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Abstract

We show that there exists a surjection from the set of effective divisors of degree g on

a tropical curve of genus g to its Jacobian by using a tropical version of the Riemann‐Roch

theorem. We then show that the restriction of the surjection is reduced to the bijection on an

appropriate subset of the set of effective divisors of degree g on the curve. Thus the subset

of effective divisors has the additive group structure induced from the Jacobian. We finally
realize the addition in Jacobian of a tropical hyperelliptic curve of genus g via the intersection

with a tropical curve of degree 3g/2 or 3(g-1)/2.

§1. Introduction

Let P_{0} be a point on a tropical elliptic curve. Suppose P_{1} to be the point such

that P_{1}=P_{0}+T ,
where T is also a point on the tropical elliptic curve and +

� is

the addition on the curve [12, 9]. By applying the addition +T repeatedly, we obtain

the sequence of points \{P_{0}, P_{1}, P_{2}, . . .\} =\{P_{0}, P_{0}+T, P_{0}+2T, . . .\} on the tropical

elliptic curve. The sequence of points thus obtained can be regarded as a dynamical

system on the curve and is often referred as the ultradiscrete QRT system [9]. Since

each member of the ultradiscrete QRT system has the tropical elliptic curve as its

invariant curve and its general solution can be given by using the ultradiscrete theta

function [11, 8, 9], it is considered to be a two‐dimensional integrable dynamical system.
It should be noted that the evolution of the ultradiscrete QRT system is given by a

piecewise linear map. On the other hand, if we suppose P_{1} to be the point such that

P_{1}=P_{0}+P_{0}=2P_{0} and apply the duplication repeatedly then we obtain the sequence

of points \{P_{0}, P_{1}, P_{2}, . . .\}=\{P_{0}, 2P_{0}, 4P_{0}, . . .\} on the tropical elliptic curve as well. The

sequence of points thus obtained can also be regarded as a dynamical system on the

curve and is often referred as the solvable chaotic system [7, 6]. The solvable chaotic

system also has the tropical elliptic curve as its invariant curve and its general solution

can also be given by using the ultradiscrete theta function; nevertheless it can not be

considered to be an integrable system because the inverse evolution is not uniquely
determined. Thus the additive group structure of the tropical elliptic curve leads to two

kinds of dynamical systems, one is integrable and the other is not.

In analogy to the theory of plane curves over \mathbb{C} , there exists a family of tropical

plane curves parametrized with an invariant called the genus of the curve. A paradig‐
matic example of such a family of tropical plane curves consists of the tropical hyperel‐

liptic curves. Tropical elliptic curves are of course the members of the family labeled by
the lowest genus. Therefore, it is natural to consider that the additive group structure

of the Jacobian of a tropical hyperelliptic curve also leads to several kinds of dynamical

systems containing both an integrable one and a solvable chaotic one. In this paper,
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in order to investigate a dynamical system arising from the additive group structure

of the tropical hyperelliptic curve, we first review several important notions in tropical

geometry to describe the Riemann‐Roch theorem for tropical curves. We also introduce

\mathrm{a}(g+2) ‐parameter family of tropical hyperelliptic curves of genus g known as the set

of the isospectral curves of (g+1) ‐periodic ultradiscrete Toda lattice. We then show

the existence of a surjection between a tropical hyperelliptic curve and its Jacobian by

using the tropical version of the Riemann‐Roch theorem. This surjection induces the

group structure of an appropriate set of effective divisor of degree g on the hyperelliptic
curve from that of the Jacobian. We further show that we can realize the addition in

the Jacobian of the tropical hyperelliptic curve of genus g as the addition of the g‐tuples
of points on the curve in terms of the intersection with a curve of genus 0.

§2. Riemann‐Roch theorem for tropical curves

We briefly review the notions of tropical curves as well as rational functions and

divisors on them. By using these tools we mention the Riemann‐Roch theorem for trop‐

ical curves, which was independently found by GathemannKerber [3] and Mikhalkin‐

Zharkov [8] in 2006.

Definition 2.1 (Tropical curve). A metric graph is a pair ( $\Gamma$, l) consisting of

a graph  $\Gamma$ together with a length function  l : E( $\Gamma$)\rightarrow \mathbb{R}_{>0} ,
where E( $\Gamma$) is the edge set of

the graph  $\Gamma$ . The first Betti number of  $\Gamma$ is called the genus of  $\Gamma$ . A tropical curve is

a metric graph ( $\Gamma$, l) with a length function l : E( $\Gamma$)\rightarrow \mathbb{R}_{>0}\cup\{\infty\},i.e. ,
a metric graph

with possibly unbounded edges.

Definition 2.2 (Divisor). A divisor D on a tropical curve  $\Gamma$ is a formal \mathbb{Z}‐linear

combination of finite points on  $\Gamma$

 D=\displaystyle \sum_{P\in $\Gamma$}a_{P}P,
where ap\in \mathbb{Z} and a_{P}=0 for all but finitely many P\in $\Gamma$.

The addition of two divisors D=\displaystyle \sum_{P\in $\Gamma$}a_{P}P and D'=\displaystyle \sum_{P\in $\Gamma$}a_{P}'P on a tropical
curve  $\Gamma$ are defined to be  D+D'=\displaystyle \sum_{P\in $\Gamma$}(a_{P}+a_{P}')P . All divisors on  $\Gamma$ then naturally

compose an abelian group. We call it the divisor group of  $\Gamma$ and denote it by \mathrm{D}\mathrm{i}\mathrm{v}( $\Gamma$) .

The degree \deg D of a divisor D=\displaystyle \sum_{P\in $\Gamma$}a_{P}P is defined to be the integer \displaystyle \sum_{P\in $\Gamma$}a_{P}.
The support supp D of D is defined to be the set of all points of  $\Gamma$ occurring with a non‐

zero coefficient. If all the coefficients ap of a divisor  D=\displaystyle \sum_{P\in $\Gamma$}a_{P}P are non‐negative
then the divisor is called effective and is written D>0 . We define the canonical
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divisor K_{ $\Gamma$} of  $\Gamma$ to be

 K_{ $\Gamma$}:=\displaystyle \sum_{P\in $\Gamma$} (val(P)-2) P,

where \mathrm{v}\mathrm{a}1(P) is the valence of the point P\in $\Gamma$[13] . If P is an inner point on an edge
of  $\Gamma$ then \mathrm{v}\mathrm{a}1(P)=2 ,

therefor such points never appear in K_{ $\Gamma$} . The canonical divisor

K_{ $\Gamma$} of a tropical curve  $\Gamma$ of genus  g is an effective divisor of degree 2g-2[8].

Definition 2.3 (Rational function). A rational function on a tropical curve

 $\Gamma$ is a continuous function  f :  $\Gamma$\rightarrow \mathbb{R}\cup\{\pm\infty\} such that the restriction of f to any edge
of  $\Gamma$ is a piecewise linear integral function. The values \pm\infty can only be taken at the

unbounded edges of  $\Gamma$.

The order \mathrm{o}\mathrm{r}\mathrm{d}_{P}f of a rational function f at  P\in $\Gamma$ is defined to be the sum of the

outgoing slopes of all segments of  $\Gamma$ emanating from  P . If ordpf >0 then the point
 P\in $\Gamma$ is called the zero of  f of order \mathrm{o}\mathrm{r}\mathrm{d}_{P}f . If \mathrm{o}\mathrm{r}\mathrm{d}_{P}f<0 then P is called the pole of

f of order |\mathrm{o}\mathrm{r}\mathrm{d}_{P}f| . We define the principal divisor of a rational function f (or divisor

associated to f) on  $\Gamma$ to be

(f) :=\displaystyle \sum_{P\in $\Gamma$} (ordpf ) P.

Remark. For any rational function f on a tropical curve  $\Gamma$ we have

\displaystyle \deg(f)=\sum_{P\in $\Gamma$} (ordpf ) =0.

Definition 2.4 (Linear system). Let D be a divisor of degree n on a tropical
curve  $\Gamma$ . We denote by  R(D) the set of all rational functions f on  $\Gamma$ such that the

divisor (f)+D is effective:

R(D):=\{f|(f)+D>0\}.

