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Gradient flow structure of mean‐field models for

micro phase separation

By

Yoshihito OSHITA *

§1. Introduction

Homopolymer molecules are the chain of one kind of monomers, which can be

made by polymerization. Due to repulsive forces between unlike monomers, say A‐

and B‐monomers, the different homopolymers tend to segregate. This is called phase

separation.
On the other hand, diblock copolymer molecules consist of subchains of two differ‐

ent type of monomers. In the case of copolymers, since the subchains are chemically

bonded, two polymer chains can be forced to mix on a macroscopic scale. However on

a microscopic scale, the two polymer chains still segregate, and micro‐domains rich in

A‐ and B‐monomers respectively form patterns. This is called micro phase separation.
For more physical background on this phenomenon we refer to [3, 10].

Energetically favorable configurations have been characterized in the OhtaKawasaki

theory [22] by minimizers of an energy functional of the form

E_{ $\epsilon$}(u)=\displaystyle \int_{(0,L)^{3}}\frac{ $\epsilon$}{2}|\nabla u|^{2}+\frac{1}{ $\epsilon$}W(u)+\frac{ $\sigma$}{2}|(-\triangle)^{-1/2}(u-\overline{u})|^{2}dx.
Here  $\Omega$=(0, L)^{3}\subset \mathbb{R}^{3} is the domain covered by the copolymers and u is the density
of one of the two monomers. The function W is a double potential with two global
minima at 0 and 1,  $\epsilon$ a small parameter depending on the size and mobility of monomers,

\displaystyle \mathrm{u}=\frac{1}{L^{3}}\int_{(0,L)^{3}}udx\in(0,1) the average density and  $\sigma$\in \mathbb{R}_{+} is a parameter related to the

polymerization index. The first term in the energy prefers large blocks of monomers,
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the second favors segregated monomers and the third term prefers a uniform state

or a very fine mixture. Competition between these terms leads to minimizers of E_{ $\epsilon$}

which represent micro‐phase separation. Thus, this variational problem of characterizing
minimizers of E_{ $\epsilon$} can be considered as a prototype model of periodic pattern formation.

In the limit  $\epsilon$\rightarrow 0 the energy E_{ $\epsilon$} can be replaced by its sharp interface limit

(1.1) E(G)=\displaystyle \mathcal{H}^{2}(\partial G)+\frac{ $\sigma$}{2}\int_{(0,L)^{3}}|(-\triangle)^{-1/2}($\chi$_{G}- $\rho$)|^{2}dx,
where G\subset[0, L)^{3} denotes the region covered by, say, A‐monomers, $\chi$_{G} the character‐

istic function of G,  $\rho$=\displaystyle \overline{$\chi$_{G}}=\frac{|G|}{L^{3}}\in(0,1) the volume fraction, and \mathcal{H}^{2} denotes two

dimensional Hausdorff measure. We observe also on the level of the sharp interface

model the competition between phase separation on the large scale, which is preferred

by the first term, and fine mixtures that are preferred by the nonlocal term. Indeed,

0=\displaystyle \inf_{G\in M}\int_{(0,L)^{3}}|(-\triangle)^{-1/2}($\chi$_{G}- $\rho$)|^{2}dx, M=\{G\subset[0, L)^{3};|G|= $\rho$ L^{3}\}
is not attained on M since its minimizing sequence oscillates more and more rapidly.

Starting with the pioneering work [19], where the OhtaKawasaki theory is formu‐

lated on a bounded domain as a singularly perturbed problem and the limiting sharp
interface problem as  $\epsilon$\rightarrow 0 is identified, there has been a bulk of analytical work.

Minimizers of the energy functionals have been characterized in [1, 4, 5, 24], the ex‐

istence/stability of stationary solutions has been investigated in [20, 21, 23, 25] and a

time dependent model has been considered in [9, 11].
A natural way to set up a model for the evolution of the copolymer configuration

that decreases energy and preserves the average density is to consider the gradient flow

of the energy with respect to the H^{-1} norm. For E_{ $\epsilon$} this leads to

u_{t}=\displaystyle \triangle(- $\epsilon$\triangle u+\frac{1}{ $\epsilon$}W'(u))- $\sigma$(u-\overline{u}) .

The sharp interface limit of the evolution equation is the following extension of the

MullinsSekerka evolution for phase separation in binary alloys [13]. The normal velocity
V of the interface \partial G=\partial G(t) satisfies

(1.2) V=[\nabla w\cdot\vec{n}] on \partial G,

where [wn] denotes thejump of the normal component of the gradient of the potential
across the interface. Here \vec{n} denotes the unit outer normal to G and

[f]=\displaystyle \lim_{x\not\in G}f(x)- \lim_{x\in G,x\rightarrow\partial Gx\rightarrow\partial G}f(x)
.
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The chemical potential w is for each time determined via

(1.3) -\triangle w=0 in (0, L)^{3}\backslash \partial G,

(1.4) w= $\kappa$+ $\sigma$(-\triangle)^{-1}($\chi$_{G}- $\rho$) on \partial G,

where  $\kappa$ is the mean curvature (the sum of the principal curvatures) of \partial G . We are

interested in the case that the volume of G(t) is preserved in time and can thus im‐

pose Neumann or periodic boundary conditions for w on \partial(0, L)^{3} . In the following we

will consider a periodic setting and hence always require that the potential w and the

phase domain G are (0, L)^{3}‐periodic. Local well‐posedness of this evolution has been

established in [8].
The evolution defined by (1.2)-(1.4) has an interpretation as a gradient flow of the

energy (1.1) on a Riemannian manifold.

