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Global Dynamics of Particles Driven by a Nonlinear

Reaction‐Diffusion Equation

During the pre‐history of the academic lives of most people attending this workshop,
Ya sumasa Nishiura was producing global bifurcation diagrams, examining spectral

information for singular systems, and discovering interesting dynamics. The first
author had the privilege of meeting him during those early years and forever being

influenced by his clear understanding and beautifu lly drawn pictures (on
transparencies). His more recent excursion into and elucidation of shadow systems
and behavior of solutions and coherent structures away from equilibrium states has

also influenced our outlook. This paper, using spectral theory for singularly perturbed

parabolic equations to understand temporal persistence of coherent structures clearly

reflects some of those influences. This note is dedicated to our friend and colleague,
Ya sumasa Nishiura, on the occasion of his sixtieth birthday.
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Abstract

We demonstrate the existence of spatially localized solutions to a nonlinear heat equation
which maintain their qualitative shape for all positive and negative time, being asymptotic in

both directions of time to stationary peak‐like solutions to the corresponding semilinear elliptic
equation on a bounded smooth domain. This is accomplished by first producing a new global
invariant manifold result for semilflows in Banach space. The main hypothesis for this abstract

result is the existence of approximately invariant manifolds which are approximately normally
hyperbolic. This theorem may be used in many other settings where good approximations to

dynamically coherent structures are available.
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§1. Introduction

Starting with the work of Ni and Takagi [NT1], [NT2], and [NT3], many authors

have discussed peak‐like stationary states (particles) for the following nonlinear reaction‐

diffusion equation with small diffusion parameter 0< $\epsilon$<<1

(1.1) \left\{\begin{array}{ll}
u_{t}=$\epsilon$^{2}\triangle u-u+f(u) , & x\in $\Omega$\\
\frac{\partial u}{\partial N}=0, & x\in@:
\end{array}\right.
Here  $\Omega$ is a smoothly bounded domain in \mathbb{R}^{n}, N is the outward unit normal vector to

@, and the nonlinearity f is smooth and is such that there is a non‐degenerate positive

radially symmetric ground state of the corresponding rescaled elliptic problem on \mathbb{R}^{n}.

These particular solutions, called least energy states, are almost zero on most of the

domain but have a single sharp peak (spike) at a particular point on the boundary. As is

suggested by the appellation, the approach taken was first variational, using constrained

optimization, and then employing a refined analysis of the critical point, which showed

that the profile of such a peaked solution is roughly given by a translation of the rescaled

ground state w of the elliptic equation

(1.2) \left\{\begin{array}{ll}
\triangle w-w+f(w)=0, & y\in \mathbb{R}^{n},\\
w(0)=\max w(y) , & w>0,\\
w(y)\rightarrow 0, & y\rightarrow\infty.
\end{array}\right.
It is useful to think of the case f(u)=u^{p} for some p\in(1,p^{*}) where p^{*}=\displaystyle \frac{n+2}{n-2} for

n\geq 3 and  p^{*}=\infty when  n=2
,

even though more general nonlinearities are considered

here. Note that the energy of a stationary state is then given by

E(u)\displaystyle \equiv\int_{ $\Omega$}(\frac{$\epsilon$^{2}}{2}|\nabla u|^{2}+\frac{u^{2}}{2}-\frac{u^{p+1}}{p+1}) .

In this pure power case one can consider the quadratic functional

Q(v)\displaystyle \equiv\int_{ $\Omega$}(\frac{$\epsilon$^{2}}{2}|\nabla v|^{2}+\frac{v^{2}}{2})
and minimize it on the manifold

\displaystyle \mathcal{H}\equiv\{v:\int_{ $\Omega$}v^{p+1}=1\}.
The constraint introduces a Lagrange multiplier and a scaling of the minimizer, u= $\alpha$ v,

gives the desired solution.

