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Mathematical study on sharing metabolism

By

Shinji NAKAOKA * and Yasuhiro TAKEUCHI **

Abstract

We study a mathematical model describing the population dynamics of microbial species

competing for a family of organic compounds. Our study is based on some experimental
study for microbial consortium which consists of two species sharing the metabolism of organic
compounds. Our study suggests that sharing metabolism can facilitate the coexistence of two

species provided that the sharing is mutualistic in a sense that one species cannot be activated

without the other.

§1. Introduction

Resource competition is common in nature ([4], [9], [17]). Different species living in

the same field are often in face of competition for available resources. The difference of

resource availability among competitively interacting species often has a great impact
on the population growth and determines the fate of species. The competitive exclusion

principle (hereafter we use the abbreviation �CEP�) predicts that the number of species

competing for the several available resources cannot exceed the number of available

resources in steady state. Several basic mathematical models describing the resource

competition for the limiting resources have been proposed and the consequences agree

with the CEP ([2], [11]). Of course, this prediction does not explain correctly what

is observed in nature. This paradox has fascinated to propose driving factors which

facilitate the coexistence of species being in face of resource competition as opposed to

the CEP. It is important not only to propose biologically feasible mechanisms underlying
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species coexistence, but also to extend a framework of the mathematical theory on

resource competition.
It is often the case with microbial species that the difference of metabolism re‐

sults in the difference of resource availability. Microbiological metabolism is one of the

most important studies in microbiology. There are well known evidences that some

microorganism, for example, Methylocystis sp. M is capable of degrading trichloroethy‐
lene (TCE), which is commonly used as an industrial solvent for a variety of organic
materials. It has been revealed that the exposure to TCE is supposed to bring harmful

effects on human health so that the elimination of TCE accumulated in soil or ground‐
water is an important environmental issue on health and environmental sciences. The

elimination of TCE can be mediated by the activities of microorganisms which are

capable of degrading TCE. It is well known that the microbiological degradation of

TCE is primarily achieved by cometabolism. Cometabolism is defined as a biological
transformation of an organic compound which is incapable of using as a resource for

microorganisms, but it can lead to produce another organic compound or by‐product
which can be a food source for microorganisms. Recently, theoretical and mathematical

studies on microbiological metabolism seem to be getting major (see for example, [6],
[12]).

The degradation of organic compounds is not necessarily carried out by one species.
It can happen that more than two species are involved to metabolize some organic com‐

pound. These microorganisms form a microbial consortium in which different species

complementarily share the part of metabolic pathway in order to maintain their com‐

munity. The understandings for the metabolism of some organic compound within a

microbial consortium are necessary to develop bioremediation technology. Bioremedia‐

tion technology enables us to degrade organic compounds in soil or groundwater which

would be harmful to human health.

Let us briefly review some experimental study on microbial degradation of some or‐

ganic compound in an experimental environment called microcosm. Fenitrothion (here‐
after we call it substance 0 ) is a phosphorganic pesticide which is contained not only in

agricultural pesticides but also in domestic insecticides. In the experimental study, \mathrm{a}

fenitrothion degrading bacterium Spingomonas species TFEE0205 (species 1) was iso‐

lated which possesses an ability to metabolize fenitrothion to an intermediate substance

3‐methyl‐4‐nitrophenol (substance 1) via extracellular enzyme synthesized by TFEE

0205. A bacterium Burkholderia species 3\mathrm{M}4\mathrm{N}01 (species 2) was also isolated which

possesses an ability to metabolize 3‐methyl‐4‐nitrophenol (substance 1) to the next in‐

termediate substance methylhydroquinone (substance 2). It was confirmed that species
1 is incapable of metabolizing substance 1 to substance 2, while species 2 is incapable
of metabolizing substance 0 (fenitrothion) to substance 1. Thus it was suggested that
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these two species form a consortium and get an ability to degrade fenitrothion via mu‐

tualistic manner. This experimental study is im preparation to submit. Another similar

studies can be refereed in [1], [3], [13], [14].
In this paper, we consider the following system of differential equations