To define a metric tensor, consider the manifold of (0, L)^{3} ‐periodic subsets of \mathbb{R}^{3}

with fixed volume, that is,

\mathcal{M}= { G\subset \mathbb{R}^{3};G is (0, L)^{3} ‐periodic, |G\cap[0, L)^{3}|=\mathrm{V}\mathrm{o}\mathrm{l} },

whose tangent space T_{G}\mathcal{M} at an element G\in \mathcal{M} is described by all kinematically
admissible normal velocities of \partial G ,

that is,

T_{G}\mathcal{M}=\{V:\partial G\rightarrow \mathbb{R} ; V is (0, L)^{3} ‐periodic, \displaystyle \int_{\partial G\cap[0,L)^{3}}VdS=0\}
The Riemannian structure is given by the following metric tensor on the tangent space:

(1.5) g_{G}(V^{1}, V^{2})=\displaystyle \int_{[0,L)^{3}}\nabla w^{1} . \nabla w^{2}dx,

where w^{ $\alpha$} is (0, L)^{3} ‐periodic and solves

-\triangle w^{ $\alpha$}=0 in \mathbb{R}^{3}\backslash \partial G,

[\nabla w^{ $\alpha$}\cdot \mathrm{n}]=V^{ $\alpha$} on \partial G

for V^{ $\alpha$}\in T_{G}\mathcal{M}( $\alpha$=1,2) .

(1.2)-(1.4) can be regarded as the gradient flow of the energy (1.1) with respect to

the metric g . In other words, V satisfies

(1.6)  g_{G(t)}(V,\tilde{V})=-\langle DE(G(t)) , \tilde{V}\rangle

for all \tilde{V}\in T_{G(t)}\mathcal{M}.
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§2. Restriction to spherical particles and mean‐field models

In the following we are interested in the regime where the fraction of A‐monomers is

much smaller than the one of B‐monomers. In this case the A‐phase consists of a set of

many small disconnected approximately spherical particles. This has been established in

the sense of  $\Gamma$‐convergence for the sharp‐interface functional in [6]. For our evolutionary

problem it seems hence natural to restrict the evolution (1.2)-(1.4) to spherical particles

by restricting the gradient flow to such morphologies.
For that purpose we define the submanifold \mathcal{N}\subset \mathcal{M} of all sets G which are the

union of disjoint balls

G=\displaystyle \bigcup_{i}B_{R_{i}}(X_{i}) , \mathrm{m}\mathrm{o}\mathrm{d} L\mathbb{Z}^{3}
where the centers \{X_{i}\}_{i} and the radii \{R_{i}\}_{i} are variable. Hence \mathcal{N} can be identified

with an open subspace of the hypersurface

\displaystyle \{\mathrm{Y}=\{R_{i}, X_{i}\}_{i};(R_{i}, X_{i})\in \mathbb{R}_{+}\times[0, L)^{3}, \frac{4 $\pi$}{3}\sum_{i}R_{i}^{3}=\mathrm{V}\mathrm{o}\mathrm{l}\}\subset \mathbb{R}^{4N},
where N is the number and i=1, \cdots, N an enumeration of the particles with centers

in the periodic box [0, L)^{3} . Since the normal velocity V satisfies V=\displaystyle \frac{dR_{i}}{dt}+\frac{dX_{i}}{dt}\cdot \mathrm{n} on

\partial B_{R_{i}}(X_{i}) ,
the tangent space can be identified with the hyperplane

T_{\mathrm{Y}}\displaystyle \mathcal{N}=\{\mathrm{Z}=\sum_{i}(V_{i}\frac{\partial}{\partial R_{i}}+$\xi$_{i}\cdot\frac{\partial}{\partial X_{i}});(V_{i}, $\xi$_{i})\in \mathbb{R}\times \mathbb{R}^{3}, \displaystyle \sum_{i}R_{i}^{2}V_{i}=0\}\subset \mathbb{R}^{4N},
such that V_{i} describes the rate of change of the radius of particle i and $\xi$_{i} the rate of

change of its center. We use the abbreviation \mathrm{Z}=\{V_{i}, $\xi$_{i}\}_{i} for \displaystyle \mathrm{Z}=\sum_{i}(V_{i}\frac{\partial}{\partial R_{i}}+$\xi$_{i}\cdot\frac{\partial}{\partial X_{i}}) .

It turns out to be notationally convenient to consider the normalized energy

E(\mathrm{Y})=E_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}}(\mathrm{Y})+ $\sigma$ E_{\mathrm{n}1}(\mathrm{Y}) ,

where

E_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}}(\displaystyle \mathrm{Y})=\frac{1}{2}\mathcal{H}^{2}(\partial G)=4 $\pi$\sum_{i}\frac{R_{i}^{2}}{2},
E_{\mathrm{n}1}(\displaystyle \mathrm{Y})=\frac{3}{2}\int_{(0,L)^{3}}|\nabla $\mu$|^{2}dx

with  $\mu$ being (0, L)^{3}‐periodic and solving

-\triangle $\mu$=$\chi$_{G}-\overline{$\chi$_{G}}.

Let w be the (0, L)^{3} ‐periodic function solving

-\triangle w=0 in \mathbb{R}^{3}\backslash \partial G,

[\nabla w\cdot \mathrm{n}]=V_{i}+$\xi$_{i}\cdot \mathrm{n} on \partial B(X)
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for \mathrm{Z}=\{V_{i}, $\xi$_{i}\}_{i}\in T_{\mathrm{Y}}\mathcal{N}.
From now on we consider an arrangement of particles as described above which

evolves according to the gradient flow equation. Then we see that w satisfies

(2.1) \displaystyle \frac{1}{4 $\pi$ R_{i}^{2}}\int_{\partial B_{R_{i}}(X_{i})}(w-\frac{1}{R_{i}}-3 $\sigma \mu$)dS= $\lambda$(t)
and

(2.2) \displaystyle \int_{\partial B_{R_{i}}(X_{i})}(w-3 $\sigma \mu$)\mathrm{n}dS=0
for all i such that R_{i}>0 ,

with a Lagrange parameter  $\lambda$(t) that ensures volume conser‐

vation. Equations (2.1) and (2.2) are the analogue of (1.4) in the restricted setting.
We remark that in general one cannot expect that a smooth solution exists globally.