For any f\in R(D) the divisor (f)+D is a sum of exactly \deg((f)+D)=\deg(f)+
\deg D=n points by the above remark.

When formulating a statement about the dimensions of the linear systems R(D) we

have to be careful since R(D) is in general not a vector space but a polyhedral complex
and hence its dimension is ill‐defined. The following definition serve as a replacement.

Definition 2.5 (Rank). Let D be a divisor of degree n on a tropical curve  $\Gamma$ . We

define the rank  r(D) of the divisor D to be the maximal integer k such that for all choices

of (not necessarily distinct) points P_{1}, P_{2} ,
. . .

,  P_{k}\in $\Gamma$ we have  R(D-P_{1}-P_{2}-\cdots-P_{k})\neq
\emptyset . If  R(D)=\emptyset then we define  r(D)=-1.
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If we want to specify the curve  $\Gamma$ in the notation of  R(D) and r(D) we also write

them as R(D) and r_{ $\Gamma$}(D) , respectively.

Definition 2.6 (Equivalence of divisors). Two divisors D and D' on a tropical
curve  $\Gamma$ are called equivalent and written  D\sim D' if there exists a rational function f
on  $\Gamma$ such that  D'=D+(f) .

If D\sim D' then D'=D+(f) for some rational function f on  $\Gamma$ . Then the map

 R(D)\rightarrow R(D') , g\mapsto g+f is a bijection because we have (g)+D'=(g)+D+(f)=
(g+f)+D . Thus we have r(D)=r(D') .

Lemma 2.7 (See [3]). Let \overline{ $\Gamma$} be a tropical curve and let  $\Gamma$ be the metric graph
obtained from \overline{ $\Gamma$} by removing all unbounded edges. Then every divisor D\in \mathrm{D}\mathrm{i}\mathrm{v}(\overline{ $\Gamma$}) is

equivalent on \overline{ $\Gamma$} to a divisor D' with supp D \subset $\Gamma$ . If  D is effective then D' can be chosen

to be effective as well. Moreover,  R_{ $\Gamma$}(D')\neq\emptyset if and only if  R_{\overline{ $\Gamma$}}(D')\neq\emptyset. \square 

Let \overline{ $\Gamma$},  $\Gamma$
,

and  D' as in lemma 2.7. By lemma 2.7 any effective divisor on \overline{ $\Gamma$} is

equivalent to a divisor of the same degree with the support on  $\Gamma$ . Therefore we conclude

that  r_{\overline{ $\Gamma$}}(D')=r_{ $\Gamma$}(D') .

We then have the Riemann‐Roch theorem.

Theorem 2.8 (Riemann‐Roch theorem for tropical curves [3, 8, 1 For any di‐

visor D on a tropical curve \overline{ $\Gamma$} of genus g we have

r(D)-r(K_{\overline{ $\Gamma$}}-D)=\deg D+1-g.

\square 

It immediately follows a corollary of theorem 2.8.

Corollary 2.9. If \deg D>2g-2 then r(D)=\deg D-g.

Proof. Since \deg K_{\overline{ $\Gamma$}}=2g-2 ,
we have \deg(K_{\overline{ $\Gamma$}}-D)<0 . This implies R(K_{\overline{ $\Gamma$}}-D)=

\emptyset and hence  r(K_{\overline{ $\Gamma$}}-D)=-1 . By the Riemann‐Roch theorem we have

r(D)=\deg D+1-g-1=\deg D-g

as desired. \square 

§3. Surjections between tropical curves and their Jacobians

By applying the Riemann‐Roch theorem to a tropical curve of genus g ,
one can

obtain several propositions concerning a surjection from the set of effective divisors of
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degree g of the tropical curve to its Jacobian. Let \overline{ $\Gamma$} be a tropical curve of genus g.

We define \mathcal{D}_{0}(\overline{ $\Gamma$}) to be the subgroup of the divisor group \mathrm{D}\mathrm{i}\mathrm{v}(\overline{ $\Gamma$}) of \overline{ $\Gamma$} generated by the

divisors of degree 0 . We also define \mathcal{D}_{l}(\overline{ $\Gamma$}) to be the subgroup of \mathcal{D}_{0}(\overline{ $\Gamma$}) generated by
the principal divisorsl of rational functions on \overline{ $\Gamma$}.

Definition 3.1 (Picard group). We define the Picard group \mathrm{P}\mathrm{i}\mathrm{c}^{\ovalbox{\tt\small REJECT}}(\overline{ $\Gamma$}) of a tropical
curve \overline{ $\Gamma$} to be the residue class group \mathrm{P}\mathrm{i}\mathrm{c}^{\ovalbox{\tt\small REJECT}}(\overline{ $\Gamma$}) :=\mathcal{D}_{0}(\overline{ $\Gamma$})/\mathcal{D}_{l}(\overline{ $\Gamma$}) . In particular, by lemma

2.7 we have

\mathrm{P}\mathrm{i}\mathrm{c}^{0}(\overline{ $\Gamma$})=\mathrm{P}\mathrm{i}\mathrm{c}^{0}( $\Gamma$):=\mathcal{D}_{0}( $\Gamma$)/\mathcal{D}_{l}( $\Gamma$) .

Let  $\Omega$( $\Gamma$) be the space of global 1‐form on  $\Gamma$ . Also let  $\Omega$( $\Gamma$)^{*} be the vector space of

\mathbb{R}‐valued linear functions on  $\Omega$( $\Gamma$) . Then the integral cycles H_{1}( $\Gamma$, \mathbb{Z}) form a lattice in

 $\Omega$( $\Gamma$)^{*} by integrating over them.

Definition 3.2 (Jacobian). We define the Jacobian J( $\Gamma$) of a tropical curve \overline{ $\Gamma$}

to be

J( $\Gamma$):= $\Omega$( $\Gamma$)^{*}/H_{1}( $\Gamma$, \mathbb{Z}) .

Remark. Since there exists an isomorphism between \mathrm{P}\mathrm{i}\mathrm{c}^{0}( $\Gamma$) and J( $\Gamma$) [8], we

can identify them:

J( $\Gamma$)\simeq \mathrm{P}\mathrm{i}\mathrm{c}^{0}( $\Gamma$)=\mathcal{D}_{0}( $\Gamma$)/\mathcal{D}_{l}( $\Gamma$) .

We define the subset \mathcal{D}_{g}^{+}( $\Gamma$) of \mathrm{D}\mathrm{i}\mathrm{v}(\overline{ $\Gamma$}) to be

\mathcal{D}_{g}^{+}( $\Gamma$) :=\{D\in \mathrm{D}\mathrm{i}\mathrm{v}( $\Gamma$)|\deg D=g, D>0\}.
Fix an element D^{*} of \mathcal{D}_{g}^{+}( $\Gamma$) . Then we can define two maps  $\phi$ : \mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow \mathcal{D}_{0}( $\Gamma$)

and \overline{ $\phi$}:\mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow J( $\Gamma$) to be

 $\phi$(A)=A-D^{*} and \overline{ $\phi$}(A)\equiv A-D^{*} (mod \mathcal{D}_{l}( $\Gamma$) ),

for A\in \mathcal{D}_{g}^{+}( $\Gamma$) , respectively. We then have the following theorem.

Theorem 3.3. The map \overline{ $\phi$}:\mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow J( $\Gamma$) is surjective.

Proof. It is sufficient to show that there exists an element A of \mathcal{D}_{g}^{+}( $\Gamma$) such that

A-D^{*}\sim D for any D\in \mathcal{D}_{0}( $\Gamma$) . By the Riemann‐Roch theorem we have

r(D+D^{*})=\deg(D+D^{*})+1-g+r(K_{\overline{ $\Gamma$}}-D-D^{*})

=g+1-g+r(K_{\overline{ $\Gamma$}}-D-D^{*})

\geq 0

lNote that any principal divisor is of degree 0.
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because r(K_{\overline{ $\Gamma$}}-D-D^{*})\geq-1 holds. This means that  R(D+D^{*})\neq\emptyset and hence there

exists a rational function  h satisfying (h)+D+D^{*}>0 . Let A=(h)+D+D^{*} . Then

\deg A=0+0+g=g and A>0 lead to A\in \mathcal{D}_{g}^{+}( $\Gamma$) . Moreover we have

\overline{ $\phi$}(A)\equiv(h)+D\equiv D (mod \mathcal{D}_{l}( $\Gamma$) ).