(1.1) \left\{\begin{array}{l}
S_{0}'= $\lambda$-d_{0}S_{0}- $\beta$ S_{0}x_{1},\\
S_{1}'=-d_{1}S_{1}+ $\beta$ S_{0}x_{1}-f_{12}(S_{1})\frac{x_{2}}{$\eta$_{2}},\\
S_{2}'=-d_{2}S_{2}+ $\gamma$ f_{12}(S_{1})\frac{x_{2}}{$\eta$_{2}}-f_{21}(S_{2})\frac{x_{1}}{$\eta$_{1}}-f_{22}(S_{2})\frac{x_{2}}{$\eta$_{2}},\\
x_{1}'=x_{1}(f_{21}(S_{2})-$\mu$_{1}) ,\\
x_{2}'=x_{2}((1- $\gamma$)f_{12}(S_{1})+f_{22}(S_{2})-$\mu$_{2})
\end{array}\right.
with non‐negative initial condition

(I) (S_{0}(0), S_{1}(0), S_{2}(0), x_{1}(0), x_{2}(0))\in \mathbb{R}_{+}^{5}.

Here S_{0}, S_{1} and S_{2} denote the concentrations of substance 0 (fenitrothion), substance

1 (3‐methyl‐4‐nitrophenol) and substance 2 (methylhydroquinone), respectively. Let x_{1}

and x_{2} denote the concentrations of species 1 (TFEE0205) and species 2 (3\mathrm{M}4\mathrm{N}01) ,

respectively.  $\lambda$ is a constant input rate of substance  0 to the microcosm. The respective

decay rates of substance 0 ,
1 and 2 are given by d_{0}, d_{1} and d_{2} . Parameters $\mu$_{1} and $\mu$_{2}

represent the inactivation (including death and quiescence etc.) rates of species 1 and

2, respectively.  $\beta$ measures the degree of fenitrothion metabolism by the extracellular

digestion of species 1. Large  $\beta$ represents the strong effect of extracellular metabolism,
while small  $\beta$ represents the weak effect of extracellular metabolism.  $\gamma$ represents the

fraction of transformation which takes a value between  0 and 1. In this context, the term

�transformation� indicates that 3‐methyl‐4‐nitrophenol is metabolized by species 2 but

it is not dissimilated by species 2. Hence the term  $\gamma$ f_{12}(S_{1})\displaystyle \frac{x_{2}}{$\eta$_{2}} represents the amount of

remained 3‐methyl‐4‐nitrophenol substance in the microcosm. Since species 1 can feed

substance 2, the term f_{21}(S) represents a functional response of species 1 to substance

2. Typically, it is assumed to take the form of Monod‐type (or Michaelis‐Menten type
which is equivalent to Monod‐type in the equation):

(1.2) f_{ij}(S_{i}) :=\displaystyle \frac{m_{ij}S_{i}}{a_{ij}+S_{i}},
where m_{ij} denotes the maximum growth rate of species j by feeding substance i. a_{ij}

is called a half‐saturation constant. In this paper, we assume that f_{ij}(S) is monotone

increasing and bounded function of S_{i} . Moreover f_{ij}(0)=0 . We will fix the form of

functional responses f_{12}, f_{21} and f_{22} to Monod‐type whenever implementing numerical

simulation and continuation. $\eta$_{1} and $\eta$_{2} represent the constant conversion rate of nutrient
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to microorganism species 1 and 2, respectively. $\eta$_{1} and $\eta$_{2} are refered as yield constant

(see [11]). Here we assumed that the respective conversion rates for substance 1 and 2

are same. We can show that the uniqueness and nonnegativeness of solutions are fulfilled

(see for example, [16]). Moreover, system (1.1) with nonnegative initial condition (I) is

dissipative (for the definition of dissipativeness, see [5]). To prove the dissipativeness, we

can apply the similar method developed in [11, Chapter 2] so that the proof is omitted.