In fact, if the initial configuration consists of a collection of nonoverlapping balls, short

time existence and uniqueness of a smooth solution can be established as it has been done

in [14] for a related case without nonlocal term. If a particle disappears, the evolution

is not smooth; however one can extend the solution continuously by just starting again
with the new configuration. The evolution cannot be extended further when particles
collide.

The leading order asymptotics of the evolution have been identified by formal

asymptotics in [7, 12]. If \mathcal{R} denotes the average radius (see (2.5) for a precise defi‐

nition) then it turns out that on a time scale

t_{R}\sim \mathcal{R}^{3}

migration of particles can be neglected and the evolution of the radii is governed by
an extension of the classical LSW growth law for coarsening of droplets. More pre‐

cisely, in a dilute regime (see below for a precise definition), the radii of particles evolve

approximately according to

(2.3) \displaystyle \frac{d}{dt}R_{i}\sim\frac{1}{R_{i}^{2}}( $\lambda$ R_{i}-1- $\sigma$ R_{i}^{3}) ,

where  $\lambda$= $\lambda$(t) is such that the volume fraction of the particles is conserved. In

an early stage this means that larger particles grow while smaller ones shrink and

disappear. However, the term  $\sigma$ R_{i}^{3} which comes from the nonlocal energy prevents

indefinite coarsening and leads to a stabilization of the remaining particles around a

stable radius. On a time scale

t_{X}\sim-\mathcal{R}^{3}1,
 $\rho$

where  $\rho$ is the volume fraction of particles, migration of particles sets in and typically
leads to the self‐organization of particles in lattice structures.
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We are interested in the mean‐field model on a time span of order \mathcal{R}^{3}. [15] rigorously
derive a mean‐field model for the evolution of the size distribution of particles in the

limit of vanishing volume fraction, and show that particles, if initially well separated,
remain separated over the time span we are considering and thus well‐posedness is

ensured.

To describe the mean‐field models for this time regime, we now introduce the

relevant scales and parameters. We define the number density \displaystyle \frac{1}{d^{3}} of particles by

(2.4) d^{3}\displaystyle \sum_{i}1=L^{3}
and the average volume \displaystyle \frac{4 $\pi$}{3}\mathcal{R}^{3} by

(2.5) \displaystyle \sum_{i}R_{i}(0)^{3}=\mathcal{R}^{3}\sum_{i}1.
In what follows we use the abbreviation \displaystyle \sum_{i}=\sum_{i:R_{i}>0}.

We identify the evolution in the limit of vanishing volume fraction of particles.
More precisely, we consider a sequence of systems characterized by the parameter

(2.6)  $\epsilon$:=(\displaystyle \frac{\mathcal{R}}{d})^{1/2}
in the limit  $\epsilon$\rightarrow 0.

Note that we define here the initial number density and the initial average volume.

During the evolution d and \mathcal{R} typically increase in time; the parameter  $\epsilon$ is however

preserved during the evolution.

It is well‐known that there is, analogous to electrostatics, a crucial intrinsic length
scale in the system, the screening length

(2.7)  L_{sc}:=(\displaystyle \frac{d^{3}}{\mathcal{R}})^{1/2},
which describes the effective range of particle interactions.

In the case that L\ll L_{sc} ,
that is in the very dilute case, one finds on the time

scale of order \mathcal{R}^{3} that the number density of particles with radius r
,

denoted by v(t, r)
(suitably normalized), satisfies

(2.8) \displaystyle \partial_{t}v+\partial_{r}(\frac{1}{r^{2}}( $\lambda$ r-1- $\sigma$ r^{3})v)=0
with

(2.9)  $\lambda$(t)=\displaystyle \frac{\int_{\mathbb{R}_{+}}vdr+ $\sigma$\int_{\mathbb{R}_{+}}r^{3}vdr}{\int_{\mathbb{R}_{+}}rvdr}.
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We observe that this is just the formulation of (2.3) on the level of a size distribution.

On the other hand, if L\sim L_{sc} ,
one obtains an inhomogeneous extension where  $\lambda$ is

not constant in space but is replaced by a slowly varying field, in the following denoted

by  $\psi$(t, x) . The joint distribution of particle radii and centers v=v(t, r, x) satisfies

approximately

(2.10) \displaystyle \partial_{t}v+\partial_{r}(\frac{1}{r^{2}}( $\psi$ r-1- $\sigma$ r^{3})v)+\nabla_{x} (3$\epsilon$^{6}v\nabla $\psi$)=0
where  $\psi$= $\psi$(t, x) satisfies for each t

(2.11) \displaystyle \nabla\cdot[(\frac{1}{4 $\pi$}+$\epsilon$^{6}\int_{\mathbb{R}_{+}}r^{3}v(dr))\nabla $\psi$]-(\int_{\mathbb{R}_{+}}rv(dr)) $\psi$+\int_{\mathbb{R}_{+}}v(dr)
+ $\sigma$\displaystyle \frac{1}{| $\Omega$|}\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}dv(r, x)=0

in  $\Omega$=(0, L)^{3} with the periodic boundary condition on \partial $\Omega$ . Note

 $\rho$=\displaystyle \frac{4 $\pi$}{3}$\epsilon$^{6}
(2.10)-(2.11) is our mean‐field model with a migration term. Note that the last

term in the left hand side of (2.10) and \displaystyle \int_{\mathbb{R}_{+}}r^{3}v(dr) in the first term in the left hand

side of (2. 11) are of order $\epsilon$^{6}.

