}}( $\alpha$+ $\gamma$+ $\beta$\hat{C}_{+})
>( $\alpha$+ $\gamma$)\{ $\alpha \gamma$+( $\mu$+ $\beta$\hat{C}_{+})( $\alpha$+ $\gamma$)+( $\mu$+ $\beta$\hat{C}_{+})^{2}\}-2 $\alpha \gamma$( $\alpha$+ $\gamma$+ $\beta$\hat{C}_{+})
=( $\alpha$+ $\gamma$)\{ $\alpha$( $\mu$- $\gamma$)+ $\mu \gamma$+( $\mu$+ $\beta$\hat{C}_{+})^{2}\}+ $\beta$\hat{C}_{+}($\alpha$^{2}+$\gamma$^{2}) .

Therefore, if  $\mu$\geq $\gamma$ , then  a_{1}a_{2}-a_{3}> O. Similarly, if  $\mu$\geq $\alpha$ , then  a_{1}a_{2}-a_{3}> O.

Furthermore, we can calculate

a_{1}\mathfrak{a}_{2}-a_{3}>( $\alpha$+ $\gamma$)\{ $\alpha \gamma$+( $\mu$\cdot+ $\beta$\hat{C}_{+})( $\alpha$+ $\gamma$)+( $\mu$+ $\beta$\hat{C}_{+})^{2}\}-2a $\gamma$(\mathrm{a}+ $\gamma$+ $\beta$\hat{C}_{+})

=( $\alpha$+ $\gamma$)\{ $\alpha \gamma$+( $\mu$+ $\beta$\hat{C}_{+})( $\alpha$+ $\gamma$)+( $\mu$+ $\beta$\hat{C}_{+})^{2}\}
-\mathrm{a} $\gamma$\{(\mathrm{a}+ $\gamma$)+( $\alpha$+ $\gamma$-2 $\mu$)\}-2 $\alpha \gamma$( $\mu$+ $\beta$\hat{C}_{+})

=( $\alpha$+ $\gamma$)( $\mu$+ $\beta$\hat{C}_{+})^{2}+( $\mu$+ $\beta$\hat{C}_{+})($\alpha$^{2}+$\gamma$^{2})+\mathrm{a} $\gamma$(2 $\mu$- $\alpha$-7) .

Therefore, if  $\mu$\geq(\mathrm{a}+ $\gamma$)/2 , then a_{1}a_{2}-a_{3}>0 . That is, if  $\mu$\geq $\gamma$,  $\mu$\geq $\alpha$ or  $\mu$\geq( $\alpha$+ $\gamma$)/2,
then Ê+ is always stable whenever it exists.

In [6], we have considered that this system keeps its stability for any parameter

set. But \mathrm{w} find a parameter set which can destabilize our system. We show some

detailed investigations around the following parameter set; ( $\lambda$,  $\beta$,  $\mu$, \mathrm{a},  $\gamma$, m, h)=

(1, 1,0.04,  $\alpha$\in[0,4],  $\gamma$\in[0,16], 1_{\mathrm{J}}1) .

Firstly, we investigate the sensitivity of stability for parameter  $\alpha$ under a fixed  $\gamma$=

0.5 . The following figures show the sing of a_{1}a_{2}-a_{3} and \mathrm{A}^{2}$\beta$^{2}m^{2}-4 $\mu \gamma \alpha$^{2}h^{2}( $\mu \gamma$+ $\beta$ m) ,

respectively. Fig.3 (i) shows the stability condition of \hat{E}+ whenever it exists and (ii)
shows the existence condition of Ê+\cdot In this case, a critical value which can lead to Hoph
bifurcation is $\alpha$_{c}\approx 2.16 . If or exceeds this critical value, then Ê+ can be unstable and

we can observe some periodic orbit (see (iii) of Fig.4). For several  $\alpha$ , we can get snap
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\mathrm{a}_{1}\mathrm{s}_{2}-\mathrm{a},

 $\lambda$ \mathrm{B}*- $\tau \mu \gamma$ \mathrm{n}^{1}\mathrm{h}^{l}|\mathrm{v} $\rho$\cdot $\beta$*\}

Figure 3. (i) A sign of a_{1}a_{2}-a_{3} (ii) A sign o \mathrm{f}.\mathrm{A}^{2}$\beta$^{2}m^{2}-4 $\mu \gamma \alpha$^{2}h^{2}( $\mu \gamma$+ $\beta$ m)

shots in Fig.4 (T(0)=100, D(0)=1, C(0)=0) . When the death rate of damaged

cell, \mathrm{a} , is small, then \hat{E}_{+} is LAS. However Ê+ cart be destabilized. For example, if we

change a from 2.16 to 2.21375 \cdots

,
the amplitude of the periodic orbit increases as a

increases (see (\mathrm{i}\mathrm{i}\mathrm{i})-(\mathrm{v}) ). Furthermore, once its value over the value (or =2.21375\cdots ),
the periodic orbit vanishes (see (vi)). Instinctively, since the amplitude of the periodic

orbit increases as a increases and it crosses the stable manifold of \hat{E}_{0} , the periodic orbit

vanishes and \mathrm{t}\mathrm{h}\cdot \mathrm{e} orbit converges to \hat{E}_{0} . When we pay attention to the trajectories of

each component, we can find the size of immune cell approaches to zero (see Fig.5).