Note that two species are exploitatively competing for the common resource S_{2}.
The classical theory of the chemostat predicts that two species exploitatively competing
for one common resource result in the competitive exclusion [11, Chapter 1, 2]. In other

words, only one species which is superior to the exploitation of the common resource

can survive. The mathematical definition of the competitive exclusion is nonexistence

of stable interior equilibrium point of the system. If  $\gamma$=1 ,
then the fourth and fifth

equations of system (1.1) are reduced to

(1.3) \left\{\begin{array}{l}
x_{1}'=x_{1}(f_{21}(S_{2})-$\mu$_{1}) ,\\
x_{2}'=x_{2}(f_{22}(S_{2})-$\mu$_{2}) .
\end{array}\right.
It immediately follows from (1.3) that there is generically no interior equilibrium of

system (1.1). More precisely, the interior equilibrium of system (1.3) exists only if

(1.4) S_{2}^{*}=f_{21}^{-1}($\mu$_{1})=f_{22}^{-1}($\mu$_{2}) .

Condition (1.4) holds only for a special case. Hence generically, we do not expect to have

an interior equilibrium of system (1.1) if  $\gamma$=1 . This implies that two species cannot

coexist in steady state, which reflects the competitive exclusion principle. However,
now we consider the metabolism of pre‐metabolized substances, substance 0 and 1.

Hence the introduction of stage‐structure in nutrient along the metabolic pathway of

microorganisms can mediate the coexistence of two species against the competitive
exclusion principle.

The purpose of this paper is to elucidate how sharing metabolism affects on the

population dynamics of two species. We investigate conditions under which two species
can stably coexist by steady‐state analysis, numerical simulations and numerical con‐

tinuation analysis. In the next section, we derive a limiting system of system (1.1). In

Section 3, we derive conditions for the existence of interior equilibrium points of the

limiting system of (1.1). In Section 4, we implement numerical simulations to examine

whether two species can coexist by changing the value of  $\gamma$ . In Section 5, we implement
numerical continuation methods by using CONTENT ([7], [8]) in order to investigate
how equilibrium curves depend on the parameters  $\beta$ and  $\gamma$ . In the final section, we

discuss our results in the biological context.
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§2. Preliminaries

To obtain some analytical results, we apply a theory on asymptotically autonomous

systems to our system. It allows us to study qualitative properties of the dynamical

system on a restricted lower dimensional limiting system (2.3) instead of analyzing the

original system (1.1). We introduce new variables, parameters and functions by

\displaystyle \overline{t}=d_{0}t, \overline{S}_{i}=\frac{d_{0}}{ $\lambda$}S_{i}(i=0,1,2) , \overline{x}_{j}=\frac{d_{0}}{ $\lambda \eta$_{j}}x_{j}, \overline{d}_{j}=\frac{d_{j}}{d_{0}}, q_{j}=\frac{$\mu$_{j}}{d_{0}} (j=1,2) ,

(2.1)

\displaystyle \overline{ $\beta$}=\frac{$\eta$_{1} $\lambda$}{d_{0}^{2}} $\beta$, \overline{f_{ij}}(\overline{S}_{i})=\frac{1}{d_{0}}f_{ij}(\frac{ $\lambda$}{d_{0}}\overline{S}_{i}) (i, j=1,2)
Then we obtain that

(2.2) \left\{\begin{array}{l}
S_{0}'=1-S_{0}- $\beta$ S_{0}x_{1},\\
S_{1}'=-d_{1}S_{1}+ $\beta$ S_{0}x_{1}-f_{12}(S_{1})x_{2},\\
S_{2}'=-d_{2}S_{2}+ $\gamma$ f_{12}(S_{1})x_{2}-f_{21}(S_{2})x_{1}-f_{22}(S_{2})x_{2},\\
x_{1}'=x_{1}(f_{21}(S_{2})-$\mu$_{1}) ,\\
x_{2}'=x_{2}((1- $\gamma$)f_{12}(S_{1})+f_{22}(S_{2})-$\mu$_{2}) ,
\end{array}\right.
where we abused to write for all variables, parameters and functions on which

we should have written. If d_{1}=d_{2}=$\mu$_{1}=$\mu$_{2}=1 ,
then the new variable  $\Sigma$ :=

1-S_{0}-S_{1}-S_{2}-x_{1}-x_{2} satisfies the scalar linear differential equation $\Sigma$'=- $\Sigma$(t) .