This completes the proof. \square 

As in the non‐tropical case, for a tropical curve of genus one the surjection \overline{ $\phi$} reduces

to the bijection. This fact was first found by Vigeland in 2004 [12].

Theorem 3.4. The map \overline{ $\phi$}:\mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow J( $\Gamma$) is bijective if and only if g=1.

Proof. If we assume \overline{ $\phi$}(P)\equiv\overline{ $\phi$}(Q) for some P, Q\in \mathcal{D}_{g}^{+}( $\Gamma$) then we have  P-D^{*}\sim

 Q-D^{*} and hence P-Q\sim 0 . This means that there exists a rational function h

satisfying (h)=P-Q . Since P is effective, (h)+Q is effective as well. Therefore

the rational function h is an element of R(Q) . If we assume g=1 then we have

\deg Q=1>0=2g-2 . By corollary 2.9 we obtain

r(Q)=\deg Q-g=1-1=0.

This implies that h\in R(Q) is a constant function, and hence P-Q=(h)=0 . Thus

the map \overline{ $\phi$} is injective.
On the other hand, if we assume g\geq 2 then we have \deg Q=g\leq 2g-2 and hence

\deg(K_{\overline{ $\Gamma$}}-Q)\geq 0 . We can choose Q such that K_{\overline{ $\Gamma$}}-Q is effective. Let 1 be a constant

function then we have (1) +K_{\overline{ $\Gamma$}}-Q=K_{\overline{ $\Gamma$}}-Q>0 . This implies  1\in R(K_{\overline{ $\Gamma$}}-Q)\neq\emptyset
and hence  r(K_{\overline{ $\Gamma$}}-Q)\geq 0 . Thus we have

r(Q)=\deg Q+1-g+r(K_{\overline{ $\Gamma$}}-Q)\geq 1.

Therefore there exists a rational function h satisfying P-Q=(h)\neq 0. \square 

Any element of \mathcal{D}_{g}^{+}( $\Gamma$) is given by P_{1}+P_{2}+\cdots+P_{g} ,
where P_{1}, P_{2}, \cdots, P_{g} are

the points on the metric graph  $\Gamma$ not necessarily distinct. Let us denote the image of

 P_{1}+P_{2}+\cdots+P_{g}\in \mathcal{D}_{g}^{+}( $\Gamma$) with respect to the map \overline{ $\phi$} by

(P_{1}P_{2}\cdots P_{g}) :=\overline{ $\phi$}(P_{1}+P_{2}+\cdots+P_{g}) .

Since the map \overline{ $\phi$}:\mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow J( $\Gamma$) is surjective, we have

J( $\Gamma$)=\{(P_{1}P_{2}\cdots P_{g})|P_{1}, P_{2}, \cdots, P_{g}\in $\Gamma$\}.
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Thus the addition in J( $\Gamma$) can be pulled back in  $\Gamma$ by \overline{ $\phi$} . Actually, we define the addition

of g‐tuples P=(P_{1}, P_{2}, \ldots, P_{g}) and Q=(Q_{1}, Q_{2}, \ldots, Q_{g}) of the points on  $\Gamma$ to be

 P+Q:=(P_{1}P_{2}\cdots P_{g})+(Q_{1}Q_{2}\cdots Q_{g}) ,

where the addition in the right‐hand‐side is considered to be the one in J( $\Gamma$) .

§4. Tropical hyperelliptic curves

In this and the subsequent sections we concentrate on \mathrm{a}(g+2) ‐parameter family
of smooth tropical curves of genus g called the tropical hyperelliptic curves.

Let us consider the (non‐tropical) hyperelliptic curve of genus g defined by the

polynomial of degree 2g+2 :

f(x, y):=y^{2}-P(x)^{2}+4c_{-1},

P(x) :=\displaystyle \sum_{i=0}^{g+1}c_{i}x^{i}, c_{g+1}=1, c_{i}\in \mathbb{C} for i=-1, 0 ,
. . .

, g,

where we assume that f(x, 0)=-P(x)^{2}+4c_{-1} has no multiple root. By applying to

f(x, y) the birational transformation (x, y)\mapsto(X, Y)

X=x, Y=\displaystyle \frac{1}{2}y-\frac{1}{2}P(x) ,

we obtain the hyperelliptic curve given by the polynomial

F(X, Y) :=Y^{2}+YP(X)+c_{-1}.

Now we tropicalize F(X, Y) . Replace the addition + and the multiplication \times \mathrm{i}\mathrm{n}

F(X, Y) with the tropical addition \oplus and the tropical multiplication \otimes , respectively. If

we define these tropical operations to be

 A\displaystyle \oplus B:=\max(A, B) , A\otimes B:=A+B for A, B\in \mathrm{T}:=\mathbb{R}\cup\{-\infty\}

then we obtain the following tropical polynomial

\displaystyle \tilde{F}(X, Y) :=Y^{\otimes 2}\oplus Y\otimes\tilde{P}(X)\oplus c_{-1}=\max(2Y, Y+\tilde{P}(X), c_{-1}) ,

\displaystyle \tilde{P}(X) :=\bigoplus_{i=0}^{g+1}c_{i}\otimes X^{\otimes i}=\max g+1i=0(c_{i}+iX) ,

where we assume c_{g+1}=0, c_{i}\in \mathrm{T} for i=-1, 0 ,
. . .

, g . Moreover assume

\left\{\begin{array}{ll}
c_{g+1}=c_{g}=0, & \\
c_{-1}<2c_{0}, & \\
c_{i}+c_{i+2}<2c_{i+1} & \mathrm{f}\mathrm{o}\mathrm{r} i=0, 1, . . . , g-2,\\
c_{g-1}<2c_{g}=0. & 
\end{array}\right.
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Then the tropical polynomial \tilde{F}(X, Y) defines a smooth tropical curve \overline{ $\Gamma$} of genus g to

be the set of its all non‐differentiable points with respect to X or Y (see figure 1).

\mathrm{Y} =

 $\iota$

 V'
 4 -\infty

Figure 1. The tropical hyperelliptic curve \overline{ $\Gamma$}.

The curve \overline{ $\Gamma$} thus obtained is called the tropical hyperelliptic curve2 and is

known as the isospectral curve of the ultradiscrete periodic Toda lattice, or the periodic
box‐ball system [5].

Let v_{e} be the primitive tangent vector along the edge e\in E(\overline{ $\Gamma$}) ,
where E(\overline{ $\Gamma$}) is the

edge set of the tropical hyperelliptic curve \overline{ $\Gamma$} . Also let |e| and |v_{e}| be the Euclidean

length of e and v_{e} , respectively. The length function l : E(\overline{ $\Gamma$})\rightarrow \mathbb{R}_{>0}\cup\{\infty\} of \overline{ $\Gamma$} is

defined to be

l(e):=\displaystyle \frac{|e|}{|v_{e}|}.
2A tropical curve is called hyperelliptic if there is a linear system with degree 2 and rank 1 [4].
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The vertex of \overline{ $\Gamma$} whose Y‐coordinate is greater than c_{-1}/2 is denoted by V_{i} and its

conjugate (defined below) by V_{i}'(i=0,1, \ldots, g) :

V_{0}=(0,0) , V_{0}'=(0, c_{-1}) ,

V_{i}=(c_{g-i}-c_{g-i+1}, (g-i+1)c_{g-i}-(g-i)C) for i=1
, 2, . . .

, g,

V_{i}'=(c_{g-i}-c_{g-i+1}, c_{-1}-(g-i+1)c_{g-i}+(g-i)C) for i=1
, 2, . . .

, g.

The outgoing slope of the edge \vec{V_{i}V_{i+1}} ,
which emanates from V_{i} and connects it with

V_{i+1} ,
is g-i for i=0 , 1, . . .

