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Abstract

We propose two mathematical models for acid‐mediated tumour invasion, motivated by
experimental studies of the safety and efficacy of bicarbonate buffer therapy in mice. We first

present a system of coupled nonlinear partial differential equations to describe the effect of

buffering therapy on primary and metastatic tumours in tissues of differing density. We then

utilise asymptotics to derive an approximation for the minimum invasive wavespeed, taking into

account subtleties arising from the problem of high system dimension. Subsequently, we present
a system of coupled nonlinear ordinary differential equations to describe systemic tumour

and blood buffering through the \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-}/\mathrm{C}\mathrm{O}_{2} buffering system. By finding a uniformly valid

analytical approximation to the solution under nonstandard scalings, we obtain predictions
for the translational safety and efficacy of bicarbonate therapy in humans. Together these

models demonstrate the importance of mathematical analysis in efforts to gain a comprehensive
understanding of tumour acidity and invasion.

Received April 18, 2011.

2000 Mathematics Subject Classification(s): 34, 35, 41, 92

Key Words: Tumour acidity, bicarbonate therapy, ordinary differential equations, partial differen‐

tial equations, asymptotics, separation of timescales
* Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24‐29 St. Giles�,
Oxford, OX1 3\mathrm{L}\mathrm{B} , UK.

**

Department of Social Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol,
BS8 2\mathrm{P}\mathrm{S} , UK.

***

Department of Global Health and Development, London School of Hygiene and Tropical Medicine,
Keppel Street, London, WCIE 7\mathrm{H}\mathrm{T} , UK.

 $\dagger$ Arizona Cancer Center, University of Arizona, Tucson, AZ, 85721, USA.
 $\ddagger$ Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford,
South Parks Road, Oxford, OX1  3\mathrm{Q}\mathrm{U} , UK.

§Corresponding author. \mathrm{E}‐mail: maini@maths.ox.ac.uk

© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



32 Jessica McGillen, Natasha Martin, Ian Robey, Eamonn Gaffney, Philip Maini

§1. Introduction

We are interested in modelling tumour acidity in the context of the tissue microenviron‐

ment. To address questions regarding the safety and efficacy of bicarbonate therapy, \mathrm{a}

possible new treatment approach that has emerged from experimental studies of tumour

acidity in mice, we have derived models comprising systems of coupled nonlinear par‐

tial differential equations (PDEs) and coupled nonlinear ordinary differential equations

(ODEs). The remainder of this section presents the biological background and general
motivation for these models, and Section 2 outlines the specific experimental results and

open questions on which they are founded. In Sections 3 and 4 we present the models

and carry out asymptotic analyses to gain mathematical, and subsequently biological,

insight into the dynamics of each.

§1.1. Acid‐mediated tumour invasion

In recent years it has become evident that cellular metabolism plays a central role in

malignancy [1]: accumulating tumour cells cause a progressive harshening of the local

tissue environment, exerting selection pressures and forcing cells to alter their metabolic

pathways in order to optimise energy production and continue dividing. This interplay
between cell and microenvironment is complex and highly nonlinear with important

dynamics at multiple scales.

Of particular interest is the acid‐mediated invasion hypothesis [2], which concerns

oxygen deprivation in a tissue harbouring a developing tumour: as mutant cells prolifer‐
ate excessively, the increasingly crowded tissue becomes subject to abnormal perfusion,
and thus to hypoxia (local oxygen deprivation), due to inadequate compensation for

diffusion‐limited transport by leaky, irregular tumour‐induced capillary beds. Separa‐
tion of pre‐invasive carcinomas from healthy vasculature by the basement membrane

exacerbates this condition. Maintaining ATP production in a hypoxic environment re‐

quires adoption of the glycolytic phenotype [3], an alteration in tumour cell metabolism

whereby the glycolytic pathway is constitutively upregulated. Acidic by‐products of

this pathway are toxic to cells, so to survive, tumour cells exhibiting the glycolytic

phenotype acquire resistance to the acid they are producing, while normal cells remain

susceptible. The acid‐mediated invasion hypothesis proposes that a critical stage in the

development of an invasive cancer comprises this metabolic shift and resulting selective

acidosis.

§1.2. The role of mathematical modelling in understanding tumour

invasion

Tumour progression is a highly complex, nonlinear, multiscale process, and thus far the

intuitive lines of thought that accompany purely experimental approaches have failed to
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provide a comprehensive theoretical framework within which to organise and synthesize
data [4]. An alternative approach is called for that employs the power of mathematical

modelling and analysis to elucidate the core drivers of malignancy in the context of

tumour metabolism and the microenvironment. Better understanding possible drivers of

malignancy, particularly acid‐mediated invasion, may suggest treatments by indicating
how best to prevent or delay tumour development.

Gatenby and Gawlinski presented the first continuum mathematical model of acid‐

mediated invasion [5]: They considered a one‐dimensional ray extending out from the

centre of an intermediate carcinoma in situ exhibiting the glycolytic phenotype, and

proposed a system of coupled nonlinear PDEs to describe changes in the densities of

healthy and tumour cells and levels of excess extracellular acid. Central to the model

was the idea that a fully healthy tissue operating at its carrying capacity would con‐

fine a tumour unless diminished by tumour‐derived acid. With this model the authors

discovered a previously unreported interstitial gap between retreating healthy cells and

the advancing tumour front under conditions of high tumour aggressiveness, and sub‐

sequently observed gaps in specimens of human squamous cell carcinoma and in vitro

experiments with rat colon cancer. One therapeutic possibility that has emerged from

this modelling rests on the idea that it may be possible to block tumour invasion by

applying a buffer to neutralise tumour‐derived tissue acidosis and prevent the healthy
cell death that opens space for tumour expansion [6]. Our modelling emerges from ex‐

periments designed to test the potential of one such therapy, the inexpensive and readily
available base bicarbonate. These experiments are detailed in the following section.

§2. Experiments to investigate bicarbonate therapy

We have investigated the potential of bicarbonate buffer therapy by orthotopically im‐

planting metastatic MDA‐mb‐231 adenocarcinomas into the mammary fatpads of 6‐

week‐old female mice with severe combined immunodeficiency (SCID). Beginning six

days after tumour inoculation and continuing for the duration of the experiment, the

mice were provided with drinking water ad libitum containing 200\mathrm{m}\mathrm{M} bicarbonate

(NaHCO). Control mice were kept under identical conditions with normal drinking
water. Effects of \mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} treatment on tumour \mathrm{p}\mathrm{H} were measured with 31\mathrm{P} magnetic
resonance spectroscopy (MRS) four weeks after inoculation. Intracellular \mathrm{p}\mathrm{H}(\mathrm{p}\mathrm{H}\mathrm{i}) was

measured with the resonant frequency of inorganic phosphate, while extracellular \mathrm{p}\mathrm{H}

(\mathrm{p}\mathrm{H}\mathrm{e}) was measured with the exogenous \mathrm{p}\mathrm{H} indicator, 3‐aminopropylphosphonate (3‐
APP). The tumour \mathrm{p}\mathrm{H}\mathrm{e} increased to 7.4\pm 0.06 in the presence of NaHCO, compared
with \mathrm{p}\mathrm{H}7.0\pm 0.11 under control conditions. These data also showed that \mathrm{p}\mathrm{H}\mathrm{i} was

unaffected; it was 7. 00\pm 0.06 and 7. 06\pm 0.09 under treated and control conditions,

respectively. Surprisingly, we observed an unaltered growth rate of the primary tumour
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in the presence of \mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} (Figure la).
Following these results in primary tumours, we aimed, in light of the acid‐mediated

invasion hypothesis, to establish first whether bicarbonate treatment might instead

inhibit the formation and growth of metastases, and second whether this inhibition

could be sufficient to improve survival. To investigate the former question, control and

\mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} treated tumour‐bearing mice were euthanized and examined for organ metas‐

tases. Tumour xenografts were made from metastatic MDA‐mb‐231 breast adenocar‐

cinoma cells stably expressing beta‐galactosidase (  $\beta$‐gal), and after a 30‐day treatment

course, the animals were sacrificed and their organs examined for lesions expressing

 $\beta$‐gal. Lung lesion diameters were measured and counted in all animals. We found

significantly fewer (\mathrm{p}=0.03) and smaller (\mathrm{p}<0.0001) metastatic lesions in the \mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3}
treated group (Figure \mathrm{l}\mathrm{c},\mathrm{d} ).

To assess survival, female SCID mice bearing green fluorescent protein (GFP) and

expressing MDA‐mb‐231 mammary fatpad xenografts were chronically maintained on

200\mathrm{m}\mathrm{M}\mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} in drinking water or left untreated. Mice received survival surgery on

primary tumours between 35 and 42 days after inoculation, and were euthanized only
after they began to exhibit morbidity or obvious lymphatic metastases. Mice maintained

on oral bicarbonate survived longer than their untreated counterparts (\mathrm{p}=0.019 , Figure

lb); these data are notable in that the effect of bicarbonate therapy was greater than

in previous experiments, yet the median time until sacrifice was significantly longer,

indicating that selective tumour alkalinization by chronic oral ingestion of \mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} is

sufficient to significantly improve survival status in tumour‐bearing mice.

§2.1. Open biological questions

Two main biological questions emerge from these experimental findings. First, why
does bicarbonate therapy reduce metastatic but not primary tumour growth in mice?

Second, what is the translational safety and efficacy of bicarbonate therapy in humans?

To explore these questions and indicate further experimental directions, we develop and

analyse two extensions of the Gatenby and Gawlinski model [5], described in Sections

3 and 4.