In (2.2), letting S_{0}=1-S_{1}-S_{2}-x_{1}-x_{2} yields the following equations

(2.3) \left\{\begin{array}{l}
S_{1}'=-S_{1}+ $\beta$(1-S_{1}-S_{2}-x_{1}-x_{2})x_{1}-f_{12}(S_{1})x_{2},\\
S_{2}'=-S_{2}+ $\gamma$ f_{12}(S_{1})x_{2}-f_{21}(S_{2})x_{1}-f_{22}(S_{2})x_{2},\\
x_{1}'=x_{1}(f_{21}(S_{2})-1) ,\\
x_{2}'=x_{2}((1- $\gamma$)f_{12}(S_{1})+f_{22}(S_{2})-1) .
\end{array}\right.
For the biological relevance, we should restrict ourselves to take an initial point within

the following region  $\Omega$ :

 $\Omega$=\{(S_{1}, S_{2}, x_{1}, x_{2}) : S_{1}\geq 0, S_{2}\geq 0, x_{1}\geq 0, x_{2}\geq 0, 0\leq S_{1}+S_{2}+x_{1}+x_{2}\leq 1\}.

From

\displaystyle \lim_{t\rightarrow\infty}(S_{0}(t)+S_{1}(t)+S_{2}(t)+x_{1}(t)+x_{2}(t))=1,
one can conclude that omega limit set of the system (2.2) must lie in  $\Omega$

,
and trajectories

on the omega limit set must satisfy (2.3). We can show that  $\Omega$ is positively invariant.

By virtue of a theory on asymptotic autonomous systems developed by Murkus [10] and

Thieme [15] (also see the appendix \mathrm{F} in [11]), we simply choose initial conditions in the
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restricted region  $\Omega$ and are allowed to eliminate one variable  S_{0} from the system (1.1).
Of course, it is necessary to show that several assumptions must be fulfilled. Although it

is still remained to check assumptions analytically, as long as we implement numerical

simulations, all conditions are fulfilled. Throughout the remainder of this paper, we

study a continuous dynamical system defined by the solution of system (2.3) starting
with the initial point in  $\Omega$.

§3. Interior equilibrium points

We start to solve equilibrium points of (2.3). We consider

(3.1) \left\{\begin{array}{l}
-S_{1}+ $\beta$(1-S_{1}-S_{2}-x_{1}-x_{2})x_{1}-f_{12}(S_{1})x_{2}=0,\\
-S_{2}+ $\gamma$ f_{12}(S_{1})x_{2}-f_{21}(S_{2})x_{1}-f_{22}(S_{2})x_{2}=0,\\
x_{1}(f_{21}(S_{2})-1)=0,\\
x_{2}((1- $\gamma$)f_{12}(S_{1})+f_{22}(S_{2})-1)=0.
\end{array}\right.
Note that x_{1}=0 if and only if x_{2}=0 . Moreover S_{1}=S_{2}=0 if and only if x_{1}=

x_{2}=0 . Let E_{0}:= (0,0,0,0) denote the trivial equilibrium point of system (2.3).
The characteristic equation defined for the Jacobi matrix associated with the linearized

equations for system (2.3) around E_{0} is given by (z+1)^{4}=0 . Hence the trivial

equilibrium is always locally asymptotically stable.

Let us investigate conditions under which positive equilibrium points of system

(2.3) exist. For biological relevances, we impose that x_{1}>0 and x_{2}>0 . It follows

from the third equation of (3.1) that f_{21}(S_{2})-1=0 . Since f_{21} is monotonically

increasing (and bounded if necessary), there exists a positive value S_{2}^{*} which is a solution

of f_{21}(S_{2})-1=0 if \displaystyle \lim_{S\rightarrow\infty}f_{21}(S)>1 . Similarly, there exists a positive value

S_{1}^{*} which is a solution of (1- $\gamma$)f_{12}(S_{1})+f_{22}(S_{2}^{*})-1=0 if 1-f_{22}(S_{2}^{*})>0 and

\displaystyle \lim_{S\rightarrow\infty}f_{12}(S)>(1-f_{22}(S_{2}^{*}))/(1- $\gamma$) . The first equation of (3.1) can be rewritten as

(3.2) f_{12}(S_{1}^{*})x_{2}= $\beta$(1-S_{1}^{*}-S_{2}^{*}-x_{1}-x_{2})x_{1}-S_{1}^{*}.