, g-1.
We define the bifurcation point of the tropical hyperelliptic curve \overline{ $\Gamma$} to be the

intersection point of \overline{ $\Gamma$} and the line Y=c_{-1}/2 . Note that \overline{ $\Gamma$} is symmetric under the

refection with respect to Y=c_{-1}/2 . There exist exactly g+1 bifurcation points on

\overline{ $\Gamma$} . We denote the g+1 bifurcation points by A_{0}, A_{1} ,
. . .

, A_{g} (see figure 1). We also

define the conjugate of a point P on \overline{ $\Gamma$} to be the point which coincide with P under

the reflection with respect to Y=c_{-1}/2 . The conjugate of a point P on \overline{ $\Gamma$} is denoted by
P' . Thus the bifurcation point is characterized as the point P on \overline{ $\Gamma$} such that P=P'

The canonical divisors of \overline{ $\Gamma$} and  $\Gamma$ are

 K_{\overline{ $\Gamma$}}=\displaystyle \sum_{i=0}^{g}(V_{i}+V_{i}')-V_{-\infty}-V_{-\infty}'-V_{\infty}-V_{\infty}',
K_{ $\Gamma$}=\displaystyle \sum_{i=1}^{g-1}(V_{i}+V_{i}') ,

where V_{-\infty}, V_{-\infty}', V_{\infty} ,
and V_{\infty}' are the end points of the unbounded edges (see figure

1). Of course, \deg K_{\overline{ $\Gamma$}}=\deg K_{ $\Gamma$}=2g-2 holds.

For the tropical hyperelliptic curve \overline{ $\Gamma$} we have a subset of \mathcal{D}_{g}^{+}( $\Gamma$) on which the

surjection \overline{ $\phi$} : \mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow J( $\Gamma$) reduces to the bijection. Let $\alpha$_{i} be the basis of the

fundamental group $\pi$_{1}( $\Gamma$) of  $\Gamma$ for  i=1
, 2, . . .

, g (see figure 2). Also let $\alpha$_{ij}=$\alpha$_{i}\cap$\alpha$_{j}\backslash 
{end points of $\alpha$_{i}\cap$\alpha$_{j} } for i\neq j\in\{1, 2, . . . , g\} . We define the subset \mathrm{D}_{g}+(\mathrm{r}) of \mathcal{D}_{g}^{+}( $\Gamma$)
to be

\mathrm{D}_{g}^{+}(\mathrm{r})=\{P_{1}+\cdots+P_{g}| there exists a\mathrm{t}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}. point o\mathrm{n}$\alpha$_{ij}P_{i}\in$\alpha$_{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}i=\mathrm{l},2g\mathrm{a}\mathrm{n}\mathrm{d}\}
We then have the following theorem.

Theorem 4.1 (See [5]). A reduced map \overline{ $\phi$}|_{D_{g}^{-+}( $\Gamma$)} is bijective

\overline{ $\phi$}|_{\mathrm{D}_{g}^{+}( $\Gamma$)}:\mathrm{D}_{g}^{+}( $\Gamma$)\rightarrow\sim J( $\Gamma$) .

\square 
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Figure 2. The basis of the fundamental group $\pi$_{1}( $\Gamma$) .

We define the set $\Gamma$_{g}^{+} to be the set of g‐tuples P= (P_{1}, P2, . . . , P_{g}) satisfying

P_{1}+P_{2}+\cdots+P_{g}\in \mathrm{D}_{g}+(\mathrm{r}) :

$\Gamma$_{g}^{+}:=\{P= (P_{1}, P2, . . . , P_{g})|P_{1}+P_{2}+\cdots P_{g}\in \mathrm{D}_{g}^{+}(\mathrm{r})\}.
In terms of the map \overline{ $\phi$} , the additive group structure of $\Gamma$_{g}^{+} is induced from J( $\Gamma$)

§5. Realization of addition on tropical hyperelliptic curves

§5.1. The case of even g

Now we assume that the genus g of the tropical hyperelliptic curve \overline{ $\Gamma$} is even. Let

us fix D^{*}\in \mathcal{D}_{g}^{+}( $\Gamma$) as follows

D^{*}=\displaystyle \frac{g}{2}(V_{0}+V_{0}') .

5.1.1. Unit of addition

We have the following proposition.

Proposition 5.1. For any even g we have

(P_{1}P_{2}\cdots P_{g/2}P_{1}'P_{2}'\cdots P_{g/2}')=0,
where P_{1}, P_{2}, \cdots, P_{g/2} are the points on  $\Gamma$ and  P_{1}', P_{2}', \cdots, P_{g/2}' are their conjugates,

respectively.

Proof. Assume (P_{1}P_{2}\cdots P_{g})=0 . Then we have

P_{1}+P_{2}+\cdots+P_{g}-D^{*}\sim 0,
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and vice versa. Therefore (P_{1}P_{2}\cdots P_{g})=0 is equivalent to the existence of a rational

function h\in R(D^{*}) on  $\Gamma$ such that (h)=P_{1}+P_{2}+\cdots+P_{g}-D^{*}
We show that there exists a rational function h\in R(D^{*}) on  $\Gamma$ such that (h)=

P_{1}+\cdots+P_{g/2}+P_{1}'+\cdots+P_{g/2}'-D^{*} . Without loss of generality we can assume the

Y‐coordinate of P_{i} is greater than or equal to c_{-1}/2 for i=1
, 2, \cdots, g/2 . Let us denote

the path in  $\Gamma$ connecting  A_{i} with V_{i-1} (resp. V_{i-1}' ) through V_{i} (resp. V_{i}' ) by $\pi$_{i} (resp.
$\pi$_{i}') for i=1

, 2, . . .

, g (see figure 3). Also denote the path in  $\Gamma$ connecting  A_{0} with V_{0}

Figure 3. The paths $\pi$_{i} and $\pi$_{i}'.

(resp. V_{0}' ) by $\pi$_{0} (resp.  $\pi$Ó).
Owing to the above assumption, there exist  g/2 points P_{1}, P_{2} ,

. . .

, P_{g/2} on \displaystyle \bigcup_{i=0}^{g}$\pi$_{i}.
We construct the rational function \overline{h} on \displaystyle \bigcup_{i=0}^{g}$\pi$_{i} as follows. The value of \overline{h} at A_{g} can

arbitrarily be chosen. We start walking the path $\pi$_{g} form A_{g} to V_{g-1} . If we find the

point P_{g_{1}} on the path $\pi$_{g} then we set \overline{h}(P_{g_{1}})=\overline{h}(A_{g}) and the outgoing slope of \overline{h} from

P_{g_{1}} to be 1. If we find the next point P_{g_{2}} on the path $\pi$_{g} then we set the outgoing slope
of \overline{h} from P_{g_{2}} to be 2. Thus P_{g_{1}} and P_{g_{2}} are the zeros of \overline{h} of order 1. If P_{g_{1}}=P_{g_{2}}
then the part of \overline{h} of slope 1 disappears and P_{g_{1}}=P_{g_{2}} is the zero of \overline{h} of order 2. If

there exist exactly k points P_{g_{1}}, P_{g_{2}} ,
. . .

, P_{g_{k}} on the path $\pi$_{g} then the slope of \overline{h} at V_{g-1}
is k . The value of \overline{h} at V_{g-1} is uniquely determined. By applying the same procedure

inductively to the remaining paths $\pi$_{g-1}, $\pi$_{g-2} ,
. . .

, $\pi$_{0} we obtain the rational function \overline{h}

on \displaystyle \bigcup_{i=0}^{g}$\pi$_{i} satisfying

(\displaystyle \overline{h})=P_{1}+P_{2}+\cdots+P_{g/2}-\frac{g}{2}V_{0}.
Note that the slope of \overline{h} at V_{0} is g/2 since there exist g/2 points P_{1}, P_{2} ,

. . .

, P_{g/2} on

\displaystyle \bigcup_{i=0}^{g}$\pi$_{i} . Also note that the value of \overline{h} at the bifurcation points A_{g-1}, A_{g-2} ,
. . .

, A_{0} are

uniquely determined by h(V_{g-1}) , h(V_{g-2}) ,
. . .