We can also see that the peak should have its maximum exactly on @, located

close to where @  $\Omega$ has greatest mean curvature. To explain this, note that  Q has two
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parts, bulk and interfacial. In minimizing Q among states in \mathcal{H} one can make the bulk

energy arbitrarily close to zero by shrinking the support of functions while staying in \mathcal{H}

(possible because p>1 ) but at a cost in having a larger interfacial energy. These are

balanced at the  $\epsilon$‐scaled ground state profile. That profile is almost zero except for an

 $\epsilon$‐small region inside which the spike occurs. The bulk energy is roughly proportional to

the volume of the region in  $\Omega$ where the spike is (supported� and essentially remains the

same regardless of the location of the peak in the interior of the domain. However, the

interfacial energy is roughly proportional to the surface area of this region lying within

 $\Omega$ and furthermore, the support of the spike can be reduced at no interfacial energy

cost by having the spike on @. Thus, the energy is minimized by having this region be

spherical, and further by the center being on @. A final small reduction is achieved,
when  $\epsilon$ is small, by having the center (the location of the peak) on the boundary at the

point where the mean curvature is greatest, since at such a point we maximize the use

of @  $\Omega$ in bounding the part of the peak region that lies in  $\Omega$ . The analysis performed

by Ni and Takagi makes rigorous this reasoning.
The key point to note is that, when  $\epsilon$ is small, the scaled ground state, translated to

the boundary, is a very good approximation to the stationary solution, and that moving
it along the boundary changes the energy slightly, according to the mean curvature of

the boundary.

The main result presented here, which is given in complete detail in [BLZ5], takes

this key idea and instead of seeking only stationary states, places a particle (peak state)
at any point of @  $\Omega$ and allows it to crawl along the boundary, maintaining its rough

shape, as it seeks a location that minimizes  Q ,
at least locally. In fact we construct a so‐

lution to (1.1) which has the form of an �scaled ground state centered at a point moving
on @, and furthermore, the solution exists globally in time, forward and backward.

Of course, a translated copy of an  $\epsilon$‐scaled ground state does not satisfy the bound‐

ary condition on @  $\Omega$ and so some small modification is needed so that the boundary
condition is satisfied. On the other hand, this initial state must be very special for

it to produce a solution that exists backward in time. Our approach is to realize the

existence of such initial states (and hence global in time solutions) by establishing the

existence of a global invariant manifold for (1.1) as a graph over (and very close to) the

manifold,  M_{ $\epsilon$} , (in function space) that is obtained by translating the  $\epsilon$‐scaled ground
state to each point of @  $\Omega$ and modifying to satisfy the boundary condition. This im‐

age of @  $\Omega$ in function space is a smooth manifold (as smooth as @) and it is almost

invariant under (1.1); indeed, each point of it is almost stationary. Also, it is almost

normally hyperbolic in the following sense (to be made precise later): The operator

obtained by linearizing the right hand side of (1.1) at each point of the manifold has

a codimensional‐n eigenspace corresponding to negative spectrum (bounded away from



4 Peter W. Bates, Kening Lu, and Chongchun Zeng

 0) ,
a one‐dimensional eigenspace corresponding to a large positive eigenvalue, and a

complementary (n-1) ‐dimensional eigenspace that is almost the tangent space of the

manifold and which corresponds to eigenvalues that are close to zero.

The outcome is that there must exist a manifold \tilde{M}_{ $\epsilon$} ,
that is very close to M_{ $\epsilon$} which

is truly invariant under (1.1). Examples where approximately invariant manifolds are

constructed for singularly perturbed parabolic equations, in some cases leading to truly
invariant manifolds, may be found in [FH, CP1, CP2, ABF, BX1, BX2, AF, BFu, Wei],
for instance.

The idea described in the above paragraph is abstract and rather general. In

the next section we present the general theorem for semiflows in Banach space which

essentailly states that if a C^{1} semiflow has a compact manifold that is approximately
invariant and approximately normally hyperbolic, then it has nearby a truly normally

hyperbolic invariant manifold.

The abstract result is then applied to our PDE to obtain the following theorem:

Theorem 1.1. Under the assumptions mentioned above, for any sufficiently
small  $\epsilon$>0 ,

there exists a smooth mapping $\Psi$_{ $\epsilon$} : @  $\Omega$\rightarrow W2,2 () such that

1. For any q\in(n, \infty) ,
there exists C>0 independent of p \in @  $\Omega$ and sufficiently small

 $\epsilon$>0 such that

|$\Psi$_{ $\epsilon$}(p)-w(\displaystyle \frac{-p}{ $\epsilon$})|_{C^{0}((\partial $\Omega$,W^{2,q}( $\Omega$))}\leq C $\epsilon$
|$\Psi$_{ $\epsilon$}(p)-w(\displaystyle \frac{-p}{ $\epsilon$})|_{C^{1}((\partial $\Omega$,W^{2,q}( $\Omega$))}\rightarrow 0 as  $\epsilon$\rightarrow 0.