 $\beta$(1-S_{1}^{*}-S_{2}^{*}-x_{1}-x_{2})-S_{1}^{*} should be positive because now we impose that x_{2}>0.

It follows from the third and fourth equations of (3.1) that

(3.3)  $\gamma$ f_{12}(S_{1}^{*})-f_{22}(S_{2}^{*})=f_{12}(S_{1}^{*})-1.

It follows from the second equation of (3.1) and (3.3) that

(3.4) x_{1}=(f_{12}(S_{1}^{*})-1)x_{2}-S_{2}^{*},

where we used f_{21}(S_{2}^{*})=1. f_{12}(S_{1}^{*})-1 should be positive because now we impose that

x_{1}>0 . By (3.3), the lowest value of  $\gamma$ to ensure the existence of interior equilibrium
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points must satisfy

(3.5)  $\gamma$>\displaystyle \frac{f_{22}(S_{2}^{*})}{f_{12}(S_{1}^{*})}.
(3.4) is equivalent to

(3.6) S_{2}^{*}+x_{1}+x_{2}=f_{12}(S_{1}^{*})x_{2}.

Adding all equations in (3.1) gives

(3.7) S_{1}^{*}+S_{2}^{*}+x_{1}+x_{2}= $\beta$(1-S_{1}^{*}-S_{2}^{*}-x_{1}-x_{2})x_{1}.

Substituting (3.4) and (3.6) into (3.7) gives the following equation with respect to x_{2} :

(3.8)  $\beta$(1-S_{1}^{*}-f_{12}(S_{1}^{*})x_{2})=\displaystyle \frac{S_{1}^{*}+f_{12}(S_{1}^{*})x_{2}}{(f_{12}(S_{1}^{*})-1)x_{2}-S_{2}^{*}}.
(3.8) is equivalent to the following quadratic equation:

(3.9) c_{0}x_{2}^{2}+c_{1}x_{2}+c_{2}=0,

where

c_{0}= $\beta$ f_{12}(S_{1}^{*})(f_{12}(S_{1}^{*})-1)=:$\alpha$_{00} $\beta$,

c_{1}=f_{12}(S_{1}^{*})- $\beta$\{S_{2}^{*}f_{12}(S_{1}^{*})+(1-S_{1}^{*})(f_{12}(S_{1}^{*})-1)\}=:-$\alpha$_{11} $\beta$+$\alpha$_{10},

c_{2}= $\beta$ S_{2}^{*}(1-S_{1}^{*})+S_{1}^{*}=:$\alpha$_{21} $\beta$+$\alpha$_{20}.

c_{0} and c_{2} are always positive. Thus there are two positive real roots of (3.9) if and only
if c_{1}<0 and c_{1}^{2}-4c_{0}c_{2}>0. c_{1}<0 if and only if  $\beta$>\displaystyle \frac{$\alpha$_{10}}{$\alpha$_{11}}.

c_{1}^{2}-4c_{0}c_{2}=($\alpha$_{11}^{2}-4$\alpha$_{00}$\alpha$_{21})$\beta$^{2}-2($\alpha$_{10}$\alpha$_{11}+2$\alpha$_{00}$\alpha$_{20}) $\beta$+$\alpha$_{10}^{2}.

The coefficient of $\beta$^{2} above is calculated as

$\alpha$_{11}^{2}-4$\alpha$_{00}$\alpha$_{21}=\{S_{2}^{*}f_{12}(S_{1}^{*})-(1-S_{1}^{*})(f_{12}(S_{1}^{*})-1)\}^{2}\geq 0.

Except for the special case that $\alpha$_{11}^{2}=4$\alpha$_{00}$\alpha$_{21}, c_{1}^{2}-4c_{0}c_{2}>0 for sufficiently large  $\beta$.
If $\alpha$_{11}^{2}=4$\alpha$_{00}$\alpha$_{21} ,

then the condition c_{1}<0 yields that

c_{1}^{2}-4c_{0}c_{2}<-$\alpha$_{10}^{2}-$\alpha$_{00}$\alpha$_{20} $\beta$<0.