Remark that Fig.5 (i) and (ii) correspond to Fig.4 (v) and (vi), respectively.

Next, we investigate the sensitivity of \mathrm{s}\mathrm{t}ability for parameter 7 under a fixed  $\alpha$=

0.5 . The following figures show the sing of a_{1}a_{2}-a_{3} and \mathrm{A}^{2}$\beta$^{2}m^{2}-4 $\mu \gamma \alpha$^{2}h^{2}( $\mu \gamma$+ $\beta$ m) ,

respectively. Fig.6 (i) shows the stability condition of \hat{E}_{+} whenever it exists and (ii)

shows the existence condition of E+\text{へ .In this case, a \mathrm{c}\mathrm{r}_{\vee}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}1 value which can lead to

Hoph bifurcation is $\gamma$_{\mathrm{c}}\approx 14.1\cdot . If  $\gamma$ exceeds this critical value, then Ê+ can be unstable.

For several  $\gamma$ , we can get snap shots in Fig,7 (T(0)=100, D(0)=1, C(0)=0) . In

this parameter range, Ê+ is LAS. However the orbit converges not \hat{E}_{+} but \hat{E}_{0} in Fig.7
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Figure 4. (i)  $\alpha$=1.5 : Ê+ is LAS (ii) or =2.1 : Ê+ is LAS (iü)  $\alpha$=2.16 : Ê+ is unstable

 l(\mathrm{i}\mathrm{v}) $\alpha$=2.213:\hat{E}_{+}\mathrm{i}\mathrm{s}\cdot unstable (\mathrm{v}) $\alpha$=2.21375 : Ê+ is unstable. (vi)  $\alpha$=2.23 : Ê+ is

unstable

(iii). Similarly, since the amplitude of the orbit increases as  $\gamma$ increases and it crosses

the.stable manifold of \hat{E}_{0} , the orbit converges to \hat{E}_{0} . Therefore, even if Ê+ is unstable,
we can�t observe some periodic orbit under this initial value. However, if we choose

the another initíal value T(0)=14.1384, D(0)=0.868928, C(0)=0.0307294 which is

near E_{+}\text{へ .We can get Fig.8:

These figures imply that the orbit crosses the stable manifold of \hat{E}_{0} and converges

to \hat{E}_{0} although it seems to approach some periodic attractor once. But in fact, peri‐

odic attractor may not exist if it connects the stable manifold of \hat{E}_{0} . Or the periodic

orbit may be unstable because of sub‐critical Hopf bifurcation. Anyway (3.2) has com‐

plicated mathematical structures under some parameter sets. The detailed analysis of

mathematical structures is our future works.
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Figure 5. The trajectories of each component:(i)  $\alpha$=2.21375 (ii)  $\alpha$=2.23

Consequently, the decay rate of d.ameged cell is very important factor for the relapse

of the autoimmune disease but one of immune cell seems to be not important because

of Fig.4 and 7. In terms of therapy, an increasing of immune cell decay rate is effective
for control of the relapse by \mathrm{X}‐ray treatment. On the other hand, the increasing of

damaged cell decay rate may be a cause of the relapse.
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\mathrm{A}_{1}\mathrm{a}_{R^{-}}\mathrm{a}_{1}

$\lambda$^{\partial}\mathrm{n}^{2}-4 $\mu$)

Figure 6. (i) A sign of a_{1}a_{2}-\mathrm{a}_{3} (ii) A sign of $\lambda$^{2}$\beta$^{2}m^{2}-4 $\mu \gamma$ a^{2}h^{2}( $\mu \gamma$+ $\beta$ m)

§4. Discussion

In this paper we have investigated the role of some functional form for the per‐

sonal immune response function, f(D) , and target.cell growth function, g(T) , in the

mechanism of autoimmune disease. The form of these functions dramatically changes

the symptoms of autoimmune disease and the mathematical structure of the dynamics.

This implies that it is important for us to interpret the phenomena associated with

these functions in order to understand the mechanism of autoimmune disease. It has

been shown that a nonlinear target cell growth function, g(T)= $\lambda$- $\mu$ T+pT(1-T/L) ,

can induce reIapse of autoimmune disease. When the number of target cells is small,

target cells can increase by the multiplication of the logistic term of g(T) . We think the

difference of target cell growth functions corresponds to the differences between internal

organs which initiate autoimmune disease. And also the immune response function,

f(D)=mD^{2}/(h^{2}+D^{2}) , can induce relapse of autoimmune disease. The nonlinear

function, f(D) , means that when few antigens exist, APCs do not present the antigens
and immune cells are hardly induced. Thus the personal immune response functions are

closely related to the symptoms of autoimmune disease. This suggests that symptoms of

autoimmune disease are different among different people since each person may have a

different personal immune response function. Therefore, in the therapy of autoimmune

disease we may have to investigate the target cell growth function of each internal organ

and the personal immune response function for each patient.
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Figure 7. (i) 7=13.3:\hat{E}_{+} is LAS (ii)  $\gamma$=13.4:\hat{E}+\mathrm{i}\mathrm{s} LAS (iii)  $\gamma$=13.5 : Ê+ LAS
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