, h(V_{0}) , respectively.
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In the same manner we obtain the rational function \overline{h}' on \displaystyle \bigcup_{i=0}^{g}$\pi$_{i}' satisfying

(\displaystyle \overline{h}')=P_{1}'+P_{2}'+\cdots+P_{g/2}'-\frac{g}{2}V_{0}'.
If we set \overline{h}(A_{g})=\overline{h}'(A) then

h=\overline{h}\cup\overline{h}'=\left\{\begin{array}{ll}
\overline{h} & \mathrm{o}\mathrm{n} \bigcup_{i=0}^{g}$\pi$_{i},\\
\overline{h}' & \mathrm{o}\mathrm{n} \bigcup_{i=0}^{g}$\pi$_{i}'
\end{array}\right.
\text{∪ \text{∪is the rational function on  $\Gamma$=(\displaystyle \bigcup_{i=0}^{g}$\pi$_{i})\cup(\bigcup_{i=0}^{g}$\pi$_{i}') satisfying (h)=P_{1}+\cdots+P_{g/2}+

P_{1}'+\cdots+P_{g/2}'-D^{*} as desired. \square 

Combining theorem 4.1 and proposition 5.1, we obtain the following proposition

concerning the unit of addition \mathcal{O} of the group ($\Gamma$_{g}^{+}, \mathcal{O}) .

Proposition 5.2. For any even g ,
the g ‐tuple (V_{1}, V_{3}, \cdots, V_{g-1}, V_{1}', V_{3}', \cdots, V_{g-1}')

is the unit of addition \mathcal{O} of the group ($\Gamma$_{g}^{+}, \mathcal{O}) :

\mathcal{O}=(V_{1}, V_{3}, \cdots, V_{g-1}, V_{1}', V_{3}', \cdots, V_{g-1}') .

Proof. Since V_{i}\in$\alpha$_{i} and V_{i}'\in$\alpha$_{i+1} and V_{i}, V_{i}'\not\in$\alpha$_{i,i+1} for i=1
, 3, . . .

, g-

1
,

we have (V_{1}, V_{3}, \cdots, V_{g-1}, V_{1}', V_{3}', \cdots, V_{g-1}')\in$\Gamma$_{g}^{+} . By proposition 5.1 we have

(V_{1}V_{3}\cdots V_{g-1}V_{1}'V_{3}'\cdots V_{g-1}')=0 . On the other hand, (V_{1}, V_{3}, \cdots, V_{g-1}, V_{1}', V_{3}', \cdots, V_{g-1}')
is the only choice which satisfies both (V_{1}, V_{3}, \cdots, V_{g-1}, V_{1}', V_{3}', \cdots, V_{g-1}')\in$\Gamma$_{g}^{+} and

(V_{1}V_{3}. . . V_{g-1}V_{1}'V_{3}'\cdots V_{g-1}')=0 because the map \overline{ $\phi$}|_{D_{g}^{-+}( $\Gamma$)} is bijective. \square 

5.1.2. Inverse elements

For any element P= (P_{1}, P2, . . . , P_{g}) of $\Gamma$_{g}^{+} the inverse -P with respect to the

addition is simply given as follows.

Proposition 5.3. For any even g we have

P+P'=\mathcal{O},

where P= (P_{1}, P2, . . . , P_{g})\in$\Gamma$_{g}^{+} and P' := (Pl�, P2�, . . .

, Pg�). TherefO re we write

-P=P'
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Proof. Note first that P'\in$\Gamma$_{g}^{+} since P\in$\Gamma$_{g}^{+} . By proposition 5.1 we have

P+P'=(P_{1}P_{2}\cdots P_{g})+(P_{1}'P_{2}'\cdots P_{g}')

\displaystyle \equiv\sum_{i=1}^{g}P_{i}-D^{*}+\sum_{i=1}^{g}P_{i}'-D^{*} (mod \mathcal{D}_{l}( $\Gamma$) )

=\displaystyle \sum_{i=1}^{g/2}(P_{i}+P_{i}')-D^{*}+\sum_{i=g/2+1}^{g}(P_{i}+P_{i}')-D^{*}
\equiv 0 (mod \mathcal{D}_{l}( $\Gamma$) )
=\mathcal{O}.

This completes the proof. \square 

5.1.3. Tropical curves passing through given points
Now we realize the addition

(5.1) P+Q=M

of the group ($\Gamma$_{g}^{+}, \mathcal{O}) ,
where P=(P_{1}, P_{2}, \ldots, P_{g}) , Q=(Q_{1}, Q_{2}, \ldots, Q_{g}) ,

and M=

(M_{1}, M2, . . . , M_{g}) are the elements of $\Gamma$_{g}^{+} , by using the intersection of the tropical hy‐

perelliptic curve \overline{ $\Gamma$} and a tropical curve of degree 3g/2.
By proposition 5.3 the addition (5.1) can be written

P+Q+M'=\mathcal{O}.

Therefore there exists a rational function h on  $\Gamma$ satisfying

(5.2) (h)=\displaystyle \sum_{i=1}^{g}(P_{i}+Q_{i}+M_{i}')-3D^{*}
This implies h\in R(3D^{*}) .

Define the rational functions x and y on the metric graph  $\Gamma$ to be

 x(P)=p, y(P)=q,

where P=(p, q) is a point on  $\Gamma$ . We can easily see

(x)=V_{g}+V_{g}'-V_{0}-V_{0}', (y)=(g+1)V_{0}'-(g+1)V_{0}.

Consider the tropical monomial a_{i}\otimes x^{\otimes i} in x for a_{i}\in \mathrm{T} . Then we have

a_{i}\otimes x^{\otimes i}=a_{i}+ix\in R(3D^{*}) for i=0 , 1, . . .

, \displaystyle \frac{3g}{2},
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where a_{0}\otimes x^{\otimes 0}=a_{0} is the constant function. Because the principal divisor is computed
as follows

(a_{i}+ix)=(ix)=i(V_{g}+V_{g}')-i(V_{0}+V_{0}') ,

and hence we have

(a_{i}+ix)+3D^{*}=(ix)=i(V_{g}+V_{g}')+(\displaystyle \frac{3g}{2}-i)(V_{0}+V_{0}')>0
for any even g if and only if i=0 , 1, . . .

, 3g/2 . Similarly, for the tropical monomial

b_{i}\otimes x^{\otimes i}\otimes y in x, y for b_{i}\in \mathrm{T} we have

b_{i}\otimes x^{\otimes i}\otimes y=b_{i}+ix+y\in R(3D^{*}) for i=0 , 1, . . .

, \displaystyle \frac{g}{2}-1.
Because we have

(b_{i}+ix+y)+3D^{*}=(ix)+(y)+3D^{*}

=i(V_{g}+V_{g}')+(\displaystyle \frac{5g}{2}+1-i)V_{0}'+(\frac{g}{2}-1-i)V_{0}>0
for any even g if and only if i=0 , 1, . . .

, g/2-1.
Let us consider the tropical module \mathcal{M}_{g} spanned by the 2g+1 rational functions

x^{\otimes i}(i=1,2, \ldots, 3g/2) and x^{\otimes i}\otimes y(i=0,1, \ldots, g/2-1)[8] :

\displaystyle \mathcal{M}_{g}:=\{\bigoplus_{i=0}^{3g/2}a_{3g/2-i}\otimes x^{\otimes i}\oplus\bigoplus_{i=0}^{g/2-1}b_{i}\otimes x^{\otimes i}\otimes y|a_{i}, b_{i}\in \mathrm{T}\}
=\displaystyle \{\max(^{3g}\max^{/2}(a_{3g/2-i}+ix),\max i=0(b_{i}+ix+y))|a_{i}, b_{i}\in \mathrm{T}\}

Then we have the following proposition.

Proposition 5.4. For any even g we have

\mathcal{M}_{g}\subseteq R(3D^{*}) .

Proof. Denote the set of poles of a rational function h on the metric graph  $\Gamma$ by

 S_{h} . Then for the set S_{f\oplus h} of the poles of the linear combination f\displaystyle \oplus h=\max(f, h) of

two rational functions f and h on  $\Gamma$ we have

 S_{f\oplus h}\subset S_{f}\cup S_{h}.