Hence there are no positive real roots of (3.9). In biological point of view, this result

indicates that sufficiently large degradation of fenitrothion by extracellular enzyme is

necessary for mediating the coexistence of two species.
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§4. Numerical simulations

In the previous section, we showed that there exist two interior equilibrium points if

 $\beta$ is sufficiently large. In this section, we implement numerical simulations to investigate
the stability of two interior equilibrium points. Recall that there is always a locally stable

equilibrium point  E_{0}= (0,0,0,0) which would be appropriately called degradation‐fr ee

equilibrium. On the other hand, if there exists a stable interior equilibrium, it will be

appropriate to call degradation equilibrium. In this and the following sections, we fix

parameters m_{ij} and a_{ij} as

(4.1) m_{12}=5, m_{21}=3, m_{22}=8, a_{12}=0.2, a_{21}=0.05, a_{22}=0.5.

Thus, two parameters  $\beta$ and  $\gamma$ are varied. In this section, we also fix the value of  $\beta$ as

 $\beta$=10 and show four figures in each of which a set of solutions starting at different

initial points is shown on x_{1}x_{2} ‐plane. We always fix initial values for S_{1} and S_{2} as

S_{1}(0)=S_{2}(0)=0.05 . Since we restrict to take initial conditions in the region  $\Omega$
,
initial

points for  x_{1} and x_{2} should be taken in the triangle region formed by x_{1} ‐axis, x_{2} ‐axis

and the line x_{1}+x_{2}=0.9 . Three different values of  $\gamma$ are choosen to investigate the

asymptotic behavior of the solutions of system (2.3). Figure 1 illustrates a set of orbits

for  $\gamma$=0.55 . For this parameter setting, we confirmed that there are no roots of the

quadratic equation (3.9). Hence there are not interior equilibrium points. All orbits

tend to the degradation‐free equilibrium. Next, we increased the value of  $\gamma$ from 0.55

to 0.60. In this case, we can observe that only three orbits tend to the degradation‐
free equilibrium, while the other orbits tend to the degradation equilibrium (blue, filled

circle) (see Figure 2). The region is divided into two parts; Solutions starting from

one subregion tend to the degradation‐free equilibrium, while solutions starting from

another subregion tend to the degradation equilibrium. On Figure 2, a stable manifold

of the saddle‐type interior equilibrium point (red filled circle) divides the region. As

changing the value of  $\gamma$ ,
the occurrence of saddle‐node bifurcation is expected. This

expectation is examined in the next section by numerical continuation methods. We

further changed  $\gamma$ from 0.60 to 0.80. On Figure 3, no qualitative change from Figure 2

is observed. Finally, we changed  $\gamma$ from 0.80 to 0.82. In this case, we again observed

the same situation as Figure 1. All solutions tend to the degradation‐free equilibrium.
We also confirmed that there are no positive roots of the quadratic equation (3.9)
again. Consequently, these figures suggest that there are two threshold values of  $\gamma$

by which dynamical consequences are classified into two cases: (i) convergence to the

degradation‐free equilibrium, or (ii) bistability between the degradation‐free and the

degradation equilibrium points.
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Figure 1.  $\gamma$=0.55 : Degradation‐free

Figure 2.  $\gamma$=0.60 : Degradation

Figure 3.  $\gamma$=0.8 : Degradation

Figure 4.  $\gamma$=0.82 : Degradation‐free
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§5. Numerical continuation analysis

In this section, we implement numerical continuation methods by using CONTENT

in order to examine how equilibrium curves depend on the parameters  $\beta$.  $\gamma$ is fixed at

0.8. We shall consider two situations according to the value of  $\beta$ . As we stated above,

 $\beta$ measures the degree of fenitrothion metabolism by the extracellular metabolism of

species 1.