Taking the limit  $\epsilon$\rightarrow 0 we have the following mean‐field model without the migra‐
tion term. That is, v satisfies

(2.12) \displaystyle \partial_{t}v+\partial_{r}(\frac{1}{r^{2}}( $\psi$ r-1- $\sigma$ r^{3})v)=0,
where  $\psi$= $\psi$(t, x) satisfies for each t

(2.13) \displaystyle \frac{1}{4 $\pi$}\triangle $\psi$-(\int_{\mathbb{R}_{+}}rv(dr)) $\psi$+\int_{\mathbb{R}_{+}}v(dr)+ $\sigma$\frac{1}{| $\Omega$|}\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}dv(r, x)=0 \mathrm{i}\mathrm{n} $\Omega$,
with periodic boundary conditions on \partial $\Omega$ . Note that we can normalize the distribution

such that the volume constraint is

\displaystyle \frac{1}{| $\Omega$|}\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}dv(r, x)=1.
[15] rigorously derive the inhomogeneous mean‐field model in the homogenization

limit as  $\epsilon$\rightarrow 0 for the case L\sim L_{sc} . The derivation of the dilute limit can be done

along the same lines.
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§3. Gradient flow structure of mean‐field models with migration

In this section, we see that the mean‐field model (2.10)-(2.11) can be regarded
as a gradient flow. We denote the joint distribution of particle centers and radii at a

given time t by v or v_{t} . The natural space for v is the space \mathcal{P} of probability measures

on [0, \infty)\times \mathrm{T} ( \mathrm{T} denotes the 3 dimensional flat torus), which have compact support,

and whose marginal with respect to x has a bounded Lebesgue density. We identify
functions on \mathrm{T} with  $\Omega$‐periodic functions on \mathbb{R}^{3}.

The mean‐field model has an interpretation as a gradient flow on \mathcal{P} . More precisely
it is the gradient flow of the energy functional

(3.1) E(v)=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}(\frac{ $\sigma$}{5}r^{5}+\frac{r^{2}}{2})dv(r, x)+\frac{3 $\sigma$}{2}\int_{ $\Omega$}|\nabla $\mu$|^{2}dx
where  $\mu$ is an  $\Omega$‐periodic function solving

(3.2) -\displaystyle \triangle $\mu$=\frac{4 $\pi$}{3}(\int_{\mathbb{R}_{+}}r^{3}v(dr)-1)
and \displaystyle \int_{ $\Omega$} $\mu$ dx=0 . Here we consider under the volume fraction constraint

(3.3) \displaystyle \frac{1}{| $\Omega$|}\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}dv(r, x)=1.
To define a metric tensor, we denote by

\mathcal{Z}=(\tilde{v},\tilde{ $\xi$})\in T_{l $\nu$}\mathcal{P}

such that

\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{2}\tilde{v}dv(r, x)=0
our tangent vectors along the distributional solution v=v_{t}(r, x) to the continuity

equation

\partial_{t}v+\partial_{r}(\tilde{v}v)+$\epsilon$^{3}\nabla_{x} (\tilde{ $\xi$}v)=0.
For each time t

,
let ũ(x) and \tilde{ $\varphi$}(x) be  $\Omega$‐periodic functions solving

(3.4) \displaystyle \triangle\tilde{u}=4 $\pi$\int_{\mathbb{R}_{+}}r^{2}\tilde{v}(x, r)v(dr) ,

(3.5) \displaystyle \triangle\tilde{ $\varphi$}=-\frac{4 $\pi$}{3}$\epsilon$^{3}\nabla_{x}\cdot\int_{\mathbb{R}_{+}}r^{3}\tilde{ $\xi$}(x, r)v(dr)
and \displaystyle \int_{ $\Omega$} ũ dx=\displaystyle \int_{ $\Omega$}\tilde{ $\varphi$}dx=0 . Also for each time t

,
let  $\mu$(x) be  $\Omega$‐periodic function

satisfying (3.2) and \displaystyle \int_{ $\Omega$} $\mu$ dx=0 . Then since

\displaystyle \frac{\partial}{\partial t}\int_{\mathbb{R}_{+}}r^{3}v(dr)=3\int_{\mathbb{R}_{+}}r^{2}\tilde{v}v(dr)-\nabla_{x}\cdot\int_{\mathbb{R}_{+}}r^{3}\tilde{ $\xi$}v(dr) ,
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we see

\displaystyle \frac{\partial $\mu$}{\partial t}= −ũ—  $\varphi$\sim ,

and hence

\langle DE (v) , \displaystyle \mathcal{Z}\rangle=\frac{d}{dt}E(v)
=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}( $\sigma$ r^{4}+r)\tilde{v}dv(r, x)-3 $\sigma$\int_{ $\Omega$}\nabla $\mu$ . \nabla (ũ + $\phi$ )  dx

=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}( $\sigma$ r^{4}+r+3 $\sigma$ r^{2} $\mu$)\tilde{v}dv(r, x)+4 $\pi \epsilon$^{3} $\sigma$\int_{\mathbb{R}_{+}\times $\Omega$}\nabla $\mu$\cdot\tilde{ $\xi$}r^{3}dv(r, x) .

Similarly for \mathcal{Z}=(v,  $\xi$)\in T_{l $\nu$}\mathcal{P} such that

(3.6) \displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{2}vdv(r, x)=0,
let u=u(x) and  $\varphi$= $\varphi$(x) be  $\Omega$‐periodic functions satisfying

(3.7) \displaystyle \triangle u=4 $\pi$\int_{\mathbb{R}_{+}}r^{2}v(x, r)v(dr) ,

(3.8) \displaystyle \triangle $\varphi$=-\frac{4 $\pi$}{3}$\epsilon$^{3}\nabla_{x}\cdot\int_{\mathbb{R}_{+}}r^{3} $\xi$(x, r)v(dr) ,

and \displaystyle \int_{ $\Omega$}udx=\int_{ $\Omega$} $\varphi$ dx=0 . Using these potentials, we define a metric tensor

g(\displaystyle \mathcal{Z}, \mathcal{Z})=4 $\pi$\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}v\tilde{v}ddv(r, x)+\frac{1}{3}\int_{\mathbb{R}_{+}\times $\Omega$}\frac{4 $\pi$}{3}r^{3} $\xi$\cdot\tilde{ $\xi$}dv(r, x)+\int_{ $\Omega$}\nabla(u+ $\varphi$) . \nabla (ũ + $\phi$ )  dx

=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{3}v\tilde{v}dv(r, x)+\frac{1}{3}\int_{\mathbb{R}_{+}\times $\Omega$}\frac{4 $\pi$}{3}r^{3} $\xi$\cdot\tilde{ $\xi$}dv(r, x)-4 $\pi$\int_{\mathbb{R}_{+}\times $\Omega$}r^{2}\tilde{v}(u+ $\varphi$)dv(r, x)
(3.9)

‐ \displaystyle \frac{4 $\pi$}{3}$\epsilon$^{3}\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}\nabla(u+ $\varphi$)\cdot\tilde{ $\xi$}dv(r, x) .