§3. Efficacy of bicarbonate therapy in primary and metastatic tumours

§3.1. A system of coupled nonlinear partial differential equations

Here we address the first of our experimentally‐motivated questions; that is, why bicarbonate‐

mediated alkalinisation reduces the number and size of metastatic but not primary tu‐

mours. We postulate that in our experiments, the primary tumours grew in relatively

low‐density tissues (the mammary fat pads) and thus had spatial freedom to expand
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Figure 1: a) Average primary tumour growth over 40 days with control and bicarbonate

treated mice. Note the identical primary tumour growth curves in each group. b)
Kaplan‐Meier survival curve in cohorts of control and \mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} treated mice whose

primary tumours were surgically removed after approximately 30 days of growth. Log‐
rank analyses showed that these two populations were significantly different (\mathrm{p}=0.019) .

c) Metastatic mean flourescence pixel densities (flourescence intensities \times area) for

visceral organs, mesentary, and lungs (bars show standard error). d) Histogram of

lesion frequency by diameter in \mathrm{N}\mathrm{a}\mathrm{H}\mathrm{C}\mathrm{O}_{3} treated group is smaller than in untreated

control group after 30 days. Figures reproduced from reference [7] in accordance with

AACR copyright and permission policies.

even when actively buffered, while at least some of the metastases grew in high‐density

tissues, such as the liver and spleen, so were more dependent on acid‐mediated invasion.

To test this idea, we extend the system in [5] to include additional buffering (implicitly
through oral bicarbonate administration) and a dependence of invasive ability on tissue
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density. The extended, nondimensionalised model is as follows, with $\eta$_{1} representing
normal cell density, $\eta$_{2} the tumour cell density, and  $\Lambda$ the density of excess extracellular

\mathrm{H}^{+} ions:

(3.1) \displaystyle \frac{\partial$\eta$_{1}}{\partial $\tau$}=$\eta$_{1}(1-$\eta$_{1})-$\gamma$_{1} $\Lambda \eta$_{1}
(3.2) \displaystyle \frac{\partial$\eta$_{2}}{\partial $\tau$}=$\delta$_{2}$\eta$_{2}(1-$\eta$_{2})+\nabla_{ $\xi$} [$\alpha$_{2}(1-\frac{$\eta$_{1}}{1+K_{*}^{tis}})\nabla_{ $\xi$}$\eta$_{2}]
(3.3) \displaystyle \frac{\partial $\Lambda$}{\partial $\tau$}=$\delta$_{3}($\eta$_{2}- $\Lambda$)-$\gamma$_{3} $\Lambda$+\nabla_{ $\xi$}^{2} $\Lambda$,
where $\alpha$_{2}, $\gamma$_{1}, $\gamma$_{3}, $\delta$_{2} ,

and $\delta$_{3} are positive constants. The system is solved with Neumann

(no‐flux) boundary conditions at  $\xi$=0 (representing the tumour centre) and fixed

boundary conditions $\eta$_{1}=1, $\eta$_{2}=0 ,
and $\Lambda$_{2}=0 at the right‐hand boundary represent‐

ing the tumour‐free state. Initial conditions for the cell populations are semi‐compact

step functions, with the following transitions at the same spatial location: the tumour

population from 1 to 0 and the normal tissue population from 0 to 1. The initial acid

concentration is zero across the domain.

As in [5], the nondimensional parameter $\gamma$_{1} is proportional to the tumour acid

production rate, and inversely proportional to the normal cell sensitivity to acid. Hence,
we refer to this parameter as the (aggression� parameter, where high $\gamma$_{1} indicates either

a high amount of acid production or high normal cell sensitivity to acid. Our additions

to the model in [5] are captured in two terms in Equations (3.1)-(3.3) . First, a loss

term ($\gamma$_{3} $\Lambda$) is added to represent bicarbonate‐mediated proton buffering, proportional
to the acid level. Second, tissue density‐dependent invasive ability is incorporated via

inclusion in the diffusion term of the factor K_{*}^{tis} ,
where tis=p for primary tumours

and tis=m for metastatic tumours in different tissues. Tumours in dense tissues have

a low K_{*}^{tis} , indicating low freedom of motility, while tumours in looser, acellular tissues

have a high K_{*}^{tis} , indicating greater freedom of movement. A mathematical analysis of

this system now enables us to obtain an explicit description of how invasiveness changes
as a function of the model parameters, namely tissue density and buffering treatment.

§3.2. A travelling wave analysis via matched asymptotic expansion

Numerical simulations (not shown) indicate that tumour density profiles of constant

shape arise after the decay of transients and appear to travel at a constant wavespeed.
The invasive tumour waves exhibit behaviour similar to the well‐studied Fisher‐Kolmogorov

equation, which is known to evolve to a minimal wavespeed given compact or semi‐

compact initial conditions. The Fisher‐Kolmogorov system has only one species (and
therefore is amenable to phase plane analysis), while the existence of an analagous
minimal wavespeed for our three‐species system remains an open question as the three
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species give rise to a five‐dimensional phase space on which a Fisher‐Kolmogorov analy‐
sis is invalid; however, we use asymptotics to reduce our system to two ODEs and thus

conjecture the large‐time behaviour of the full system. Noting that chemical diffusion

of excess acid is much faster than density‐dependent diffusion of tumour cells gives us

the ratio between the two as a small parameter, denoted $\alpha$_{2} in Equation (3.2), to be

exploited for these asymptotics. The analytical procedure follows [8] in which a similar

analysis was carried out on the original Gatenby and Gawlinski system [5]. Our analysis
differs nontrivially from theirs in two important ways; first, we have altered the tumour

diffusion term in Equation (3.2), and second, we have included an additional source of

acid loss due to buffering in Equation (3.3).
Transforming our system into travelling wave coordinates via the substitutions

$\eta$_{1}=u(z) , $\eta$_{2}=v(z) ,
and  $\Lambda$=w(z) into Equations (3.1)-(3.3) where z= $\xi$-ct and c

is the constant wavespeed, yields the system

(3.4) -cu'=u(1-u)-$\gamma$_{1} uw

(3.5) -cv'=$\delta$_{2}v(1-v)+$\alpha$_{2}[(1-\displaystyle \frac{u}{1+K_{*}^{tis}})v''-\frac{1}{1+K_{*}^{tis}}u'v']
(3.6) -cw'=$\delta$_{3}(v-w)-$\gamma$_{3^{W+W}}

with �

denoting differentiation with respect to z . This transformation reveals the pres‐

ence of a boundary layer; that is, a narrow inner region unfolds in which the solution

and its derivatives are changing rapidly, in contrast to the outer region in which they

change only slowly (as seen in Figure 2).
We first find the leading‐order contribution to our solution in the outer region,

taking into account the boundary conditions, then rescale within the inner region to find

a leading‐order approximation to the inner solution. Lastly, we match these solutions

across the regions of overlap to obtain uniform approximate solutions for all species
as explicit functions of the model parameters, and from these extract the constant

(assumed minimum) tumour wavespeed.
Four equilibrium points are associated with Equations (3.4)-(3.6) :

\bullet (ũ, \tilde{v}_{1},\tilde{w}_{1})=(0,0,0) ,
a trivial, linearly unstable state with no tissue or excess acid;

\bullet (ũ, \tilde{v}_{2},\tilde{w}_{2})=(1,0,0) ,
a linearly unstable healthy state with normal tissue at car‐

rying capacity and no tumour or excess acid;

\bullet (ũ, \displaystyle \tilde{v}_{3},\tilde{w}_{3})=(1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}},1, \frac{$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}) ,
a coexistent state with tumour tissue at carrying

capacity and diminished normal tissue. This state is biologically realistic for 1‐

\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}>0 and in that case is linearly stable;

\bullet (ũ, \displaystyle \tilde{v}_{4},\tilde{w}_{4})=(0,1, \frac{$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}) ,
an invaded state with tumour tissue at carrying capacity

and no remaining normal tissue, linearly stable if $\gamma$_{1}>\displaystyle \frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}} and unstable otherwise.
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Figure 2: Late‐time numerical simulation of Equations (3.1)-(3.3) showing the tumour,

normal, and acid travelling waves, where $\gamma$_{1}=0.5, $\delta$_{2}=1, $\alpha$_{2}=4\times 10^{-5}, $\delta$_{3}=70,
K_{*}=0 ,

and $\gamma$_{3}=0 . The system is solved with boundary and initial conditions as

described in the text.

We denote the solution to Equations (3.4)-(3.6) by u=u(z, $\alpha$_{2}) , v=v(z, $\alpha$_{2}) ,

and w=w(z, $\alpha$_{2}) . The travelling wave boundary conditions are then u(\infty, $\alpha$_{2})=1,
v(\infty, $\alpha$_{2})=0, w(\infty, $\alpha$_{2})=0 ,

and

(3.7) v(-\infty, $\alpha$_{2})=1

(3.8) w(-\displaystyle \infty, $\alpha$_{2})=\frac{$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}
(3.9) u(-\infty, $\alpha$_{2})=\left\{\begin{array}{ll}
1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}} & \mathrm{i}\mathrm{f} 0<$\gamma$_{1}<\frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}},\\
0 & \mathrm{i}\mathrm{f} \frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}}\leq$\gamma$_{1}.
\end{array}\right.
We note that, strictly, the healthy steady state should be stable initially, then driven

unstable by the forming invasive tumour; however, our modelling assumes the normal

steady state has already been destabilised. By doing this we neglect regulatory biological

features, such as immunosurveillence, for the purpose of looking beyond very early
tumour development to focus on the dynamics of invasion.