§5.1. Weak extracellular metabolism:  $\beta$=6.2

We study the case where  $\beta$=6.2 . Figures 5 and 6 illustrate equilibrium curves

of x_{1} and x_{2} with respect to the parameter  $\gamma$ , respectively. In each Figure, we ob‐

serve two LP points. Here, LP is an abbreviation of Limit Point. Thus the occurrence

of the limit point, or saddle‐node bifurcation, is confirmed by numerical continuation

methods. Numerical computations suggest that the upper curve consists of stable‐node

equilibrium points (degradation equilibrium), while the lower curve consists of saddle

equilibrium points. Note that saddle‐node bifurcation occurs twice as  $\gamma$ changes from

 0 to 1. At the left side of limit points in Figures 5 and 6, the critical value of  $\gamma$ is

approximately given by  $\gamma$_{1}^{*}:=0.6792 . The equilibrium point is approximately given by

(0.126, 0.025, 0.117, 0.153). At the right side of limit point, the critical value of  $\gamma$ is ap‐

proximately given by  $\gamma$_{2}^{*}:=0.7368 . The equilibrium point is (0.178, 0.025, 0.143, 0.1245).
We can see that the equilibrium curves form a closed curve. Let us measure the mag‐

nitude of extracellular metabolism by  $\delta$:=$\gamma$_{2}^{*}-$\gamma$_{1}^{*} . In this case,  $\delta$=0.0576.

0 0
xl x2

0 0

0 0

0 0

0 0

0 0

0 0

0 0

01 LPOLP 0 \mathrm{L}\mathrm{P}\Im_{\mathrm{L}\mathrm{P}}
gara gara

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.  $\beta$=6.2: $\gamma$ x_{1} ‐plane Figure 6.  $\beta$=6.2: $\gamma$ x_{2} ‐plane

§5.2. Strong extracellular metabolism:  $\beta$=40

We study the case where  $\beta$=40 . Figures 7 and 8 illustrate equilibrium curves of x_{1}

and x_{2} with respect to the parameter  $\gamma$ , respectively. In this case, we also confirmed



Mathematical study on sharing metabolism 203

the occurrence of the saddle‐node bifurcation twice. At the left side of limit point in

Figures 7 and 8, the critical value of  $\gamma$ is approximately given by  $\gamma$_{1}^{*}:=0.4507 . The

equilibrium point is approximately given by (0.058, 0.025, 0.028, 0.418). At the right
side of limit point, the critical value of  $\gamma$ is approximately given by  $\gamma$_{2}^{*}:=0.8370 . The

equilibrium point is (0.632, 0.025, 0.111, 0.0486). We can also see that equilibrium curves

form a closed curve. In this case,  $\delta$=0.3863 . Compared Figures 5 and 6 with Figures
7 and 8, we can find that the range of region on which two interior equilibrium points
exist becomes wider as  $\beta$ is increased from 6.2 to 40. This finding suggests that strong
extracellular metabolism can facilitate the coexistence of two species.

Figure 7.  $\beta$=40: $\gamma$ x_{1} ‐plane Figure 8.  $\beta$=40: $\gamma$ x_{2} ‐plane

§6. Discussion

We studied a model for the population dynamics of two microbial species which

are competing for the same family of organic compounds. This study was motivated

by some experimental study on the microbiological degradation of an agricultural pesti‐

cide, fenitrothion. Two microorganisms were isolated and identified. They are capable
of degrading fenitrothion in a mutualistic manner. Interestingly, these two microor‐

ganisms are incapable of degrading fenitrothion without the other. They are destined

to alive together by owing to each other. Mathematical studies on the population dy‐
namics describing phenomenon observed in the experiment revealed that there are two

possible outcomes; (i) fenitrothion is not degraded and remains in the environment, or

(ii) fenitrothion can be successfully degraded by two species. Notably, the degradation

depends on initial conditions. There are two threshold values of  $\gamma$ by which the degra‐
dation is determined to be successful or to be failed. Another important finding is that

the degree of extracellular metabolism by species 1 (represented by the parameter  $\beta$ ) is
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crucial to mediate and facilitate the degradation. Interestingly, in our study the com‐

petitive exclusion principle is not observed in generic situation. In this paper, we just

implemented numerical simulations and continuations. Further mathematical analysis
will be necessary to understand the structure which may be expected to become a basis

to explain how so many microbial species can coexist even though they are in resource

competition. Also, analytical and numerical investigations for the original system (1.1)
are expected to study. These are left to our future work.
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