Then we will see that (2.10)-(2.11) is a gradient flow of (3.1) with respect to this metric

g.

In fact, if

\mathcal{Z}=(v,  $\xi$)\in T_{l $\nu$}\mathcal{P}

denotes the steepest descent direction, then it holds the gradient flow equation

\langle DE (v) , \mathcal{Z}\rangle+g(\mathcal{Z}, \mathcal{Z})=0, \forall \mathcal{Z}\in T_{l $\nu$}\mathcal{P}.

This implies r^{3}v=- $\sigma$ r^{4}-r+r^{2}( $\lambda$+u+ $\varphi$-3 $\sigma \mu$) with a Lagrange multiplier  $\lambda$(t) ,

that is,

(3.10) v(x, r)=\displaystyle \frac{1}{r^{2}}\{- $\sigma$ r^{3}-1+r( $\lambda$+u(x)+ $\varphi$(x)-3 $\sigma \mu$(x))\}
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and also

(3.11)  $\xi$(x, r)= $\xi$(x)=3$\epsilon$^{3}\nabla(u+ $\varphi$-3 $\sigma \mu$) .

We need to solve a system of equations (3.6), (3.7), (3.8) (3.10) and (3.11) for (v,  $\xi$, u,  $\varphi$,  $\lambda$) .

Set

 $\psi$(x) := $\lambda$+u(x)+ $\varphi$(x)-3 $\sigma \mu$(x) .

Then it follows from

(3.12) r^{2}v(x, r)=- $\sigma$ r^{3}-1+r $\psi$(x)

and

(3.13)  $\xi$(x)=3$\epsilon$^{3}\nabla $\psi$

that

\triangle $\psi$=\triangle u+\triangle $\varphi$-3 $\sigma$\triangle $\mu$

=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}}(- $\sigma$ r^{3}-1+r $\psi$)v(dr)-\frac{4 $\pi$}{3}$\epsilon$^{3}\nabla_{x}\cdot\int_{\mathbb{R}_{+}}r^{3} $\xi$ v(dr)+4 $\pi \sigma$\int_{\mathbb{R}_{+}}r^{3}v(dr)-4 $\pi \sigma$
=-4 $\pi$\displaystyle \int_{\mathbb{R}_{+}}v(dr)+4 $\pi \psi$(x)\int_{\mathbb{R}_{+}}rv(dr)-4 $\pi \epsilon$^{6}\nabla_{x}\cdot(\nabla $\psi$\int_{\mathbb{R}_{+}}r^{3}v(dr))-4 $\pi \sigma$.

Hence  $\psi$ satisfies (2.11), which determines  $\psi$ uniquely. Then  v and  $\xi$ are determined

via (3.12) and (3.13). The continuity equation \partial_{t}v+\partial_{r}(vv)+$\epsilon$^{3}\nabla_{x} ( $\xi$ v)=0 implies

(2.10). Since

(3.14)

\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{2}vdv(r, x)=- $\sigma$\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}dv(r, x)-\int_{\mathbb{R}_{+}\times $\Omega$}dv(r, x)+\int_{\mathbb{R}_{+}\times $\Omega$}r $\psi$ dv(r, x)=0,
u is determined via (3.7). Finally  $\lambda$ is determined via

(3.15)  $\lambda$=\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$} $\psi$ dx.
Then we see that the mean‐field model (2.10)-(2.11) is the gradient flow of the

energy (3.1) with respect to the metric (3.9), in other words, the dynamical system
where at each time the velocity is the element of the tangent space in the direction of

steepest descent of the energy.

§3.1. Steady states

In this subsection, we will see that steady states for the mean‐field models with

migration terms are of simple form. Here steady state v are solutions independent of t,
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and characterized as \mathcal{Z}=0 ,
or v= $\xi$=0 . Then we see that u= $\varphi$=0 and hence  $\psi$\equiv

const. Thus  $\mu$\equiv const. and in fact  $\mu$\equiv 0 . This implies that  $\psi$\equiv $\lambda$ ,
constant in  t

,
and

(3.16) \displaystyle \int_{\mathbb{R}_{+}}r^{3}v(dr)\equiv 1.
Then it follows from (2.11) that it

(3.17)  $\lambda$=\displaystyle \frac{\int_{\mathbb{R}_{+}}v(dr)+ $\sigma$\int_{\mathbb{R}_{+}}r^{3}v(dr)}{\int_{\mathbb{R}_{+}}rv(dr)}.
From (3.12), we see  $\lambda$ r-1- $\sigma$ r^{3}=0 ,

v‐a.e. Let R_{\pm}( $\lambda$) be the solutions of  $\lambda$ r-1-

 $\sigma$ r^{3}=0 such that R_{-}( $\lambda$)\leq(2 $\sigma$)^{-1/3}\leq R_{+}( $\lambda$) for  $\lambda$\displaystyle \geq$\lambda$_{\min}:=\min_{r>0}(\frac{1}{r}+ $\sigma$ r^{2}) .