Splitting the constant wavespeed into fast and slow components by writing z=

 $\xi$- $\epsilon$ c_{0}t with c=c_{0}\sqrt{$\alpha$_{2}} and $\alpha$_{2}=$\epsilon$^{2}<<1 ,
such that  $\epsilon$ becomes our small parameter,

and scaling  c_{0}\sim O(1) because we are interested in the invasive waves driven by tumour

diffusion dynamics (and we note here that all parameters are O(1) or larger except $\alpha$_{2}
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which is O(10^{-5}) ), we have

(3.10) - $\epsilon$ c_{0}u'=u(1-u)-$\gamma$_{1} uw

(3.11) - $\epsilon$ c_{0}v'=$\delta$_{2}v(1-v)+$\epsilon$^{2}[(1-\displaystyle \frac{u}{1+K_{*}^{tis}})v''-\frac{1}{1+K_{*}^{tis}}u'v']
(3.12) - $\epsilon$ c_{0}w'=$\delta$_{3}(v-w)-$\gamma$_{3}w+w

Setting  $\epsilon$=0 ,
the leading contributions to the outer solutions satisfy

(3.13) 0=u(1-u)-$\gamma$_{1} uw

(3.14) 0=$\delta$_{2}v(1-v)

(3.15) 0=$\delta$_{3}(v-w)-$\gamma$_{3^{W+W}}

Rescaling with  z= $\epsilon \zeta$ in the inner region, we see that the leading order of the inner

solution satisfies

(3.16) -c_{0}\dot{u}=u(1-u)-$\gamma$_{1}uw

(3.17) -c_{0}\displaystyle \mathrm{V}=$\delta$_{2}v(1-v)+[(1-\frac{u}{1+K_{*}^{tis}})\ddot{v}-\frac{1}{1+K_{*}^{tis}}\dot{u}v]
(3.18) \dot{w}=0.

with denoting differentiation with respect to  $\zeta$.

Further, we define the leading order contribution to the outer solution by the fol‐

lowing, where $\alpha$_{2}=0 :

(3.19) u_{out}(z)=u(z;0) , v_{out}(z)=v(z;0) , w_{out}=w(z;0) .

Similarly, the leading order inner solution is

(3.20) U_{in}( $\zeta$)=U( $\zeta$;0) , V_{in}( $\zeta$)=V( $\zeta$;0) , W_{in}( $\zeta$)=W( $\zeta$;0) .

We now exploit these regions to derive uniform approximations for excess acid (w) ,

healthy density (u) ,
and finally the (assumed minimum) travelling wavespeed of the

tumour density (v).
We begin with the uniform approximation for excess acid (w) . From Equations

(3.13)-(3.15) and noting the boundary conditions, we see that

(3.21) v_{out}(z)=\left\{\begin{array}{ll}
1 & \mathrm{i}\mathrm{f} z<0,\\
0 & \mathrm{i}\mathrm{f} z>0.
\end{array}\right.
Substituting this into Equation (3.15) we find

(3.22) w''+$\delta$_{3}(1-w-\displaystyle \frac{$\gamma$_{3}}{$\delta$_{3}}w)=0 if z<0,

(3.23) w''-($\delta$_{3}+$\gamma$_{3})w=0 if z>0.
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In the z<0 case, we have

(3.24) w_{out}(z)=\displaystyle \frac{$\delta$_{3}(1-Be^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z})}{$\delta$_{3}+$\gamma$_{3}},
where B is a constant. In the z>0 case, we have

(3.25) w_{out}(z)=Ae^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z},

where A is a constant.

Looking at the inner solution, we have \ddot{W}_{in}( $\zeta$)=0 and thus W_{in}( $\zeta$)=w_{0}+ $\zeta$ w_{1}.
We know this solution is bounded as  $\zeta$\rightarrow\infty ; consequently,  W_{in} must be constant (i.e.
w_{1}=0) and the outer solutions and their derivatives must match each other across the

inner region (and take on the value of the constant inner solution). Carrying out this

matching across z=0 yields B=1/2 and A=$\delta$_{3}/2($\delta$_{3}+$\gamma$_{3}) ,
and accordingly we find

(3.26) W_{in}( $\zeta$)=\displaystyle \frac{$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}.
Therefore, the uniform solution for the excess acid profile is

w_{unif}(z;$\alpha$_{2})=w_{out}(z)+W_{in}(\displaystyle \frac{z}{\sqrt{$\alpha$_{2}}})-w_{overlap}
(3.27) =\left\{\begin{array}{ll}
\frac{$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z} & \mathrm{i}\mathrm{f} z>0,\\
\frac{$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}(1-\frac{1}{2}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z}) & \mathrm{i}\mathrm{f} z<0.
\end{array}\right.

We now use Equation (3.27) to find an approximation for healthy cell density (u) .

It is evident that Equation (3.10) is a Bernoulli equation for u :

(3.28) \sqrt{$\alpha$_{2}}c_{0}u'=$\gamma$_{1}uw-u(1-u) .

Therefore, we have the solution

(3.29) u(z, $\alpha$_{2})=\{ \displaystyle \frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{-}(z)/\sqrt{$\alpha$_{2}}}}{\int_{z}^{0_{e^{ $\Phi$}-(s)/\sqrt{$\alpha$_{2}}ds+\int_{0}^{\infty}e^{ $\Phi$}+(s)\sqrt{$\alpha$_{2}}ds}}} if z<0,

\displaystyle \frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{+}(z)\sqrt{$\alpha$_{2}}}}{\int_{z}^{\infty}e^{$\Phi$_{+}(s)\sqrt{$\alpha$_{2}}}ds} if z>0,

with

(3.30) $\Phi$_{-}(z)=\displaystyle \frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})^{3/2}}(1-e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z})-z(1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}})]
(3.31) $\Phi$_{+}(z)=\displaystyle \frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})^{3/2}}(1-e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z})-z].
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With these definitions of $\Phi$_{+} and $\Phi$_{-} we calculate the following properties which will

be used later in the wavespeed derivation to put bounds on functions:

(3.32) $\Phi$_{-}(0)=0

(3.33) $\Phi$_{-}'(z)=\displaystyle \frac{1}{c_{0}}[(\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}-1)-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z}]
(3.34)  $\Phi$(z)=-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2c_{0}($\delta$_{3}+$\gamma$_{3})^{1/2}}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z}
(3.35) $\Phi$_{+}(0)=0

(3.36) $\Phi$_{+}'(z)=\displaystyle \frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z}-1]
(3.37) $\Phi$_{+}''(z)=-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2c_{0}($\delta$_{3}+$\gamma$_{3})^{1/2}}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z}
Furthermore, if we define

(3.38) z_{-}=\displaystyle \frac{1}{\sqrt{$\delta$_{3}+$\gamma$_{3}}}\log(2-\frac{2($\delta$_{3}+$\gamma$_{3})}{$\gamma$_{1}$\delta$_{3}})<0 if \displaystyle \frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}}<$\gamma$_{1}<\frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}}
(3.39) z_{+}=\displaystyle \frac{1}{\sqrt{$\delta$_{3}+$\gamma$_{3}}}\log(\frac{$\gamma$_{1}$\delta$_{3}}{2($\gamma$_{3}+$\delta$_{3})})>0 if \displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}}<$\gamma$_{1}
then $\Phi$_{-}(z_{-})>0, $\Phi$_{-}'(z_{-})=0,  $\Phi$(z_{-})<0, $\Phi$_{+}(z_{+})>0, $\Phi$_{+}'(z_{+})=0 ,

and $\Phi$_{+}''(z_{+})<0.
An explicit solution for u must be derived in separate cases, which we now examine.

Case \displaystyle \mathrm{A}:0<$\gamma$_{1}<\frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}}
If z>0 ,

then for any  z<s<\infty we have

(3.40) $\Phi$_{+}'(s)=\displaystyle \frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}s}-1]<\frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}-1]<0.
Using asymptotic expansions of general Laplace integrals at leading order, and invoking
the above monotonicity of $\Phi$_{+} ,

we have

(3.41) \displaystyle \int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds=-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{+}'(z)}(1+O(\sqrt{$\alpha$_{2}})) , z>0
so that the leading order approximation to our solution for u from Equation (3.29)
becomes, for z>0,

u(z, $\alpha$_{2})\displaystyle \simeq\sim\frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{\int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds}=-\frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{\sqrt{$\alpha$_{2}}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}$\Phi$_{+}'(z)=-c_{0}$\Phi$_{+}'(z)
(3.42) =1-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z} when z>0.
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If z<0 ,
then for any  0\leq s<\infty ,

as before,

(3.43) $\Phi$_{+}'(s)=\displaystyle \frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}s}-1]<\frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}-1]<0.
From Laplace�s method,

(3.44) \displaystyle \int_{0}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds\sim\simeq-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{+}(0)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{+}'(0)}=\frac{2c_{0}\sqrt{$\alpha$_{2}}($\delta$_{3}+$\gamma$_{3})}{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}}.
For any z\leq s<0,

(3.45) $\Phi$_{-}'(s)=\displaystyle \frac{1}{c_{0}}[(\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}})-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}s}]\leq\frac{1}{c_{0}}(\frac{$\gamma$_{1}$\delta$_{3}}{2$\delta$_{3}+$\gamma$_{3}}-1)<0,
so that Lapace�s method gives

(3.46) \displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}\sim}ds\simeq-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{-}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{-}(z)} (z<0) .