2. There exists a unique  p\in@ $\Omega$ such that \displaystyle \max_{x\in\overline{ $\Omega$}}$\Psi$_{ $\epsilon$}(p)(x)=$\Psi$_{ $\epsilon$}(p)(p) . Moreover

|p-p|<C$\epsilon$^{2} for some C>0 independent of 0< $\epsilon$<<1.

3. M_{ $\epsilon$}^{*} \equiv $\Psi$ (@) is a normally hyperbolic invariant manifold of the flow generated by

equation (1.1).

4. Equation (1.1) induces a vector field  Y(p) on @  $\Omega$ that satisfies

|Y_{ $\epsilon$}(p)-c$\epsilon$^{3}\nabla $\kappa$(p)|\leq C$\epsilon$^{4}

for some C>0 independent of  p\in T_{p}\partial $\Omega$ and sufficiently small  $\epsilon$>0 and c>0

determined only by w
,

where  $\kappa$(p)=H(p)\cdot N(p) and H(p) is the mean curvature

vector of @.

§2. Semiows in Banach Space

Let X be a Banach space and let T be a C^{1} map from X into X . We do not assume

invertibility and so the results will apply to semi‐dynamical systems such as the time‐t

map of the solution operator for a nonlinear parabolic partial differential equation.
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Suppose that there exists a smooth manifold, \tilde{M}
,

embedded in X
,
which is approx‐

imately invariant with respect to T
,
that is, for some small  $\delta$>0

T(\tilde{M})\subset B(\tilde{M},  $\delta$)

and

\tilde{M}\subset B(T(\tilde{M}),  $\delta$) ,

where B(\tilde{M},  $\delta$)= {x\in X : dist (x,\tilde{M})< $\delta$} is a  $\delta$ neighborhood of \tilde{M}.

Our general results include the cases where the manifold is immersed, rather than

embedded in X but here we only discuss the most straightforward situation of embedded

manifolds.

The questions which are addressed here concern the existence of a true invariant

manifold for T and the qualitative behavior of the orbits near this invariant manifold. In

general there will be no true invariant manifold for T even in finite‐dimensional space. In

fact our results are new even in the finite‐dimensional setting. In order to guarantee the

existence of a true invariant manifold, a nondegeneracy condition on the approximately
invariant manifold is necessary. This condition is approximate normal hyperbolicity.
The condition gives, for each m\in\tilde{M} ,

a decomposition X=X_{m}^{c}\oplus X_{m}^{u}\oplus X_{m}^{s} ,
with X_{m}^{c}

an approximation of the tangent space to \tilde{M} at m and such that

(a) This splitting is approximately invariant under the linearized map, DT,

(b) DT(m)|_{X_{m}^{u}} expands and does so to a greater degree than does DT(m)|_{X_{m}^{c}} while

DT(m)|_{X_{m}^{\mathrm{s}}} contracts and does so to a greater degree than does DT(m)|_{X_{m}^{c}},

(c) The splitting varies in a Lipschitz continuous way and the angles between the sub‐

spaces is uniformly bounded below.

The superscripts c, u and s stand for �center,� �unstable,� and �stable,� respec‐

tively.

Heuristically, our main results may be summarized by

Theorem 2.1.

Suppose that \tilde{M} is a C^{1} manifold which is approximately invariant and approxi‐

mately normally hyperbolic with respect to T
,

the approximation being sufficiently good
and the �twisting� of \tilde{M} being uniformly bounded, then

(1) Existence: T has a true C^{1} normally hyperbolic invariant manifold M near \tilde{M}.

(2) Smoothness: If T is C^{k} and a �spectral gap� condition holds, then M is C^{k}.

(3) Stable and Unstable Manifolds: There is a stable manifold W^{s}(M) and an unstable

manifold W^{u}(M) of T at M.
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(4) Invariant Foliations: Both W^{s}(M) and W^{u}(M) are foliated by invariant foliations:

W^{s}(M)=\displaystyle \bigcup_{m\in M}W_{m}^{ss} and W^{u}(M)=\displaystyle \bigcup_{m\in M}W_{m}^{uu},

where leaves W_{m}^{ss} and W_{m}^{uu} are C^{k} submanifO lds and are Hölder continuous in m.

(5) Characterization of Foliations: For any x, \tilde{x}\in W_{m}^{ss}, |T^{n}(\tilde{x})-T^{n}(x)|\rightarrow 0 exponen‐

tially, as  n\rightarrow+\infty ; For any  y, \tilde{y}\in W_{m}^{uu}, |T^{n}(\tilde{y})-T^{n}(y)|\rightarrow 0 exponentially, as

n\rightarrow-\infty.