Then the support of measure v is in \{R_{+}( $\lambda$), R_{-}( $\lambda$)\}\times $\Omega$ and hence  v is of the form

$\delta$_{R_{+}( $\lambda$)}\otimes a(x)+$\delta$_{R_{-}( $\lambda$)}\otimes b(x) where a(x) , b(x)\geq 0 . Setting  $\theta$(x)=\displaystyle \int_{\mathbb{R}_{+}}v(dr) ,
it follows

from (3.16) that

v=$\delta$_{R_{+}( $\lambda$)}\displaystyle \otimes\frac{1- $\theta$(x)R_{-}( $\lambda$)^{3}}{R_{+}( $\lambda$)^{3}-R_{-}( $\lambda$)^{3}}+$\delta$_{R_{-}( $\lambda$)}\otimes\frac{ $\theta$(x)R_{+}( $\lambda$)^{3}-1}{R_{+}( $\lambda$)^{3}-R_{-}( $\lambda$)^{3}}
with R_{+}( $\lambda$)^{-3}\leq $\theta$(x)\leq R_{-}( $\lambda$)^{-3} if  $\lambda$>$\lambda$_{\min} ,

and v=2 $\sigma \delta$_{(2 $\sigma$)^{-1/3}}\otimes 1 if  $\lambda$=$\lambda$_{\min}.
All these v satisfy (3.17) and so they are steady states. Note that even for fixed  $\lambda$,

 $\theta$(x) is not necessarily determined uniquely. But the distribution of the radii of particles
for one steady state concentrate on at most two numbers, which is independent of x.

§4. Restricted gradient flow structure of mean‐field models without

migration

Taking  $\rho$\rightarrow 0 we get the mean‐field model without the migration term (2.12)‐
(2.13) with the volume constraint (3.3). In this section we will see that this can also be

regarded as a gradient flow. Here we consider the same energy functional as (3.1), but

consider only restricted tangent vectors

T_{l $\nu$}'\mathcal{P}=\{\mathcal{Z}\in T_{l $\nu$}\mathcal{P};\mathcal{Z}=(v, 0

namely,

\mathcal{Z}=(v, 0) , \mathcal{Z}=(\tilde{v}, 0)\in T_{l $\nu$}\mathcal{P}

such that

\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{2}vdv(r, x)=0, \displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{2}\tilde{v}dv(r, x)=0.
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We denote by \mathcal{Z}=(v, 0) the restricted steepest descent direction as before. Let ũ and

u be  $\Omega$‐periodic functions satisfying

\displaystyle \triangle\tilde{u}=4 $\pi$\int_{\mathbb{R}_{+}}r^{2}\tilde{v}(x, r)v(dr) ,

\displaystyle \triangle u=4 $\pi$\int_{\mathbb{R}_{+}}r^{2}v(x, r)v(dr) ,

and \displaystyle \int_{ $\Omega$} ũ dx=\displaystyle \int_{ $\Omega$}udx=0 . Then the derivative of the energy is

\langle DE ( v ), \displaystyle \mathcal{Z}\rangle=4 $\pi$\int_{\mathbb{R}_{+}\times $\Omega$}( $\sigma$ r^{4}+r)\tilde{v}v(drdx)-3 $\sigma$\int_{ $\Omega$}\nabla $\mu$ . \nabla ũ  dx

=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}( $\sigma$ r^{4}+r+3 $\sigma$ r^{2} $\mu$)\tilde{v}v(drdx) ,

and the metric tensor is

g(\displaystyle \mathcal{Z}, \mathcal{Z})=4 $\pi$\int_{\mathbb{R}_{+}\times $\Omega$}r^{3}v\tilde{v}v(drdx)+\int_{ $\Omega$}\nabla u . \nabla ũ  dx

=4 $\pi$\displaystyle \int_{\mathbb{R}_{+}\times $\Omega$}r^{3}v\tilde{v}v(drdx)-4 $\pi$\int_{\mathbb{R}_{+}\times $\Omega$}r^{2}\tilde{v}uv(drdx) .

Hence the restricted gradient flow equation

\langle DE (v) , \mathcal{Z}\rangle+g(\mathcal{Z}, \mathcal{Z})=0 for all \mathcal{Z}\in T_{l $\nu$}'\mathcal{P}

turns into

v=\displaystyle \frac{1}{r^{2}}(- $\sigma$ r^{3}-1+r( $\lambda$+u-3 $\sigma \mu$))
with the Lagrange multiplier  $\lambda$ . Set  $\psi$:= $\lambda$+u-3 $\sigma \mu$ ,

then similarly as in Section 3, we

obtain the mean‐field model. This means that the velocity is the element of the tangent

space in the direction of steepest descent among all restricted directions.

§5. The derivation of mean‐field models

In this section we review the derivation result obtained in [15]. We will introduce

suitably rescaled variables, set up the equation in the rescaled variables, and under the

appropriate assumption on our initial particle arrangement, we derive the mean‐field

models (2.12)-(2.13) . Finally we will describe the main ideas of the proof.
We assume from now on that L=L_{sc} and for the ease of presentation, we will

rescale the spatial variables by L_{sc} such that L_{sc}=L=1 and hence d= $\epsilon$, \mathcal{R}=$\epsilon$^{3}.

We rescale r by \mathcal{R} , the time t by \mathcal{R}^{3} ,
as a consequence the velocities by \mathcal{R}^{-2} ,

in view of
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(1.4) the velocity potentials by \mathcal{R}^{-1} ,
the parameter  $\sigma$ by \mathcal{R}^{-3} and finally the potential

in the nonlocal energy by \mathcal{R}^{2} . More precisely, we introduce \hat{R}_{i}, \hat{t}, \hat{V}_{i}, \hat{ $\xi$}, \mathrm{W}, \hat{ $\sigma$} and \hat{ $\mu$} via

R_{i}(t)=$\epsilon$^{3}\hat{R}_{i}(\hat{t}) ,

V_{i}(t)=$\epsilon$^{-6}\hat{V}_{i}(\hat{t}) , $\xi$_{i}(t)=$\epsilon$^{-6}\hat{ $\xi$}_{i}(\hat{t}) ,

w(t, x)=$\epsilon$^{-3}\hat{w}(\hat{t}, x) ,  $\mu$(t, x)=$\epsilon$^{6}\hat{ $\mu$}(\hat{t}, x)
 $\sigma$=$\epsilon$^{-9}\hat{ $\sigma$}, t=$\epsilon$^{9}\hat{t}.