Hence,

\displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}}ds+\int_{0}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}\sim}ds\simeq-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{-}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{-}(z)}+\frac{2c_{0}\sqrt{$\alpha$_{2}}($\delta$_{3}+$\gamma$_{3})}{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}}
(3.47) \displaystyle \simeq\sim-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{-}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{-}(z)} (z<0)
since $\Phi$_{-}(z)>0 for z<0 and 0<$\gamma$_{1}<\displaystyle \frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}} . From Equation (3.29) it follows that

the leading order approximation for u is

(3.48) u(z;$\alpha$_{2})\displaystyle \simeq\sim-c_{0}$\Phi$_{-}'(z)=1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}+\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z} when z<0.

In summary, for the outer region, when 0<$\gamma$_{1}<\displaystyle \frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}} the leading order approximation
for u with respect to \sqrt{$\alpha$_{2}} is

(3.49) u(z;$\alpha$_{2})=\left\{\begin{array}{ll}
1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}+\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z} & \mathrm{i}\mathrm{f} z<0,\\
1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z} & \mathrm{i}\mathrm{f} z>0.
\end{array}\right.
To assess the presence or absence of an interstitial gap, and thereby determine how

our system relates back to the original Gatenby and Gawlinski system [5], we expand u

in the inner variables. Letting  z=\sqrt{$\alpha$_{2}} $\zeta$ ,
we have, from Equation (3.29),

(3.50)  U( $\zeta$;$\alpha$_{2})=u(\sqrt{$\alpha$_{2}} $\zeta,\ \alpha$_{2})\simeq\sim\left\{\begin{array}{ll}
1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}+\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}\sqrt{$\alpha$_{2}} $\zeta$} & \mathrm{i}\mathrm{f}  $\zeta$<0,\\
1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}\sqrt{$\alpha$_{2}} $\zeta$} & \mathrm{i}\mathrm{f}  $\zeta$>0.
\end{array}\right.
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Setting $\alpha$_{2}=0 gives the leading order approximation

(3.51) U_{in}( $\zeta$)=1-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}>0 for any  $\zeta$ in \mathbb{R},

which matches with the leading order outer solution, and indicates that for 0<$\gamma$_{1}<

\displaystyle \frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}} there is no interstitial gap as the normal tissue approximation is non‐zero.

Case \displaystyle \mathrm{B}:\frac{$\delta$_{3}+$\gamma$_{3}}{$\delta$_{3}}<$\gamma$_{1}<\frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}}
If z>0 ,

then the analysis is as in Case \mathrm{A} ; thus, at leading order,

(3.52) u(z, $\alpha$_{2})=1-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z} for z>0

and

(3.53) \displaystyle \int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds\simeq\sim-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{+}(z)}.
If z_{-}<z<0 ,

then for any z\leq s<0 we have z_{-}<s and

$\Phi$_{-}'(s)=\displaystyle \frac{1}{c_{0}}[(\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}-1)-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}s}]
(3.54) =$\Phi$_{-}'(z_{-})+\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}[e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}}z_{-}-e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}s}]<0,
because $\Phi$_{-}'(z_{-})=0 . Also, as before,

(3.55) \displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}}ds+\int_{0}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}\sim}ds\simeq-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{-}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{-}(z)}
because $\Phi$_{+}(0)>$\Phi$_{+}(z) for z>0 and $\Phi$_{-}(z)>$\Phi$_{-}(s) for z_{-}<z\leq s<0 . Hence,

(3.56) u(z;$\alpha$_{2})\displaystyle \simeq\sim-c_{0}$\Phi$_{-}'(z)=1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}+\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z} for z_{-}<z<0.

If z<0 and z<z_{-} ,
then using asymptotic expansions of general Laplace integrals at

leading order and given that $\Phi$_{-}'(z_{-})=0 and  $\Phi$ (z_{-})<0,

(3.57) \displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}}ds\simeq\sim\frac{\sqrt{2 $\pi$}$\alpha$_{2}^{1/4}e^{$\Phi$_{-}(z-)/\sqrt{$\alpha$_{2}}}}{\sqrt{-$\Phi$_{-}'(z_{-})}}=\frac{\sqrt{2 $\pi$}$\alpha$_{2}^{1/4}e^{$\Phi$_{-}(z-)/\sqrt{$\alpha$_{2}}}}{\sqrt{\frac{$\gamma$_{1}$\delta$_{3}}{c_{0}($\delta$_{3}+$\gamma$_{3})^{1/2}}(1-\frac{$\delta$_{3}+$\gamma$_{3}}{$\gamma$_{1}$\delta$_{3}})}}
and since $\Phi$_{-}(z) is positive and greater than \mathrm{O}(\sqrt{$\alpha$_{2}}) ,

and $\Phi$_{-}(z) is independent of
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$\alpha$_{2},

\displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}}ds+\int_{0}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}\sim}ds\simeq\frac{\sqrt{2 $\pi$}$\alpha$_{2}^{1/4}e^{$\Phi$_{-}(z-)/\sqrt{$\alpha$_{2}}}}{\sqrt{\frac{$\gamma$_{1}$\delta$_{3}}{c_{0}($\delta$_{3}+$\gamma$_{3})^{1/2}}(1-\frac{$\delta$_{3}+$\gamma$_{3}}{$\gamma$_{1}$\delta$_{3}})}}+\frac{2c_{0}\sqrt{$\alpha$_{2}}($\delta$_{3}+$\gamma$_{3})}{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}}
(3.58) \displaystyle \simeq\sim\frac{\sqrt{2 $\pi$}$\alpha$_{2}^{1/4}e^{$\Phi$_{-}(z-)/\sqrt{$\alpha$_{2}}}}{\sqrt{\frac{$\gamma$_{1}$\delta$_{3}}{c_{0}($\delta$_{3}+$\gamma$_{3})^{1/2}}(1-\frac{$\delta$_{3}+$\gamma$_{3}}{$\gamma$_{1}$\delta$_{3}})}}.
Substituting this into our initial solution for u

, Equation (3.29), we have

(3.59) u(z;$\alpha$_{2})\simeq\sim\sqrt{\frac{c_{0}$\gamma$_{1}$\delta$_{3}}{2 $\pi$($\delta$_{3}+$\gamma$_{3})^{1/2}}(1-\frac{$\delta$_{3}+$\gamma$_{3}}{$\gamma$_{1}$\delta$_{3}})}$\alpha$_{2}^{1/4}e^{($\Phi$_{-}(z)-$\Phi$_{-}(z-))/\sqrt{$\alpha$_{2}}}
and hence, at leading order,

(3.60)

u(z;$\alpha$_{2})=\left\{\begin{array}{ll}
\sqrt{\frac{c_{0}$\gamma$_{1}$\delta$_{3}}{2 $\pi$($\delta$_{3}+$\gamma$_{3})^{1/2}}(1-\frac{$\delta$_{3}+$\gamma$_{3}}{$\gamma$_{1}$\delta$_{3}})}$\alpha$_{2}^{1/4}e^{($\Phi$_{-}(z)-$\Phi$_{-}(z-))/\sqrt{$\alpha$_{2}}} & \mathrm{i}\mathrm{f} z<z_{-},\\
1-\underline{$\gamma$_{1}$\delta$_{3}}+\underline{$\gamma$_{1}$\delta$_{3}}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}z} & \mathrm{i}\mathrm{f} z_{-}<z<0,\\
$\delta$_{3}+$\gamma$_{3} 2 ($\delta$_{3}+$\gamma$_{3}) & \\
1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z} & \mathrm{i}\mathrm{f} z>0.
\end{array}\right.
In the inner region, letting  z=\sqrt{$\alpha$_{2}} $\zeta$ gives

(3.61)  U( $\zeta$;$\alpha$_{2})=u(\sqrt{$\alpha$_{2}} $\zeta,\ \alpha$_{2})\simeq\sim\left\{\begin{array}{ll}
1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}+\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}\sqrt{$\alpha$_{2}} $\zeta$} & \mathrm{i}\mathrm{f}  $\zeta$<0,\\
1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}\sqrt{$\alpha$_{2}} $\zeta$} & \mathrm{i}\mathrm{f}  $\zeta$>0.
\end{array}\right.
The leading order contribution is obtained by setting $\alpha$_{2}=0 :

(3.62) U_{in}( $\zeta$)=1-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})} for any  $\zeta$ in \mathbb{R}.

We discuss the relationship between the inner region solution in Case \mathrm{B} and the possi‐

bility of an interstitial gap below, in conjunction with Case C.