(6) Semiflow: If \tilde{M} is an approximately invariant manifold of time‐t0 map T^{t_{0}} of a

semiflow at t_{0}>0 ,
then the semiflow T^{t} has a normally hyperbolic invariant man‐

ifold.

Remarks: We do not assume that M is compact or finite‐dimensional. Also, M is

not necessarily an embedded manifold, but may be an immersed manifold. We assume

that the immersed manifold M does not twist very much locally, and DT has a certain

uniform continuity in a neighborhood of M . Note that in item 5, above, it is part of

the result that T^{-1} exists on the unstable manifold.

In the case of a C^{2} manifold, the conditions in the theorem can be more easily
described:

Assume \mathrm{a}. ) M is a C^{2} manifold embedded into a Banach space so that there exists

r>0 and for any x\in M ,
the r‐neighborhood of x in M can be written as the graph

of a mapping with C^{2} bounds uniform in x. \mathrm{b}. ) the semiflow T^{t} has finite C^{2} norm on

B(M, r) for t on any finite interval. \mathrm{c}. ) The projections associated to the approximately
normal hyperbolic splitting are uniformly bounded and have a finite Lipschitz constant,

where the former means that the angle between the splitting is uniformly bounded from

below and the latter means the splitting changes in a Lipschitz fashion with respect to

the base point. Roughly, let  $\eta$>0 measure the error of the approximate invariance of M

under T^{t_{0}} for some t_{0}>0 and  $\sigma$>0 measure the error of the approximate invariance of

the splitting under DT^{t_{0}} . There exist (i) $\sigma$_{0} depending on the upper bound for the norms

of the projection operators in the splitting, the C^{2} bounds of T^{t_{0}} and the contracting
rates of DT^{t_{0}} in the stable direction, expanding rates in the unstable direction, and

its forward and backward bounds in the tangent direction and (ii) $\eta$_{0} , depending, in

addition, on the C^{2} bounds on both the geometry and the embedding of M
,

and the

Lipschitz bounds of the splitting such that if  $\sigma$<$\sigma$_{0} and  $\eta$<$\eta$_{0} ,
then the conclusions of

the above theorem hold. The way in which these constants depend upon the parameters

is given in [BLZ5], for instance in Theorem 4.2 and the lemmas that give its proof.

The above result can be viewed as an extension of [BLZ1] and [BLZ2] where per‐

turbations of semiflows are considered. Those two papers are themselves extensions to
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semiflows to the fundamental results of Fenichel [F1, F2, F3] and of Hirsch, Pugh and

Shub [HPS] on persistence of invariant manifolds for flows (or homeomorphisms). Those

papers have formed the basis for geometric singluar perturbation theory [JK, CKRTJ2]
and have been crucial in the analysis of many equations arising in the applied sciences,
such as the FitzHugh‐Nagumo equations [CKRTJ] and the equations of gas dyanamics

[Sch], for instance.

The results presented here likewise should be applicable in many situations where

one may easily find manifolds of approximately stationary states or coherent structures

that change slowly in time. This is especially common in systems of singularly perturbed
nonlinear parabolic PDEs such as the above example, the Cahn‐Hilliard equation, and

for the Gierer‐Meinhardt or the Gray‐Scott systems, where distinctive patterned states

are found as the singular parameter approaches zero.

§3. Some ideas behind the proofs:

We use an approach due to Hadamard [H] in which any Lipschitz graph is trans‐

ported by the map or semiflow, producing a new graph and the operation is a contraction

on the space of Lipschitz graphs.
We actually get a Center‐Stable Manifold W^{cs} and a Center‐Unstable Man‐

ifold W^{cu} and intersect them to get \tilde{M}.

CENTER‐UNSTABLE MANIFOLD:

Let

M^{u}\equiv\{m+x^{u} : m\in M, x^{u}\in X_{m}^{u}, |x^{u}|< $\delta$\}.

This is approximately stably normally hyperbolic and is approximately �overflowing��
invariant.

Let $\Gamma$_{u} be the set of  $\mu$‐Lipschitz graphs over  M^{u} for some small  $\mu$ . As  T maps each mem‐

ber of $\Gamma$_{u} forward, the graph is �stretched tangentially� and �compressed normally�

Thus, it is mapped by T into $\Gamma$_{u} and, furthermore, the mapping is a contraction in

the \displaystyle \sup norm. The fixed graph is  W^{cu} . The details involve the use of local coordinate

representations of graphs and the expression of the approximate normal hyperbolicity
of the mapping in local coordinates. This is fairly messy but the essence of the proof is

what is stated above.