Because if it does not hold then there exists a point P\in S_{f\oplus h} which is the pole of

neither f nor h . Since P is the pole of f\oplus h ,
the sum of its outgoing slope at P is
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negative, while those of both f and h are non‐negative. Let the edges outgoing from P

be e_{1}, e_{2} ,
. . .

, e_{k} for k=2
, 3. (Note that the point P on  $\Gamma$ is at most trivalent.) Also let

the slope of  f and h on e_{i} be f_{i} and h_{i} , respectively. We then have \displaystyle \sum_{i=1}^{k}f_{i}\geq 0 and

\displaystyle \sum_{i=1}^{k}h_{i}\geq 0 . By definition the outgoing slope of f\oplus h at P is

\displaystyle \sum_{i=1}^{k}\max(f_{i}, h_{i})\geq\max(\sum_{i=1}^{k}f_{i}, \sum_{i=1}^{k}h_{i})\geq 0.
This is a contradiction. Thus if f, g\in R(3D^{*}) then f\oplus h\in R(3D^{*}) . Therefore we have

\mathcal{M}_{g}\subset R(3D^{*}) .

We can easily find a rational function h\in R(3D^{*}) not included in \mathcal{M}_{g} , e.g., the

one whose two zeros are on the edge \vec{V_{0}V_{0}'}. \square 

Let h\in \mathcal{M}_{g} . Since h is a tropical polynomial in x and y of degree 3g/2 ,
it can

be extended as a rational function on the (X, Y) ‐plane. If P is the zero of h then the

function h is not differentiable with respect to X or Y at P . Thus the tropical curve

C of degree 3g/2 defined by h passes through the zero P of h . If P is on the tropical

hyperelliptic curve \overline{ $\Gamma$} as well then P is the intersection points of \overline{ $\Gamma$} and C.

Figure 4. The tropical curve C of degree 3g/2 defined by h\in \mathcal{M}_{g}.
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Assume that the coefficients of h satisfy the generic condition

(5.3) \left\{\begin{array}{ll}
a_{i}+a_{i+2}<2a_{i+1} & \mathrm{f}\mathrm{o}\mathrm{r} i=0, 1, . . . , \frac{3g}{2}-2,\\
b_{i}+b_{i+2}<2b_{i+1} & \mathrm{f}\mathrm{o}\mathrm{r} i=0, 1, . . . , \frac{g}{2}-3,\\
a_{1}-a_{0}<b_{0}-b_{1}. & 
\end{array}\right.
Then C has exactly 2g-1 vertices and is smooth. Figure 4 shows the smooth tropical
curve C satisfying the generic condition.

The vertex from which an unbounded edge emanating upward is denoted by U_{i}
for non‐positive i=0, -1

,
. . .

, -g/2+2 ; and the one from which an unbounded edge

emanating downward by U_{i} for positive i=1
, 2, . . .

, 3g/2 . The coordinate of the vertices

are given as follows

U_{i}=(a_{i}-a_{i-1}, (\displaystyle \frac{3g}{2}-i+1)a_{i}-(\frac{3g}{2}-i)a_{i-1}-b_{0}) for i=1
, 2, . . .

, 3g/2,

U_{-i}=(b_{i}-b_{i+1}, (i-1)b_{i+1}-ib_{i}+a_{0}) for i=0 , 1, . . .

, g-2/2-1.

the remaining unbounded edges emanating from U_{-g/2+2} and U_{3g/2} are g+1 and 0,

respectively.

Remark. If h\in \mathcal{M}_{g} satisfies the generic condition (5.3) then the curve C defined

by h is smooth. Therefore the dimension of the tropical module \mathcal{M}_{g} is exactly 2g+1

[8]. Since \deg 3D^{*}=3g>2g-2 for any g\geq 2 , by corollary 2.9, we have

r(3D^{*})=3g-g=2g=\dim \mathcal{M}_{g}-1.

This means that the maximal dimension of the cells of R(3D^{*}) is at least \dim \mathcal{M}_{g}[3].

5.1.4. Intersection numbers

In order to investigate the intersection points of \overline{ $\Gamma$} and C ,
we consider the homoge‐

neous coordinate (x_{0} : x_{1} : x_{2}) of the tropical projective plane \mathrm{T}\mathbb{P}^{2}[8] . Denote the point

(-\infty : 0:-\infty) at infinity by P_{\infty} . Then we can see \overline{ $\Gamma$} passes through P_{\infty} . Actually, the

unbounded edge emanating from the vertex V_{0} is given as follows

(5.4) (g+1)x_{0}-x_{1}-gx_{2}=0

in the homogeneous coordinate. Note that this unbounded edge goes to the direction

 x_{2}=-\infty . If we set  x_{2}=-\infty in (5.4) then  x_{0} must be -\infty since  g is positive. We can

also see that the g/2-1 unbounded edges emanating from U_{-i} for i=0 , 1, . . .

, g/2-2
of the curve C pass through P_{\infty} . Thus the two curves \overline{ $\Gamma$} and C intersect at P_{\infty} . We

then have the following lemma concerning the intersection number of \overline{ $\Gamma$} and C at P_{\infty}.
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Lemma 5.5. The tropical hyperelliptic curve \overline{ $\Gamma$} intersects the tropical curve C

defined by h\in \mathcal{M}_{g} with multiplicity 3g^{2}/2 at the point P_{\infty} at infinity.

Proof. Let the unbounded edge of \overline{ $\Gamma$} emanating from the vertex V_{0} be e_{0} . Also let

the edge of C outgoing upward from the vertex U_{i} be $\epsilon$_{i} for i=0, -1
,

. . .

, -g/2+2 . Let

the remaining unbounded edge of C outgoing from U_{-g/2+2} be $\epsilon$_{-g/2+1} . The primitive

tangent vector of these unbounded edges are given as follows

e_{0}:(g, g+1) ,

$\epsilon$_{i} : (1, 1) for i=0, -1
,

. . .

, -g/2+2,

$\epsilon$_{-g/2+1}:(g, g+1) ,

where we choose the basis (-1,0) and (1, 1).
The intersection number at P_{\infty} of two curves, whose primitive tangent vectors of

the unbounded edges passing through P_{\infty} are (a, b) and (c, d) respectively, are defined

to be

 w_{1}w_{2}\displaystyle \min (ad, bc),

where  w_{1} and w_{2} are the weights of the two edges, respectively [2]. Note that the weights
of the edges e_{0} and $\epsilon$_{i}(i=0, -1, \ldots, -g/2+1) are all 1. Then the intersection number

of \overline{ $\Gamma$} and C at P_{\infty} can be computed as follows

\displaystyle \min(g(g+1), (g+1)g)+\sum_{i=0}^{g/2-2}\min(g\times 1, (g+1)\times 1)=g(g+1)+(\frac{g}{2}-1)g
3g^{2}
\overline{2}

.

This completes the proof. \square 

The degree of the curves \overline{ $\Gamma$} and C are g+2 and 3g/2 , respectively. By the Bézout

theorem for tropical curves [10, 2] \overline{ $\Gamma$} intersects C at (g+2)3g/2 points, counting mul‐

tiplicities. Note that \overline{ $\Gamma$} and C do not intersect at the point at infinity other than P_{\infty}.

Therefore, in the affine part, \overline{ $\Gamma$} intersects C at

\displaystyle \frac{3g}{2}(g+2)-\frac{3g^{2}}{2}=3g
points, counting multiplicities.

5.1.5. Realization of addition

Let P=(P_{1}, P_{2}, \ldots, P_{g}) and Q=(Q_{1}, Q_{2}, \ldots, Q_{g}) be in $\Gamma$_{g}^{+} . Assume the 2g

points in P and Q to be in generic position. Then there exists a unique tropical curve
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C passing through these 2g points and defined by a rational function h\in \mathcal{M}_{g} . Note

that the rational function h\in \mathcal{M}_{g} is uniquely determined by the 2g points P and Q

up to a constant because h has 2g+1 parameters. Consider the intersection of the

tropical hyperelliptic curve \overline{ $\Gamma$} and the curve C . Since \overline{ $\Gamma$} intersects C at 3g points, there

further exist g intersection points, counting multiplicities. Let these intersection points
be Mí, M_{2}' ,

. . .