Case \displaystyle \mathrm{C}:\frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}}<$\gamma$_{1}
For z>0 ,

if z>z+ ,
then for any  z\leq s<\infty we have  s>z+\mathrm{a}\mathrm{n}\mathrm{d}

(3.63) $\Phi$_{+}'(s)=\displaystyle \frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}s}-1]<\frac{1}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z_{+}}-1]=0.
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Using Laplace�s method,

(3.64) \displaystyle \int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds\simeq\sim-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{+}(z)},
so that our solution for u

, Equation (3.29), when z>z+ becomes

(3.65)

u\displaystyle \simeq\sim\frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{\int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds}=-\frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{\sqrt{$\alpha$_{2}}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}$\Phi$_{+}'(z)=c_{0}$\Phi$_{+}'(z)=1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z}
For z>0 ,

if 0<z<z+ ,
then using Laplace�s method,

(3.66) \displaystyle \int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}\sim}ds\simeq\frac{\sqrt{2 $\pi$}$\alpha$_{2}^{1/4}e^{$\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}}}}{\sqrt{-$\Phi$_{+}(z_{+})}}=\sqrt{\frac{2 $\pi$ c_{0}}{\sqrt{$\delta$_{3}+$\gamma$_{3}}}}$\alpha$_{2}^{1/4}e^{$\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}}}.
So, from Equation (3.29), we find that if 0<z<z+ ,

then

(3.67) u(z;$\alpha$_{2})\displaystyle \simeq\sim\frac{\sqrt{$\alpha$_{2}}c_{0}e^{$\Phi$_{+}(z)/\sqrt{$\alpha$_{2}}}}{\int_{z}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds}=\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{($\Phi$_{+}(z)-$\Phi$_{+}(z_{+}))/\sqrt{$\alpha$_{2}}}.
For z<0 , again from Laplace�s method,

(3.68) \displaystyle \int_{0}^{\infty}e^{$\Phi$_{+}(s)/\sqrt{$\alpha$_{2}}}ds\simeq\sim\frac{\sqrt{2 $\pi$}$\alpha$_{2}^{1/4}e^{$\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}}}}{\sqrt{-$\Phi$_{+}(z_{+})}}\simeq\sim\sqrt{\frac{2 $\pi$ c_{0}}{\sqrt{$\delta$_{3}+$\gamma$_{3}}}}$\alpha$_{2}^{1/4}e^{$\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}}}.
For any z<s<0 ,

we have

(3.69)

$\Phi$_{-}'(s)=\displaystyle \frac{1}{c_{0}}[(\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}-1)-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}s}]\geq\frac{1}{c_{0}}[(\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}})-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}-1]>0.
From Laplace�s method,

(3.70) \displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}}ds\simeq\sim-\frac{\sqrt{$\alpha$_{2}}e^{$\Phi$_{-}(0)/\sqrt{$\alpha$_{2}}}}{$\Phi$_{-}(0)}=\frac{2c_{0}\sqrt{$\alpha$_{2}}($\delta$_{3}+$\gamma$_{3})}{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}},
and

\displaystyle \int_{z}^{0}e^{$\Phi$_{-}(s)/\sqrt{$\alpha$_{2}}}ds+\int_{0}^{\infty}e^{$\Phi$_{+}(s)\sqrt{$\alpha$_{2}}\sim}ds\simeq\frac{2c_{0}\sqrt{$\alpha$_{2}}($\delta$_{3}+$\gamma$_{3})}{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}}+\sqrt{\frac{2 $\pi$ c_{0}}{\sqrt{$\delta$_{3}+$\gamma$_{3}}}}$\alpha$_{2}^{1/4}e^{$\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}}}
(3.71) \simeq\sim\sqrt{\frac{2 $\pi$ c_{0}}{\sqrt{$\delta$_{3}+$\gamma$_{3}}}}$\alpha$_{2}^{1/4}e^{$\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}}}
since $\Phi$_{+}(z_{+})>0 and $\Phi$_{+}(Z) is independent of $\alpha$_{2} . Thus, from Equation (3.29),

(3.72) u(z;$\alpha$_{2})\simeq\sim\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{($\Phi$_{-}(z)-$\Phi$_{+}(z_{+}))/\sqrt{$\alpha$_{2}}} if z<0.
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Therefore, in the case that \displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}}<$\gamma$_{1} ,
the leading order solution for the outer region

is

(3.73) u(z;$\alpha$_{2})\simeq\sim\left\{\begin{array}{ll}
\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{($\Phi$_{-}(z)-$\Phi$_{+}(z_{+}))/\sqrt{$\alpha$_{2}}} & \mathrm{i}\mathrm{f} z<0,\\
\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{($\Phi$_{+}(z)-$\Phi$_{+}(z_{+}))/\sqrt{$\alpha$_{2}}} & \mathrm{i}\mathrm{f} 0<z<z_{+},\\
1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}z} & \mathrm{i}\mathrm{f} z>z_{+},
\end{array}\right.
and for the inner region is

(3.74)

U( $\zeta$;$\alpha$_{2})=u(\sqrt{$\alpha$_{2}} $\zeta$;$\alpha$_{2})\simeq\sim\left\{\begin{array}{ll}
\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{($\Phi$_{-}(\sqrt{$\alpha$_{2}} $\zeta$)-$\Phi$_{+}(z_{+}))/\sqrt{$\alpha$_{2}}} & \mathrm{i}\mathrm{f}  $\zeta$<0,\\
\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{($\Phi$_{+}(\sqrt{$\alpha$_{2}} $\zeta$)-$\Phi$_{+}(z_{+}))/\sqrt{$\alpha$_{2}}} & \mathrm{i}\mathrm{f}  $\zeta$>0.
\end{array}\right.
To explicitly calculate the inner solutions, we find

\displaystyle \frac{$\Phi$_{-}(\sqrt{$\alpha$_{2}} $\zeta$)}{\sqrt{$\alpha$_{2}}}=\frac{1}{\sqrt{$\alpha$_{2}}c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})^{3/2}}(1-e^{\sqrt{$\delta$_{3}+$\gamma$_{3}}\sqrt{$\alpha$_{2}} $\zeta$})-\sqrt{$\alpha$_{2}} $\zeta$(1-\frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}})]
(3.75) =\displaystyle \frac{ $\zeta$}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}-1]+O(\sqrt{$\alpha$_{2}})\equiv$\Phi$_{-}^{*},

\displaystyle \frac{$\Phi$_{+}(\sqrt{$\alpha$_{2}} $\zeta$)}{\sqrt{$\alpha$_{2}}}=\frac{1}{\sqrt{$\alpha$_{2}}c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})^{3/2}}(1-e^{-\sqrt{$\delta$_{3}+$\gamma$_{3}}\sqrt{$\alpha$_{2}} $\zeta$})-\sqrt{$\alpha$_{2}} $\zeta$]
(3.76) =\displaystyle \frac{ $\zeta$}{c_{0}}[\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})}-1]+O(\sqrt{$\alpha$_{2}})\equiv$\Phi$_{+}^{*}.
With the above definitions, the fact that $\Phi$_{+}(z_{+})>0 ,

and the restriction here that

1-\displaystyle \frac{$\gamma$_{1}$\delta$_{3}}{$\delta$_{3}+$\gamma$_{3}}<0,
(3.77)

\displaystyle \lim_{$\alpha$_{2}\rightarrow 0}U( $\zeta$;$\alpha$_{2})=\left\{\begin{array}{ll}
\lim_{$\alpha$_{2}\rightarrow 0}\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{[$\Phi$_{-}^{*}-($\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}})]}=0 & \mathrm{i}\mathrm{f}  $\zeta$<0\\
\lim_{$\alpha$_{2}\rightarrow 0}\sqrt{\frac{c_{0}\sqrt{$\delta$_{3}+$\gamma$_{3}}}{2 $\pi$}}$\alpha$_{2}^{1/4}e^{[$\Phi$_{+}^{*}-($\Phi$_{+}(z_{+})/\sqrt{$\alpha$_{2}})]}=0 & \mathrm{i}\mathrm{f}  $\zeta$>0.
\end{array}\right.
Therefore, U_{in}( $\zeta$)=0 for all  $\zeta$ in R. In summary, we have

(3.78)  U_{in}( $\zeta$)\simeq\sim\left\{\begin{array}{ll}
1-\frac{$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})} & \mathrm{i}\mathrm{f} 0<$\gamma$_{1}<\frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}},\\
0 & \mathrm{i}\mathrm{f} $\gamma$_{1}>\frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}},
\end{array}\right.
and thus from the analytical solution we see that an interstitial gap is present if $\gamma$_{1}>

2($\delta$_{3}+$\gamma$_{3})/$\delta$_{3} . The presence of this gap was confirmed in numerical simulations (not
shown).
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Finally, we determine the minimal travelling wavespeed of the tumour density (v).
Examining the inner solution

(3.79) [(1-\displaystyle \frac{U_{in}}{1+K_{*}^{tis}})V_{in}''-\frac{1}{1+K_{*}^{tis}}U_{in}'V_{in}']+c_{0}V_{in}'+$\delta$_{2}V_{in}(1-V_{in})=0
where V_{in}(-\infty)=1 and V_{in}(\infty)=0 ,

if we define D_{*} such that

(3.80) D_{*}=1-\displaystyle \frac{U_{in}}{1+K_{*}^{tis}}=\{ 1-\displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})(1+K_{*}^{tis})} if 0<$\gamma$_{1}<\displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}},
1 if $\gamma$_{1}>\displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}},

then the equation for V_{in} satisfies the Fisher‐Kolmogorov equation

(3.81) D_{*}V_{in}''+c_{0}V_{in}'+$\delta$_{2}V_{in}(1-V_{in})=0

which is known to have a minimal wavespeed of c_{0}\geq 2\sqrt{$\delta$_{2}D_{*}} . As c=c_{0}\sqrt{$\alpha$_{2}} ,
the

minimal wavespeed of Equation (3.81) is

(3.82) c_{\min}=\{
2 \sqrt{$\alpha$_{2}$\delta$_{2}(1-\frac{2($\delta$_{3}+$\gamma$_{3})-$\gamma$_{1}$\delta$_{3}}{2($\delta$_{3}+$\gamma$_{3})(1+K_{*}^{tis})})} if 0<$\gamma$_{1}<\displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}},
2\sqrt{$\alpha$_{2}$\delta$_{2}} if $\gamma$_{1}>\displaystyle \frac{2($\delta$_{3}+$\gamma$_{3})}{$\delta$_{3}}.