CENTER‐STABLE MANIFOLD:

For W^{cs} ,
we consider $\Gamma$_{s} of Lipschitz graphs over M^{s}

,
the corresponding stable bundle.

Since T shrinks these graphs tangentially and expands normally, $\Gamma$_{s} is not preserved
under T . One would like to take the inverse image of each member of  $\Gamma$ under  T

,
which
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would again be a contraction. However, T is not a homomorphism (e.g. the time‐1 map

of a parabolic flow), and so it seems that one cannot find a preimage of the graph.

What we show is the following

Lemma Let h\in$\Gamma$_{s} . For each point m+x^{s}\in M^{s} ,
with |x^{s}| small, there is a point

x^{u}\in X_{m}^{u} such that T(m+x^{s}+x^{u})\in \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}(h) .

This is proved using a contraction argument but the essential idea is that the unstable

fiber m+x^{s}+X_{m}^{u} is stretched by T in the unstable direction while in the transverse

direction it is held close to M and so the image intersects \mathrm{g}\mathrm{r}(h) at a single point, y

say. Thus, for each m+x^{s}\in M^{s} there is a point x^{u}=x^{u}(m+x^{s})\in X_{m}^{u} with

T(m+x^{s}+x^{u})=y\in \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}(h) .

This provides a graph \mathrm{g}\mathrm{r}(\tilde{h}) over M^{s} that maps into \mathrm{g}\mathrm{r}(h) . Using the approximate
normal hyperbolicity, we show that \tilde{h}\in$\Gamma$_{s} and that the mapping h\rightarrow\tilde{h} is a contraction,
and so has a fixed point h_{0}\in$\Gamma$_{s} . This fixed graph is W^{cs} ,

the center‐stable manifold.

Details for the above are found in [BLZ5], Theorem 4.2, in particular.

Since the bundles X^{s} and X^{u} are transverse, W^{cs} and W^{cu} intersect transversally
in an invariant manifold \tilde{M}.

§4. The application

We build an approximately invariant approximately normally hyperbolic manifold by

taking the rescaled radially symmetric ground state w satisfying

\left\{\begin{array}{ll}
\triangle w+f(w)=0, & y\in \mathbb{R}^{n},\\
w(0)=\max w(y) , & w>0,\\
w(y)\rightarrow 0, & |y|\rightarrow\infty.
\end{array}\right.
It is assumed that f is such that w is unique and nondegenerate (see [BLP]).
With L_{0}\equiv\triangle+f'(w):W^{2,q}(\mathbb{R}^{n})\rightarrow L^{q}(\mathbb{R}^{n}) ,

its spectrum satisfies  $\sigma$(L_{0})\cap(-b, \infty)=
\{$\lambda$_{1}, 0\} ,

for some b>0;$\lambda$_{1}>0 is the principle eigenvalue, and the eigenspace of  $\lambda$=0

is spanned by

\displaystyle \{\frac{\partial w}{\partial y_{j}}:j=1, 2, . :. , n\}.
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For u\in W^{2,q} define

|u|_{k, $\epsilon$}^{q}=$\Sigma$_{i=0}^{k}$\epsilon$^{qi-n}$\Sigma$_{| $\alpha$|=i}|\partial^{ $\alpha$}u|_{L^{q}( $\Omega$)}^{q}.
The phase space will be taken as X= (W^{2,q}( $\Omega$), | |_{0, $\epsilon$}) . Let L_{*}=$\epsilon$^{2}\triangle+f'(0) with the

domain

D(L_{*})=\displaystyle \{u\in H^{2}( $\Omega$)|\frac{\partial u}{\partial N}(x)=0, x\in\partial $\Omega$\}.
Here we skip some details to show that the conditions of the abstract theorem hold in

the hope of giving the general ideas.

For any p \in @, let

\displaystyle \tilde{w}_{ $\epsilon$,p}(x)=w(\frac{x-p}{ $\epsilon$}) .

Since \tilde{w}_{ $\epsilon$,p} does not satisfy the boundary condition, it is modified as follows:

Given any v : @  $\Omega$\rightarrow R, let  h be the solution of

\left\{\begin{array}{ll}
$\epsilon$^{2}\triangle h+f'(0)h=0, & x\in $\Omega$,\\
\frac{\partial h}{\partial N}=v, & x\in@:
\end{array}\right.
Define a linear operator Bc by Bc(v) =h . For p \in @, let

 W_{ $\epsilon$,p}=\displaystyle \tilde{w}_{ $\epsilon$,p}-Bc(\frac{\partial\tilde{w}_{ $\epsilon$,p}}{\partial N}) .