We remark that in the rescaled variables, \displaystyle \hat{V}_{i}=\frac{d\hat{R}_{i}}{dt} is the rate of change of \hat{R}_{i} ,
but

\displaystyle \hat{ $\xi$}_{i}=$\epsilon$^{-3}\frac{d\hat{X}_{i}}{dt} is not equal to the velocity \displaystyle \frac{dX_{i}}{dt} of the particle center in the same time

scale. However, \hat{ $\xi$}_{i} as defined above, appears naturally in the homogenization of the

metric tensor. In the end, over the time scales we are considering, $\xi$_{i} and hence also

\displaystyle \frac{dX_{i}}{dt} ,
vanish in the limit.

From now on we only deal with the rescaled quantities and drop the hats in the

notation.

In rescaled variables the submanifold \mathcal{N}^{ $\epsilon$} is given by

\displaystyle \mathcal{N}^{ $\epsilon$}=\{\mathrm{Y}^{ $\epsilon$}=\{R_{i}, X_{i}\}_{i};\sum_{i}$\epsilon$^{3}R_{i}^{3}=1\}
and the tangent space by

T_{\mathrm{Y}^{ $\epsilon$}}\displaystyle \mathcal{N}^{ $\epsilon$}=\{\tilde{\mathrm{Z}}^{ $\epsilon$}=\sum_{i}(\tilde{V}_{i}\frac{\partial}{\partial R_{i}}+$\epsilon$^{3}\tilde{ $\xi$}_{i}\cdot\frac{\partial}{\partial X_{i}});\sum_{i}R_{i}^{2}\tilde{V}_{i}=0\}.
We use the abbreviation \tilde{\mathrm{Z}}^{ $\epsilon$}=\{\tilde{V}_{i}, \tilde{ $\xi$}_{i}\}_{i} for \displaystyle \tilde{\mathrm{Z}}^{ $\epsilon$}=\sum_{i}(\tilde{V}_{i}\frac{\partial}{\partial R_{i}}+$\epsilon$^{3}\tilde{ $\xi$}_{i} \frac{\partial}{\partial X_{i}}) . We regard

\{\tilde{V}_{i}, \tilde{ $\xi$}_{i}\}_{i} as the component of a tangent vector \tilde{\mathrm{Z}}^{ $\epsilon$} with respect to a basis \displaystyle \{\frac{\partial}{\partial R_{i}}, $\epsilon$^{3}\frac{\partial}{\partial X_{i}}\}_{i}.
We will always denote by \mathrm{Z}^{ $\epsilon$}=\{V_{i}, $\xi$_{i}\}_{i} the direction of steepest descent. Recall that

V_{i}=\displaystyle \frac{dR_{i}}{dt} ,
but $\xi$_{i}=$\epsilon$^{-3}\displaystyle \frac{dX_{i}}{dt} . The notation \tilde{\mathrm{Z}}^{ $\epsilon$} will be used for an arbitrary element of

the tangent space. Furthermore we use the abbreviation B_{i}:=B_{$\epsilon$^{3}R_{i}}(X_{i}) .

We define the energy in rescaled variables as

E_{ $\epsilon$}(\displaystyle \mathrm{Y}^{ $\epsilon$})=4 $\pi$\sum_{i}$\epsilon$^{3}\frac{R_{i}^{2}}{2}+\frac{3 $\sigma$}{2}\int_{(0,1)^{3}}|\nabla$\mu$^{ $\epsilon$}|^{2}dx,
where $\mu$^{ $\epsilon$}=$\mu$^{ $\epsilon$}(t, x) is (0,1)^{3} ‐periodic and solves -\displaystyle \triangle$\mu$^{ $\epsilon$}=\frac{1}{$\epsilon$^{6}}$\chi$_{\bigcup_{i}B_{i}}-\frac{4 $\pi$}{3} and \displaystyle \int_{(0,1)^{3}}$\mu$^{ $\epsilon$}dx=
0.

For the steepest descent directions \mathrm{Z}^{ $\epsilon$}=\{V_{i}, $\xi$_{i}\}_{i} ,
we define the potentials w^{ $\epsilon$}, u^{ $\epsilon$},

$\phi$^{ $\epsilon$} ,
where w^{ $\epsilon$}=u^{ $\epsilon$}+$\phi$^{ $\epsilon$},

\displaystyle \int_{(0,1)^{3}}\nabla u^{ $\epsilon$}\cdot\nabla $\zeta$ dx+\sum_{i}\int_{\partial B_{i}}\frac{1}{$\epsilon$^{3}}V_{i} $\zeta$ dS=0,
(5.1)

\displaystyle \int_{(0,1)^{3}}\nabla$\phi$^{ $\epsilon$}\cdot\nabla $\zeta$ dx+\sum_{i}\int_{\partial B_{i}}\frac{1}{$\epsilon$^{3}}$\xi$_{i}\cdot \mathrm{n} $\zeta$ dS=0
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for all  $\zeta$\in\mathring{H}_{p}^{1} . Here \mathring{H}_{p}^{1} is the subspace of H_{p}^{1} of functions with mean value zero, where

H_{p}^{1} is the natural space for potentials of diffusion fields, the space of functions w=

w(x)\in H^{1}() . Note that the potentials are only determined up to an additive constant.