We note that under conditions of no freedom of motility (K_{*}^{tis}=0) and no treat‐

ment ($\delta$_{3}=0) ,
we recover the result found in [8]. Furthermore, a comparison of the

analytically derived wavespeed with numerical simulations shows good agreement (Fig‐
ure 3\mathrm{a}) . It is evident in Equation (3.82) that there exist parameter combinations such

that for low tissue density (high K_{*}^{tis} ) the magnitude of the treatment dose ($\gamma$_{3}) has

no effect on wavespeed, but under higher tissue density, higher treatment dosing does

reduce the wavespeed (Figure 3\mathrm{b} ). The former scenario replicates a primary tumour

and the latter a metastatic tumour; therefore, our modelling verifies the possibility of

tissue density as a consistent explanation for the difference in buffer efficacy between

primary and metastatic tumours. However, it is important to note we do not base our

parameter choices for K_{*} on experimentally derived values, due to a lack of availability
in the current literature. Future work quantifying this parameter in different tissues

would confirm the true magnitude of variability in K_{*} ,
and subsequent effect (if any)

on invasion wavespeed.
We now move on to address our second experimentally‐motivated question; that is,

we consider the translational safety and efficacy of bicarbonate therapy in humans.
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Figure 3: The analytical tumour wavespeed for varying values of the aggression

parameter, $\gamma$_{1} . (a) A comparison of the analytical (line) and numerical (circles)
wavespeeds. The analytical wavespeed is calculated from Equation (3.82), and the

numerical wavespeed is calculated by solving Equations (3.1)-(3.3) using the Method

of Lines and finite differences for a long time ( $\tau$=20) to ensure the decay of tran‐

sients and that the waves are travelling at their asymptotic wavespeed. Here, $\delta$_{2}=1,

$\alpha$_{2}=4\times 10^{-5}, $\delta$_{3}=70, K_{*}=0, $\gamma$_{3}=0 ,
and $\gamma$_{1} varies as dictated on the horizontal axis.

There is good agreement for $\gamma$_{1}<1 and $\gamma$_{1}>3 ,
and there is a small estimation error for

1<$\gamma$_{1}<3 due to the error introduced in the use of Laplace�s method to approximate
the normal tumour levels as used in this section. (b) The predicted effect of tissue

density and treatment on the tumour invasion wavespeed, as found from the analytical

wavespeed solution in Equation (3.82). The solid line is the wavespeed of untreated pri‐

mary tumours on varying $\gamma$_{1} ,
and the dashed line is for treated primary tumours: these

lines overlap as there is no difference in wavespeed for any value of $\gamma$_{1} . The dash‐dot

line is the wavespeed for untreated metastases, and the dotted line represents treated

metastases. For all but very aggressive tumours (high values of $\gamma$_{1} ), the treatment used

slows the metastatic growth, but not the growth of the primary tumour. For the un‐

treated metastasis, with $\gamma$_{1}<\approx 2 such that there is contact between the tumour and the

normal tissue, the wavespeed is slower than in primary tumours. For $\gamma$_{1}>\approx 2 ,
where a

gap occurs at the tumour front, the wavespeed is independent of aggressivity. Note that

a slowing of the primary tumour due to treatment could be found with the K_{*}^{tis} used

in this figure, but only with very large treatment doses. Here parameters are $\gamma$_{1}=0.5,

$\delta$_{2}=1, $\alpha$_{2}=4\times 10^{-5}, $\delta$_{3}=70, K_{*}^{primary}=100, K_{*}^{metastasis}=0 ,
and $\gamma$_{3}=200, 0

for treated and untreated cases, respectively. The system is solved with boundary and

initial conditions as described in the text. The boundary and initial conditions are

identical for all cases (primary, metastasis, treated, untreated).
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§4. Translational safety and efficacy of bicarbonate therapy in humans

§4.1. A system of coupled nonlinear ordinary differential equations

Here we present a nonlinear ODE model of systemic buffering through the \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-}/\mathrm{C}\mathrm{O}_{2}
buffering system, tracking extracellular \mathrm{p}\mathrm{H}(\mathrm{p}\mathrm{H}\mathrm{e}) in the blood and tumour, and find

a uniformly valid analytical approximation to the solution. We parameterise this

model first for mice, comparing model predictions with experimental results, then re‐

parameterise for humans to generate predictions of bicarbonate safety and efficacy. Full

details and a model derivation can be found in [6].
The first three equations capture the tumour dynamics, and will be discussed in

turn below.

vascular exchangechemical reactions

(4.1)
\mathrm{d}\mathrm{B}

dt
chemical reactions tumour production vascular exchange

(4.2)
\mathrm{d}\mathrm{H}

dt
chemical reactions tumour production vascular exchange

(4.3)
\mathrm{d}\mathrm{C}

dt

The first two terms in each equation represent the bicarbonate buffering reaction

kinetics in the tumour, and the final terms represent the vascular exchange between the

blood and the tumour. Equation (4.1) describes the dynamics of tumour \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-}(B_{t}) .

As there is no direct production or consumption of \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-} in the tumour, this equation

only includes chemical reaction terms and vascular exchange of \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-} . Equation (4.2)
models the tumour \mathrm{H}^{+} concentration (Ht). The third term, $\phi$_{1} ,

is the net production of

\mathrm{H}^{+} per unit volume of the tumour through aerobic glycolysis, implicitly incorporating
the fixed contribution of minor additional non‐motile tissue buffering components which

act on a faster timescale than the other reactions detailed. This production term is

generally higher than in normal tissue due to the upregulation of glycolysis in malignant
tumours. Equation (4.3) represents the tumour \mathrm{C}\mathrm{O}_{2} dynamics (Ct). The third term,

$\phi$_{5} , represents the tumour production of \mathrm{C}\mathrm{O}_{2} from cellular metabolism.

The last three equations capture the blood dynamics,
chemical reactions kidney filtration treatment vascular exchange

(4.4)
\mathrm{d}\mathrm{B}

dt
chemical reactions body production vascular exchange

\mathrm{g}\mathrm{v} (\mathrm{B} B),

\mathrm{g}\mathrm{v} (\mathrm{H} H),(4.5)
\mathrm{d}\mathrm{H}

dt
chemical reactions body production ventilation vascular exchange

(4.6)
\mathrm{d}\mathrm{C}

dt
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As before, the first two terms in each equation represent the bicarbonate buffering
reaction kinetics in the blood, and the final terms represent the vascular exchange be‐

tween the blood and the tumour. Equation (4.4) describes the blood \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-}(B_{b}) ,
where

the third and fourth terms are standard representations used to model the complex pro‐

cess of renal filtration and reabsorption of bicarbonate, with $\phi$_{2} as the acid secretion

rate and $\lambda$_{1} as the bicarbonate filtration rate. Further details of this system can be

found in [6]. The fifth term, $\theta$_{1} ,
is the bicarbonate treatment term. Equation (4.5)

models the blood \mathrm{H}^{+} dynamics (Hb). The third term represents the net contribution of

protons from the rest of the body tissues (except for the tumour) after the contribution

of non‐motile tissue buffers. Equation (4.6) models the blood \mathrm{C}\mathrm{O}_{2} concentration (Cb).
The third term is the \mathrm{C}\mathrm{O}_{2} source from the normal body tissues; here $\phi$_{4} represents the

rate of \mathrm{C}\mathrm{O}_{2} entry into the bloodstream from the normal tissue. The fourth term in

Equation (4.6) represents the regulation of blood \mathrm{C}\mathrm{O}_{2} levels by respiration, where \mathrm{C}\mathrm{O}_{2}
lost through ventilation is proportional to the product of the ventilation rate, f(C_{b}) ,

and the \mathrm{C}\mathrm{O}_{2} concentration. The function for ventilation we use is:

(4.7) f(C_{b})=\left\{\begin{array}{ll}
V_{\min} & \mathrm{i}\mathrm{f} f(C_{b})<V_{\min},\\
V_{sl}{}_{ope}C_{b-} Vintercept & \mathrm{i}\mathrm{f} vm_{\min}<f(C_{b})<V_{\max},\\
V_{\max} & \mathrm{i}\mathrm{f} f(C_{b})>V_{\max}.
\end{array}\right.
The initial conditions are C_{b}(0)=c_{0}, C_{t}(0)=c_{0}, B_{b}(0)=b_{0}, B_{t}(0)=b_{0}, H_{b}(0)=

h_{0} ,
and H_{t}(0)=h_{0} . We choose c_{0}, b_{0} ,

and h_{0} to be the standard blood values of \mathrm{C}\mathrm{O}_{2},

\mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-} ,
and \mathrm{H}^{+}

, respectively.
In order to nondimensionalise our model, we use the rescaling  $\tau$=k_{2}t, b_{0}b_{t}=B_{t},

c_{0}c_{t}=C_{t}, h_{0}h_{t}=H_{t}, b_{0}b_{b}=B_{b}, c_{0}c_{b}=C_{b} ,
and h_{0}h_{b}=H_{b} to obtain the system

(4.8) \displaystyle \frac{db_{t}}{d $\tau$}=$\delta$_{1}(c_{t}-$\alpha$_{2}b_{t}h_{t})+$\Gamma$_{1}(b_{b}-b_{t})
(4.9) \displaystyle \frac{dh_{t}}{d $\tau$}=$\delta$_{3}(c_{t}-$\alpha$_{2}b_{t}h_{t})+$\Phi$_{1}-$\Gamma$_{2}(h_{t}-h_{b})

dc_{t}
\overline{d $\tau$}(4.10) =-(c_{t}-$\alpha$_{2}b_{t}h_{t})+$\Phi$_{5}-$\Gamma$_{3}(c_{t}-c_{b})