Thus, we may define a smooth imbedding $\psi$_{ $\epsilon$} : @  $\Omega$\rightarrow L2 () by

$\psi$_{ $\epsilon$}(p)\equiv W_{ $\epsilon$,p}

and the approximate invariant manifold

M_{ $\epsilon$}=$\psi$_{ $\epsilon$}(\partial $\Omega$) .

The boundary correction Bc(\displaystyle \frac{\partial\tilde{w}_{ $\epsilon$,p}}{\partial N}) is of order O( $\epsilon$) in terms of | |_{k, $\epsilon$} for any k\geq 0,

up to a restiriction from the regularity of the boundary and f . In fact, using elliptic
estimates and the trace theorem, we have, for k\geq 0,

|Bc(v)|_{k+1, $\epsilon$}^{q}\leq C$\Sigma$_{j=0}^{k}$\epsilon$^{3+qj-n}|v|_{W^{j,q}(\partial $\Omega$)}^{q}.
In our case, because \tilde{w}_{ $\epsilon$,p} is exponentially localized with spatial scale  $\epsilon$ and because it

is radially symmetric, for x \in @  $\Omega$ with |x-p|=O( $\epsilon$) ,
the angle between \nabla\tilde{w}_{ $\epsilon$,p}(x) and

the normal N(x) is O( $\epsilon$) . Thus,

|\displaystyle \frac{\partial\tilde{w}_{ $\epsilon$,p}}{\partial N}|_{W_{k, $\epsilon$}^{q}(\partial $\Omega$)}=O( $\epsilon$) ,
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and the claim above follows. This implies implies

|$\psi$_{ $\epsilon$}(p)-\tilde{w}_{ $\epsilon$,p}|_{k+1, $\epsilon$}=O( $\epsilon$) ,

and so $\psi$_{ $\epsilon$}(p) satifies the boundary condition and

|($\epsilon$^{2}\triangle-1)$\psi$_{ $\epsilon$}(p)+f($\psi$_{ $\epsilon$}(p))|_{k-1, $\epsilon$}=|f($\psi$_{ $\epsilon$}(p))-f(\tilde{w}_{ $\epsilon$,p})|_{k-1, $\epsilon$}=O( $\epsilon$) ,

i.e., it is approximately stationary (and so approximately invariant) under the timet0

solution operator of the nonlinear parabolic equation, with error O( $\epsilon$) .

Let v_{1}>0 be the first eigenfunction, corresponding to the eigenvalue $\lambda$_{1} ,
of the linearized

operator L_{0}.
For any p \in @, define

\displaystyle \tilde{v}_{ $\epsilon$,p}(x)=v_{1}(\frac{x-p}{ $\epsilon$}) , V_{ $\epsilon$}(p)=\tilde{v}_{ $\epsilon$,p}-Bc(\frac{\partial}{\partial N}\tilde{v}_{ $\epsilon$,p}) ,

and

X_{ $\epsilon$,p}^{u}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{V_{ $\epsilon$}\}, X_{ $\epsilon$,p}^{c}=T_{$\psi$_{ $\epsilon$}(p)}M_{ $\epsilon$}, X_{k, $\epsilon$,p}^{s}=(X_{ $\epsilon$,p}^{c}\oplus X_{ $\epsilon$,p}^{u})^{\perp},
where the L^{2} orthogonal complement defining X^{s} is taken in X . Then one can show that

this splitting is approximately invariant under the linearized \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}-t_{0} solution operator

at any point of M_{ $\epsilon$} ,
with error O( $\epsilon$) .

The constructed manifold M_{ $\epsilon$} is approximately invariant and approximately normally

hyperbolic in the sense of the abstract results, provided  $\epsilon$ is sufficiently small.

Applying Theorem 3.1 we obtain a truly invariant manifold \tilde{M}_{ $\epsilon$} in a small W^{k,q}\subset C(\overline{ $\Omega$})
neighborhood of M_{ $\epsilon$} ,

which therefore consists of spike‐like functions.

Finally, one can compute the vector field on \tilde{M}_{ $\epsilon$} induced by the equation, obtaining a

dynamical system on @  $\Omega$ for the evolving location of the maximum of the spike. Details

for the above are found in [BLZ5], section 7.
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