, M_{g}' . Figure 5 shows an example of the intersection \overline{ $\Gamma$} and C for g=2.

Figure 5. An intersection of the tropical hyperelliptic curve \overline{ $\Gamma$} (broken one) of genus 2

and the curve C (solid one) of degree 3. The addition (P_{1}, P_{2})+(Q_{1}, Q_{2})=(M_{1}, M_{2})
of the couples of points on \overline{ $\Gamma$} is realized by the intersection of \overline{ $\Gamma$} and C with the unit

\mathcal{O}=(V_{1}, V_{1}

Then the principal divisor of the rational function h defining C has the form (5.2).
It follows that the g‐tuples P, Q ,

and M= (M_{1}, M2, . . . , M_{g}) satisfy the addition

formula

P+Q=M

of the group ($\Gamma$_{g}^{+}, \mathcal{O}) (see figure 5).
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§5.2. The case of odd g

Next we assume the genus g of the tropical hyperelliptic curve \overline{ $\Gamma$} to be odd. Let us

fix D^{*}\in \mathcal{D}_{g}^{+}( $\Gamma$) as follows

D^{*}=\displaystyle \frac{g-1}{2}(V_{0}+V_{0}')+V_{0}.
5.2.1. Unit of addition

We have the following proposition in analogy to the case of even g.

Proposition 5.6. For any odd g we have

(V_{0}P_{1}P_{2}\cdots P_{(g-1)/2}P_{1}'P_{2}'\cdots P_{(g-1)/2}')=0,
where P_{1}, P_{2}, \cdots, P_{(g-1)/2} are the points on  $\Gamma$ and  P_{1}', P_{2}', \cdots, P_{(g-1)/2}' are their conju‐

gates, respectively.

Proof. It is sufficient to show the existence of the rational function h satisfying

(h)=V_{0}+P_{1}+P_{2}+\cdots P_{(g-1)/2}+P_{1}'+P_{2}'+\cdots+P_{(g-1)/2}'-D^{*}

=V_{0}+P_{1}+\displaystyle \cdots P_{(g-1)/2}+P_{1}'+\cdots+P_{(g-1)/2}'-(\frac{g-1}{2}(V_{0}+V_{0}')+V_{0})
=P_{1}+P_{2}+\displaystyle \cdots+P_{(g-1)/2}+P_{1}'+P_{2}'+\cdots+P_{(g-1)/2}'-\frac{g-1}{2}(V_{0}+V_{0}') .

It is obvious from proposition 5.1. \square 

Combining theorem 4.1 and proposition 5.6, it immediately follows the proposition

concerning the unit \mathcal{O} of addition of the group ($\Gamma$_{g}^{+}, \mathcal{O}) .

Proposition 5.7. The g ‐tuple (V_{0}, V_{2}, V_{4}, \cdots, V_{g-1}, V_{2}', V_{4}', \cdots, V_{g-1}') is the unit

of addition \mathcal{O} of the group ($\Gamma$_{g}^{+}, \mathcal{O}) :

\mathcal{O}=(V_{0}, V_{2}, V_{4}, \cdots, V_{g-1}, V_{2}', V_{4}', \cdots, V_{g-1}') .

\square 

5.2.2. Addition on tropical elliptic curves

Since the case of g=1 is distinctive, we first consider the case. Let g=1 then

D^{*}=V_{0} and \mathcal{O}=V_{0} . Note that the map \overline{ $\phi$}:\mathcal{D}_{1}^{+}( $\Gamma$)= $\Gamma$\rightarrow J( $\Gamma$) is bijective, and hence

$\Gamma$_{1}^{+}=\mathcal{D}_{1}^{+}( $\Gamma$)= $\Gamma$\simeq J( $\Gamma$) . For the rational functions y and x+y we have

(y)+3D^{*}=2V_{0}'+V_{0}>0,

(x+y)+3D^{*}=V_{1}+V_{1}'+V_{0}'>0.
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Define the tropical module \mathcal{M}_{1} to be

\displaystyle \mathcal{M}_{1}=\{\max(a, b+y, c+x+y)|a, b, c\in \mathrm{T}\}.

It is easy to see that \mathcal{M}_{1}=R(3D^{*}) .

Let h\in \mathcal{M}_{1} . Suppose h to pass through the points P, Q\in$\Gamma$_{1}^{+}= $\Gamma$\simeq J( $\Gamma$) ,

which are in generic position. Then h is uniquely determined up to a constant. The

tropical curve C defined by h is of degree 2 and passes through the points P_{\infty} and

P_{\infty}':= (0:-\infty : -\infty) at infinity. The tropical elliptic curve \overline{ $\Gamma$} defined by the tropical

polynomial

\displaystyle \tilde{F}(X, Y)=\max(2Y, Y+c_{0}, Y+X, Y+2X, c_{-1})
is of degree 3 and passes through both P_{\infty} and P_{\infty}' as well.

Figure 6. An intersection of the tropical elliptic curve \overline{ $\Gamma$} (broken one) and the curve C

(solid one) and \tilde{C} (dotted one) of degree 2. The addition P+Q=M of the points on

\overline{ $\Gamma$} is realized by the intersection of \overline{ $\Gamma$} and C and \tilde{C} with the unit \mathcal{O}=V_{0}.

The primitive tangent vector of the unbounded edge of C passing through P_{\infty} is

(1, 1) with respect to the basis (-1,0) and (1, 1); and the one of \overline{ $\Gamma$} passing through P_{\infty} is

(1, 2). Therefore the intersection number of C and \overline{ $\Gamma$} at P_{\infty} is \displaystyle \min(1\times 2,1\times 1)=1 . The

intersection number of C and \overline{ $\Gamma$} at P_{\infty}' can also be computed as \displaystyle \min(2\times 1,1\times 3)=2.
Therefore \overline{ $\Gamma$} intersects C at

2\times 3-1-2=3
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points in its affine part, counting multiplicities. Thus \overline{M}\in$\Gamma$_{1}^{+} satisfying

P+Q+\overline{M}=\mathcal{O}

is the third intersection point of \overline{ $\Gamma$} and C (see figure 6).
Let us consider the rational function f\in \mathcal{M}_{1} passing through both \overline{M} and \mathcal{O}=V_{0}.

Then the third intersection point M (see figure 6) of \overline{ $\Gamma$} and the curve \tilde{C} defined by f
satisfies the addition formula

\overline{M}+M=\mathcal{O}.

This implies that we have

P+Q=M.

Thus the addition of ($\Gamma$_{1}^{+}, \mathcal{O}) can be realized as the intersection of \overline{ $\Gamma$} and tropical curves

C and \tilde{C} of degree 2 (see figure 6).

5.2.3. Tropical curves passing through given points
Next we consider the case of g\geq 3 . For the rational function x we have

(ix)+3D^{*}=i(V_{g}+V_{g}')+(\displaystyle \frac{3(g+1)}{2}-i)V_{0}+(\frac{3(g-1)}{2}-i)V_{0}'>0
for any odd g\geq 3 if and only if i=0 , 1, . . .

, 3 (g-1)/2 . Moreover we have

(ix+y)+3D^{*}=i(V_{g}+V_{g}')+(\displaystyle \frac{g+1}{2}-i)V_{0}+(\frac{5g-1}{2}-i)V_{0}'>0
for any odd g\geq 3 if and only if i=0 , 1, . . .

, (g+1)/2.
Define the tropical module \mathcal{M}_{g} to be the linear combinations of the 2g+1 rational

functions x^{\otimes i}(i=0,1, \ldots, 3(g-1)/2) and x^{\otimes i}\otimes y(i=0,1, \ldots, g+1/2) :

\displaystyle \mathcal{M}_{g}:=\{\bigoplus_{i=0}^{3(g-1)/2}a_{3(g-1)/2-i}\otimes x^{\otimes i}\oplus\bigoplus_{i=0}^{g+1/2}b_{i}\otimes x^{\otimes i}\otimes y|a_{i}, b_{i}\in \mathrm{T}\}
=\displaystyle \{\max(\overline{\max}^{/2}(a_{3(g-1)/2-i}+ix),\max(g+1)/2i=0(b_{i}+ix+y))|a_{i}, b_{i}\in \mathrm{T}\}

Then we have the following proposition in analogy to the case of even g.