(4.11) \displaystyle \frac{db_{b}}{d $\tau$}=$\delta$_{1}(c_{b}-$\alpha$_{2}b_{b}h_{b})+$\Phi$_{2}c_{b}-$\xi$_{1}b_{b}+$\Theta$_{1}-$\Gamma$_{1}v_{T}(b_{b}-b_{t})
(4.12) \displaystyle \frac{dh_{b}}{d $\tau$}=$\delta$_{3}(c_{b}-$\alpha$_{2}b_{b}h_{b})+$\Phi$_{3}+$\Gamma$_{2}v_{T}(h_{t}-h_{b})
(4.13) \displaystyle \frac{dc_{b}}{d $\tau$}=-(c_{b}-$\alpha$_{2}b_{b}h_{b})+$\Phi$_{4}-$\xi$_{3}(c_{b})c_{b}+$\Gamma$_{3}v_{T}(c_{t}-c_{b}) .
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The ventilation function is

(4.14) $\xi$_{3}(c_{b})=\left\{\begin{array}{ll}
\triangle_{\min} & \mathrm{i}\mathrm{f} $\xi$_{3}(c_{b})<\triangle_{\min},\\
\triangle_{1}c_{b}-\triangle_{2} & \mathrm{i}\mathrm{f} \triangle_{\min}<$\xi$_{3}(c_{b})<\triangle_{\max},\\
\triangle_{\max} & \mathrm{i}\mathrm{f} $\xi$_{3}(c_{b})>\triangle_{\max},
\end{array}\right.
where \displaystyle \triangle_{\min}=\frac{$\lambda$_{2}}{k_{2}}V_{\min}, \displaystyle \triangle_{1}=\frac{$\lambda$_{2}}{k_{2}}V_{slope}c_{0}, \displaystyle \triangle_{2}=\frac{$\lambda$_{2}}{k_{2}}V_{intercept} ,

and \displaystyle \triangle_{\max}=\frac{$\lambda$_{2}}{k_{2}}V_{\max},
and the initial conditions are

(4.15) c_{b}(0)=1, c_{t}(0)=1, b_{b}(0)=1, b_{t}(0)=1, h_{b}(0)=1 ,
and h_{t}(0)=1.

The nondimensional parameters are given in Table 1.

Name

\displaystyle \min

Mouse

5.0 10

2.5 10

3.02 10

7.17 10

8.79 10

6.11 10

7.32 10

1.13 10

1.10 10

1.16 10

2.5 10

1.28 10

8.79 10

1.13 10

7.32 10

5.23 10

1.52 10

3.51 10

2.05 10

Human

5.0 10

2.5 10

3.02 10

7.17 10

8.79 10

7.63 10

7.32 10

2.11 10

1.90 10

9.16 10

2.5 10

1.1 10

8.79 10

9.16 10

7.32 10

3.08 10

2.03 10

1.9 10

1.54 10\displaystyle \max

Table 1: Mouse and human nondimensionalised parameter values. Parameter derivation

and references can be found in [6].
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§4.2. Nonstandard asymptotics for three characteristic timescales

Many models of biological systems incorporate multiple characteristic timescales, gen‐

erally indicated by parameters that span several orders of magnitude. In our system,

important processes include chemical reaction dynamics on the order of nano‐ to milli‐

seconds, cellular production of protons on the order of seconds ( $\Phi$_{1} and $\Phi$_{3} ), and phys‐

iological processes, such as ventilation and kidney filtration, on the order of minutes

to hours ($\Phi$_{2}, \triangle_{1}, \triangle_{2}) . Standard asymptotic analysis is inadequate for such a system;

instead, it is possible to employ selective rescalings to find approximate solutions within

each timescale separately. We separate timescales into those associated with ultrafast

reaction dynamics, fast cellular processes, and slow physiological processes by using the

scaled variables  $\tau$, $\tau$_{2}= $\epsilon \tau$,  $\tau$_{3}=$\epsilon$^{2} $\tau$ with  $\epsilon$=10^{-3} . All parameters except $\delta$_{1}, $\delta$_{3} ,
and

$\alpha$_{2} are then written in terms of powers of  $\epsilon$ with order unity coefficients to enable a

multiscale analysis at each of the appropriate timescales before the construction of a

uniform, asymptotically accurate, solution. The parameters  $\delta$_{1}, $\delta$_{3} ,
and $\alpha$_{2} are not writ‐

ten in powers of  $\epsilon$ as they control the chemical reaction dynamics on the fast timescale,
and thus do not need to be separated at a higher resolution for the approximation of

the solution.

The system dynamics on the fast timescale are dominated by chemical reactions

(on the order of nano‐ to milli‐seconds). Accordingly, we define  $\epsilon$=10^{-3} ,
and rescale

Equations (4.8)-(4.13) to

(4.16) \displaystyle \frac{db_{t}}{d $\tau$}=$\delta$_{1}(c_{t}-$\alpha$_{2}b_{t}h_{t})+$\epsilon$^{2}\hat{ $\Gamma$}_{1}(b_{b}-b_{t})
(4.17) \displaystyle \frac{dh_{t}}{d $\tau$}=$\delta$_{3}(c_{t}-$\alpha$_{2}b_{t}h_{t})+ $\epsilon$\hat{ $\Phi$}_{1}-$\epsilon$^{2}\hat{ $\Gamma$}_{2}(h_{t}-h_{b})

dc_{t}
(4.18) — =-(c_{t}-$\alpha$_{2}b_{t}h_{t})+$\epsilon$^{2}\hat{ $\Phi$}_{5}-$\epsilon$^{2}\hat{ $\Gamma$}_{3}(c_{t}-c_{b})

 d $\tau$

(4.19) \displaystyle \frac{db_{b}}{d $\tau$}=$\delta$_{1}(c_{b}-$\alpha$_{2}b_{b}h_{b})+$\epsilon$^{2}\hat{ $\Phi$}_{2}c_{b}-$\epsilon$^{2}\hat{ $\xi$}_{1}b_{b}+$\epsilon$^{2}\hat{ $\Theta$}_{1}-$\epsilon$^{2}\hat{ $\Gamma$}_{1}v_{T}(b_{b}-b_{t})
(4.20) \displaystyle \frac{dh_{b}}{d $\tau$}=$\delta$_{3}(c_{b}-$\alpha$_{2}b_{b}h_{b})+ $\epsilon$\hat{ $\Phi$}_{3}+$\epsilon$^{2}\hat{ $\Gamma$}_{2}v_{T}(h_{t}-h_{b})

dc_{b}
(4.21) — =-(c_{b}-$\alpha$_{2}b_{b}h_{b})+$\epsilon$^{2}\hat{ $\Phi$}_{4}-$\epsilon$^{2}\hat{ $\xi$}_{3}(c_{b})c_{b}+$\epsilon$^{2}\hat{ $\Gamma$}_{3}v_{T}(c_{t}-c_{b}) ,

 d $\tau$

where  $\delta$_{1}=\displaystyle \frac{c_{0}}{b_{0}}, $\alpha$_{2}=\displaystyle \frac{k_{1}h_{0}b_{0}}{k_{2}c_{0}}, \displaystyle \hat{ $\Gamma$}_{1}=\frac{g_{1}}{$\epsilon$^{2}k_{2}}, $\delta$_{3}=\displaystyle \frac{c_{0}}{h_{0}}, \displaystyle \hat{ $\Phi$}_{1}=\frac{$\phi$_{1}}{ $\epsilon$ k_{2}h_{0}} , \displaystyle \hat{ $\Gamma$}_{2}=\frac{g_{2}}{$\epsilon$^{2}k_{2}}, \displaystyle \hat{ $\Gamma$}_{3}=\frac{g_{3}}{$\epsilon$^{2}k_{2}},
\displaystyle \hat{ $\Phi$}_{2}=\frac{$\phi$_{2}c_{0}}{$\epsilon$^{2}k_{2}b_{0}}, $\xi$_{1}=\displaystyle \frac{$\lambda$_{1}}{$\epsilon$^{2}k_{2}}, \displaystyle \hat{ $\Theta$}_{1}=\frac{$\theta$_{1}}{$\epsilon$^{2}k_{2}b_{0}}, \displaystyle \hat{ $\Phi$}_{3}=\frac{$\phi$_{3}}{ $\epsilon$ k_{2}h_{0}}, \displaystyle \hat{ $\Phi$}_{4}=\frac{$\phi$_{4}}{$\epsilon$^{2}k_{2}c_{0}}, \displaystyle \hat{ $\xi$}_{3}(c_{b})=\frac{$\lambda$_{2}}{$\epsilon$^{2}k_{2}}f(c_{b}) .

The ventilation function becomes

(4.22) $\xi$_{3}(c_{b})\wedge=\left\{\begin{array}{ll}
\triangle^{\wedge} min & \mathrm{i}\mathrm{f} $\xi$_{3}(c_{b})<\triangle_{\min}^{\wedge},\\
\triangle_{1}^{\wedge}c_{b-}\triangle_{2}\wedge & \mathrm{i}\mathrm{f} \triangle^{\wedge}min<$\xi$_{3}\wedge(c_{b})<\triangle_{\max}^{\wedge},\\
\triangle^{\wedge} max & \mathrm{i}\mathrm{f} $\xi$_{3}\wedge(c_{b})>\triangle_{\max}^{\wedge},
\end{array}\right.
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with \displaystyle \triangle_{\min}\wedge=\frac{$\lambda$_{2}}{$\epsilon$^{2}k_{2}}V_{\min}, \displaystyle \triangle_{1}^{\wedge}=\frac{$\lambda$_{2}}{$\epsilon$^{2}k_{2}}V_{slope}c_{0}, \displaystyle \triangle_{2}\wedge=\frac{$\lambda$_{2}}{$\epsilon$^{2}k_{2}}V_{intercept} ,
and \displaystyle \triangle_{\max}^{\wedge}=\frac{$\lambda$_{2}}{$\epsilon$^{2}k_{2}}V_{\max}.