In what follows we fix this constant by requiring that \displaystyle \int_{(0,1)^{3}}u^{ $\epsilon$}dx=\int_{(0,1)^{3}}$\phi$^{ $\epsilon$}dx=0.
Equations (2.1) and (2.2) for the direction of steepest descent, turn into

(5.2) \displaystyle \frac{1}{|\partial B_{i}|}\int_{\partial B_{i}}(u^{ $\epsilon$}+$\phi$^{ $\epsilon$}-3 $\sigma \mu$^{ $\epsilon$})dS=\frac{1}{R_{i}}+$\lambda$^{ $\epsilon$}(t)
for some $\lambda$^{ $\epsilon$}(t)\in \mathbb{R} and

(5.3) \displaystyle \int_{\partial B_{i}}(u^{ $\epsilon$}+$\phi$^{ $\epsilon$}-3 $\sigma \mu$^{ $\epsilon$})\mathrm{n}dS=0
for all i such that R_{i}>0 . Here and in what follows we abbreviate, with some abuse of

notations, for a ball B(X) the surface area by |\partial B_{R}| and its volume by |B_{R}|.
We denote the joint distribution of particle centers and radii at a given time t by

v_{t}^{ $\epsilon$}\in(C_{p}^{0})^{*} ,
which is given by

(5.4) \displaystyle \int $\zeta$ dv_{t}^{ $\epsilon$}=\sum_{i}$\epsilon$^{3} $\zeta$(R_{i}(t), X(t)) for  $\zeta$\in C_{p}^{0},

where C_{p}^{0} stands for the space of continuous functions on \mathbb{R}_{+}\times \mathrm{T} which have compact

support included in \mathbb{R}_{+}\times \mathrm{T} . We identify functions  $\zeta$= $\zeta$(r, x)\in C_{p}^{0} with functions

which are (0,1)^{3}‐periodic in x . Note that since  $\zeta$(r, x)=0 for r=0 , particles which

have vanished do not enter the distribution. Hence the natural space for v_{t}^{ $\epsilon$} is the space

(C_{p}^{0})^{*} of Borel measures on \mathbb{R}_{+}\times \mathrm{T} ,
that is, the product of the positive half axis and

the torus.

In accordance with the notation in (5.4) we will use in what follows the abbreviation

\displaystyle \int $\zeta$ dv_{t} :=\displaystyle \int_{\mathbb{R}\times(0,1)^{3}} $\zeta$(r, x)dv_{t}(r, x) for  $\zeta$\in C_{p}^{0}, v_{t}\in(C_{p}^{0})^{*}

Otherwise the domain of integration is specified.
We can now state the main result which informally says that v_{t}^{ $\epsilon$} converges as  $\epsilon$\rightarrow 0

to a weak solution of (2.12)-(2.13) .

Let T>0 be given and assume some appropriate assumptions on initial particle

arrangements. Then there exists a subsequence, again denoted by  $\epsilon$\rightarrow 0 ,
and a weakly

continuous map [0, T]\ni t\mapsto v_{t}\in(C_{p}^{0})^{*} with

\displaystyle \int $\zeta$ dv_{t}^{ $\epsilon$}\rightarrow\int $\zeta$ dv_{t}
uniformly in t\in[0, T] for all  $\zeta$\in C_{p}^{0} ,

and

\displaystyle \int r^{3}dv_{t}=1
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for all t\in[0, T] . Furthermore, there exists a measurable map (0, T)\ni t\mapsto $\psi$(t)\in H_{p}^{1}
such that (2.12) and (2.13) hold in the following weak sense.

(5.5) \displaystyle \frac{d}{dt}\int $\zeta$ dv_{t}=\int\partial_{r} $\zeta$\frac{1}{r^{2}}(r $\psi$(t, x)-1- $\sigma$ r^{3})dv_{t}
distributionally on (0, T) for all  $\zeta$\in C_{p}^{0} with \partial_{r} $\zeta$\in C_{p}^{0} . Here

(5.6) \displaystyle \int_{(0,1)^{3}}(\frac{1}{4 $\pi$}\nabla $\psi$(t, x)\cdot\nabla $\zeta$- $\sigma \zeta$)dx+\int( $\psi$(t, x)r-1) $\zeta$ dv_{t}=0
for all  $\zeta$\in H_{p}^{1} and almost all t\in(0, T) .

Moreover the energy functional converges in the following sense.

\displaystyle \lim_{ $\epsilon$\rightarrow 0}E(\mathrm{Y}^{ $\epsilon$})=E (vt), uniformly in t\in[0, T],
where

E(v_{t})=4 $\pi$\displaystyle \int(\frac{r^{2}}{2}+ $\sigma$\frac{r^{5}}{5})dv_{t}+\frac{3 $\sigma$}{2}\int_{(0,1)^{3}}|\nabla $\mu$|^{2}dx.
Here

(5.7) \displaystyle \int_{(0,1)^{3}}(\nabla $\mu$(t, x)\cdot\nabla $\zeta$+\frac{4 $\pi$}{3} $\zeta$)dx-\frac{4 $\pi$}{3}\int r^{3} $\zeta$ dv_{t}=0
for all  $\zeta$\in H_{p}^{1} and almost all t\in(0, T) .

The strategy of the proof is as follows. We first derive some simple a‐priori esti‐

mates, and then homogenize within the variational principle of a gradient flow structure,

also known as the Rayleigh principle. This follows the related analysis in [16] for the

case  $\sigma$=0 . In contrast to [16], since our particles move, we need to show that the par‐

ticles remain separated over the time span we are considering. We also have to identify

corresponding additional terms in the metric tensor. Furthermore, in order to prove

the convergence of the differential of the energy, we need to prove that the tightness
condition is preserved in time.

Rayleigh principle says that (1.6) can be reformulated as follows: for fixed t the

direction of steepest descent v minimizes

(5.8) \displaystyle \frac{1}{2}g_{G(t)}(\tilde{V},\tilde{V})+\langle DE(G(t)) , \tilde{V}\rangle
under all \tilde{V}\in T_{G(t)}\mathcal{M} . Since we will in general only deal with solutions which are

piecewise smooth in time and globally continuous, it is convenient to have (5.8) in the

time integrated version, that is v minimizes

(5.9) \displaystyle \int_{0}^{T} $\beta$(t)(\frac{1}{2}g_{G(t)}(\tilde{V},\tilde{V})+\langle DE(G(t)),\tilde{V}\rangle)dt
where  $\beta$= $\beta$(t) is an arbitrary nonnegative smooth function.
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