Proposition 5.8. For any odd g we have

\mathcal{M}_{g}\subseteq R(3D^{*}) .

\square 
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Assume that the rational function h\in \mathcal{M}_{g} satisfies the generic condition

\left\{\begin{array}{ll}
a_{i}+a_{i+2}<2a_{i+1} & \mathrm{f}\mathrm{o}\mathrm{r} i=0, 1, . . . , \frac{3(g-1)}{2}-2,\\
b_{i}+b_{i+2}<2b_{i+1} & \mathrm{f}\mathrm{o}\mathrm{r} i=0, 1, . . . , \frac{g+1}{2}-2,\\
a_{1}-a_{0}<b_{0}-b_{1}. & 
\end{array}\right.
Then the curve C of degree 3(g-1)/2 defined by h has exactly 2g-1 vertices and is

smooth.

(\mathrm{g}+1)=2+1

(\mathrm{g}+1)=2+2

Figure 7. The tropical curve C of degree 3(g-1)/2 defined by h\in \mathcal{M}_{g}.

As in the case of even g ,
the vertex from which an unbounded edge emanating

upward is denoted by U_{i} for non‐positive i=0, -1
,

. . .

, -(g+1)/2+1 ; and the one from

which an unbounded edge emanating downward by U_{i} for positive i=1
, 2, . . .

, 3 (g-1)/2.
The coordinates of the vertices are given as follows

U_{i}=(a_{i}-a_{i-1}, (\displaystyle \frac{3(g-1)}{2}-i)(a_{i}-a_{i-1})+a_{i}-b_{0}) for i=1
, 2, . . .

, 3 (g-1)/2,

U_{-i}=(b_{i}-b_{i+1}, (i-1)b_{i+1}-ib_{i}+a_{0}) for i=0 , 1, . . .

, (g+1)/2-2.

of the remaining unbounded edges emanating from U_{-(g+1)/2+1} and U_{3(g-1)/2} are g-2
and 0 , respectively (see figure 7).
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5.2.4. Intersection numbers

We have the following lemma concerning the intersection number of \overline{ $\Gamma$} and C at

the point at infinity.

Lemma 5.9. For any odd g\geq 3 the tropical hyperelliptic curve \overline{ $\Gamma$} of genus g

intersects the tropical curve C defined by h\in \mathcal{M}_{g} with multiplicity 3(g+1)(g-2)/2 at

the point P_{\infty} at infinity.

Proof. Let the unbounded edge of \overline{ $\Gamma$} emanating from the vertex V_{0} be e_{0} . Also let

the edge of C outgoing upward from the vertex U_{i} be $\epsilon$_{i} for i=0, -1
,

. . .

, -(g+1)/2+1.
Let the remaining unbounded edge of C outgoing from U_{-(g+1)/2+1} be $\epsilon$_{-(g+1)/2} . The

primitive tangent vector of these unbounded edges are given as follows

e_{0}:(g, g+1) ,

$\epsilon$_{i} : (1, 1) for i=0, -1
,

. . .

, -(g+1)/2+1,

$\epsilon$_{-(g+1)/2}:(g-3, g-2) ,

where we choose the basis (-1,0) and (1, 1). The intersection number of \overline{ $\Gamma$} and C at

P_{\infty} can be computed as follows

\displaystyle \min(g(g-2), (g+1)(g-3))+\sum_{i=0}^{g+1/2-1}\min(g, g+1)=(g+1)(g-3)+\frac{g+1}{2}g
=\displaystyle \frac{3(g+1)(g-2)}{2}.

This completes the proof. \square 

For any odd g\geq 3 the degree of \overline{ $\Gamma$} and C are g+2 and 3(g-1)/2 , respectively. By
the Bézout theorem \overline{ $\Gamma$} intersects C at 3(g+2)(g-1)/2 points, counting multiplicities.
Note that \overline{ $\Gamma$} and C do not intersect at the point at infinity other than P_{\infty} . Therefore,
in the affine part, \overline{ $\Gamma$} intersects C at

\displaystyle \frac{3(g+2)(g-1)}{2}-\frac{3(g+1)(g-2)}{2}=3g
points, counting multiplicities.

5.2.5. Realization of addition

Let P=(P_{1}, P_{2}, \ldots, P_{g}) and Q=(Q_{1}, Q_{2}, \ldots, Q_{g}) be in $\Gamma$_{g}^{+} . Assume the 2g

points in P and Q to be in generic position. Then there exists a tropical curve C

passing through these 2g points and defined by a rational function h\in \mathcal{M}_{g} . Consider

the intersection of the tropical hyperelliptic curve \overline{ $\Gamma$} and the curve C . Since \overline{ $\Gamma$} intersects
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C at 3g points, there further exist g intersection points, counting multiplicities. Let

these intersection points be \overline{M}_{1}, \overline{M}_{2} ,
. . .

, \overline{M}_{g} . Then the principal divisor of the rational

function h defining C has the form

(h)=\displaystyle \sum_{i=1}^{g}(P_{i}+Q_{i}+M_{i}^{-})-3D^{*}
Therefore we have

P+Q+\overline{M}=\mathcal{O}.

Figure 8 shows an example of the intersection of \overline{ $\Gamma$} of g=3 and C of degree 3.

Figure 8. An intersection of the tropical hyperelliptic curve \overline{ $\Gamma$} (broken one) of genus

3 and the curve C (solid one) of degree 3. The addition (P_{1}, P_{2}, P_{3})+(Q_{1}, Q_{2}, Q_{3})+
(\overline{M}_{1},\overline{M}_{2},\overline{M}_{3})=\mathcal{O} of the triples of points on \overline{ $\Gamma$} is realized by the intersection of \overline{ $\Gamma$} and

C with the unit \mathcal{O}=(V_{0}, V_{2}, V') .

Moreover consider the curve \tilde{C} defined by a rational function f\in \mathcal{M}_{g} and passing

through the 2g points in \overline{M}=(\overline{M}_{1},\overline{M}_{2}, \ldots,\overline{M}_{g}) and \mathcal{O} . Then \overline{ $\Gamma$} intersects \tilde{C} at 3g

points, counting multiplicities. Let the remaining g intersection points be M_{1}, M_{2} ,
. . .

, M_{g}.
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Then we have

M+\overline{M}=\mathcal{O},

where M= (M_{1}, M2, . . . , M_{g}) . It follows that the g‐tuples P, Q ,
and M satisfy the

addition formula

P+Q=M

of the group ($\Gamma$_{g}^{+}, \mathcal{O}) .

§6. Conclusion

We show that there exists a surjection between the set of effective divisors of degree

g on the tropical hyperelliptic curve of genus g and its Jacobian. We also show that the

surjection is bijective if and only if g=1 . We then show that there exists a subset of the

set of effective divisors of degree g on which the surjection reduces to the bijection. It

follows that the additive group structure of the subset is induced by the bijection from

the Jacobian, which is isomorphic to the Picard group. The addition in the Jacobian of

a tropical hyperelliptic curve of genus g thus induced can be interpreted geometrically
as the addition of g‐tuples of points on the curve. We realize the addition of g‐tuples of

points on the curve in terms of the intersection of the hyperelliptic curve and a curve

of degree 3g/2 (resp. 3(g-1)/2) for even (resp. odd) g.

If g=1 then the addition of points on a tropical hyperelliptic curve induces two

kinds of dynamical systems realized as the evolutions of points on the curve; one is an

integrable system referred as the ultradiscrete QRT system and the other is a solvable

chaotic system. Since we can realize the addition of g‐tuples of points on the tropical

hyperelliptic curve of genus g via the intersection with a curve, we can construct several

dynamical systems realized as the evolutions of points on the tropical hyperelliptic curve.

We will report such dynamical systems in a forthcoming paper.
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