The reaction dynamics can be decoupled via the substitutions u_{1}=b_{t}+$\delta$_{1}c_{t},

u_{2}=b_{b}+$\delta$_{1}c_{b}, v_{1}=h_{t}+$\delta$_{3}c_{t}, v_{2}=h_{b}+$\delta$_{3}c_{b} . This does not scale the variables v_{1,2} to

\mathrm{O}(1) ,
but to \mathrm{O}($\delta$_{3})=\mathrm{O}(10^{4}) ; however, the advantage is that the leading order equations

simplify on noting the size of v_{1,2} , yielding

(4.23) \displaystyle \frac{du_{1}}{d $\tau$}=\frac{dv_{1}}{d $\tau$}=0
dh_{t}

(4.24) --=v_{1}-h_{t}-$\alpha$_{2}h_{t}($\delta$_{3}u_{1}-$\delta$_{1}v_{1}+$\delta$_{1}h_{t})
 d $\tau$

(4.25) \displaystyle \frac{du_{2}}{d $\tau$}=\frac{dv_{2}}{d $\tau$}=0
(4.26) \displaystyle \frac{dh_{b}}{d $\tau$}=v_{2}-h_{b}-$\alpha$_{2}h_{b}($\delta$_{3}u_{2}-$\delta$_{1}v_{2}+$\delta$_{1}h_{b}) .

It is clear that u_{1}, v_{1}, u_{2} and v_{2} are constants, denoted A_{1}, A_{2}, A_{3} ,
and A_{4} , respectively;

hence

dh_{t}
(4.27) -=-$\alpha$_{2}$\delta$_{1}h_{t}^{2}+(-1-$\delta$_{3}$\alpha$_{2}A_{1}+$\delta$_{1}$\alpha$_{2}A_{2})h_{t}+A_{2}

 d $\tau$

(4.28) \displaystyle \frac{dh_{b}}{d $\tau$}=-$\alpha$_{2}$\delta$_{1}h_{b}^{2}+(-1-$\delta$_{3}$\alpha$_{2}A_{3}+$\delta$_{1}$\alpha$_{2}A_{4})h_{b}+A_{4}.

These equations have one positive, stable steady state given by the appropriate roots,

which we denote \tilde{h}_{t+} and \tilde{h}_{b+} ,
of the quadratic right‐hand side. Therefore, the solution

in our original variables, denoted W_{fast} ,
satisfies (4.27), (4.28), and

(4.29) c_{t}=\displaystyle \frac{1}{$\delta$_{3}}(A_{2}-h_{t}) c_{b}=\frac{1}{$\delta$_{3}}(A_{4}-h_{b})
(4.30) b_{t}=A_{1}-\displaystyle \frac{$\delta$_{1}}{$\delta$_{3}}A_{2}+\frac{$\delta$_{1}}{$\delta$_{3}}h_{t} b_{b}=A_{3}-\frac{$\delta$_{1}}{$\delta$_{3}}A_{4}+\frac{$\delta$_{1}}{$\delta$_{3}}h_{b}
where A_{1}, A_{2}, A_{3}, A_{4} can be written in terms of the initial conditions. A comparison
between the numerical and analytical solutions for the fast timescale shows good agree‐

ment for both tumour (Figure 4\mathrm{a} ) and blood (not shown).
To examine the intermediate timescale dynamics, we rescale time such that $\tau$_{2}= $\epsilon \tau$.

Noting again that our variables v_{1,2} are not scaled to \mathrm{O}(1) but to \mathrm{O}($\delta$_{3})=\mathrm{O}(10^{4}) ,
we
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have at leading order:

(4.31) \displaystyle \frac{du_{1}}{d$\tau$_{2}}=0
(4.32) \displaystyle \frac{dv_{1}}{d$\tau$_{2}}=\hat{ $\Phi$}_{1}+$\delta$_{3} $\epsilon$\hat{ $\Phi$}_{5}- $\epsilon$\hat{ $\Gamma$}_{3}(v_{1}-v_{2})
(4.33) 0=-$\alpha$_{2}$\delta$_{1}h_{t}^{2}+(-1-$\delta$_{3}$\alpha$_{2}u_{1}+$\delta$_{1}$\alpha$_{2}v_{1})h_{t}+v_{1}

(4.34) \displaystyle \frac{du_{2}}{d$\tau$_{2}}=0
(4.35) \displaystyle \frac{dv_{2}}{d$\tau$_{2}}=\hat{ $\Phi$}_{3}+$\delta$_{3} $\epsilon$\hat{ $\Phi$}_{4}- $\epsilon$(\frac{\triangle_{1}\wedge}{$\delta$_{3}}v_{2}^{2_{-\triangle_{2}v_{2})}^{\wedge}}+ $\epsilon$\hat{ $\Gamma$}_{3}v_{T}(v_{1}-v_{2})
(4.36) 0=-$\alpha$_{2}$\delta$_{1}h_{b}^{2}+(-1-$\delta$_{3}$\alpha$_{2}u_{2}+$\delta$_{1}$\alpha$_{2}v_{2})h_{b}+v_{2}.

We see immediately that, as previously, u_{1} and u_{2} are constant and are denoted

by A_{1} and A_{3} , respectively, which can be written in terms of the initial conditions.

Furthermore, h_{t} and h_{b} have reached their slow dynamics steady states, \tilde{h}_{t+} and \tilde{h}_{b+},
and we are left with only Equations (4.32) and (4.35), where the initial conditions for

v_{1} and v_{2} are the equilibrium values from the fast dynamics. These in turn are the

parameters A_{2} and A_{4} and can be written in terms of the full model initial conditions.

The positive equilibrium solutions, which we denote by \tilde{v}_{1} and \tilde{v}_{2} ,
are linearly stable by

standard linear analysis.

Transforming back into the original variables, the solutions, denoted W_{intermediate},

satisfy Equations (4.27) and (4.28) with h_{t} and h_{b} constant and

(4.37) c_{t}=\displaystyle \frac{1}{$\delta$_{3}}(v_{1}-h_{t}) , c_{b}=\frac{1}{$\delta$_{3}}(v_{2}-h_{b}) ,

(4.38) b_{t}=A_{1}-\displaystyle \frac{$\delta$_{1}}{$\delta$_{3}}(v_{1}-h_{t}) , b_{b}=A_{3}-\frac{$\delta$_{1}}{$\delta$_{3}}(v_{2}-h_{b}) .

A comparison betwen the numerical and analytical solutions for the intermediate timescale

shows good agreement for both tumour (Figure 4\mathrm{b} ) and blood (not shown).
Finally, the slow timescale is dominated by high‐level physiological responses, such

as ventilation and kidney excretion. Rescaling in time such that  $\tau$_{3}=$\epsilon$^{2} $\tau$ ,
we note

once again that  v_{1,2}\sim O($\delta$_{3})=O(10^{4}) and hence we consider each term in turn when
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approximating to leading order. Thus we have

(4.39) \displaystyle \frac{du_{1}}{d$\tau$_{3}}=\hat{ $\Gamma$}_{1}(u_{2}-\frac{$\delta$_{1}}{$\delta$_{3}}v_{2}-u_{1}+\frac{$\delta$_{1}}{$\delta$_{3}}v_{1})+$\delta$_{1}\hat{ $\Phi$}_{5}-\hat{ $\Gamma$}_{3}\frac{$\delta$_{1}}{$\delta$_{3}}(v_{1}-v_{2})
(4.40) 0=\hat{ $\Phi$}_{1}+$\delta$_{3} $\epsilon$\hat{ $\Phi$}_{5}- $\epsilon$\hat{ $\Gamma$}_{3}(v_{1}-v_{2})
(4.41) 0=-$\alpha$_{2}$\delta$_{1}h_{t}^{2}+(-1-$\delta$_{3}$\alpha$_{2}u_{1}+$\delta$_{1}$\alpha$_{2}v_{1})h_{t}+v_{1}

\displaystyle \frac{du_{2}}{d$\tau$_{3}}=\frac{\hat{ $\Phi$}_{2}}{$\delta$_{3}}v_{2}-\hat{ $\xi$}_{1}(u_{2}-\frac{$\delta$_{1}}{$\delta$_{3}}v_{2})+\hat{ $\Theta$}_{1}-\hat{ $\Gamma$}_{1}v_{T}(u_{2}-\frac{$\delta$_{1}}{$\delta$_{3}}v_{2}-u_{1}+\frac{$\delta$_{1}}{$\delta$_{3}}v_{1})
(4.42) +$\delta$_{1}\displaystyle \hat{ $\Phi$}_{4}-\frac{$\delta$_{1}\triangle_{1}\wedge}{$\delta$_{3}^{2}}v_{2}^{2}+\frac{$\delta$_{1}\triangle_{2}\wedge}{$\delta$_{3}}v_{2}+\hat{ $\Gamma$}_{3}v_{T}\frac{$\delta$_{1}}{$\delta$_{3}}(v_{1}-v_{2})
(4.43) 0=\displaystyle \hat{ $\Phi$}_{3}+$\delta$_{3} $\epsilon$\hat{ $\Phi$}_{4}- $\epsilon$(\frac{\triangle_{1}^{\wedge}}{$\delta$_{3}}v_{2}^{2_{-\triangle_{2}v_{2})}^{\wedge}}+ $\epsilon$\hat{ $\Gamma$}_{3}v_{T}(v_{1}-v_{2})
(4.44) 0=-$\alpha$_{2}$\delta$_{1}h_{b}^{2}+(-1-$\delta$_{3}$\alpha$_{2}u_{2}+$\delta$_{1}$\alpha$_{2}v_{2})h_{b}+v_{2}.
The initial conditions are the intermediate timescale equilibrium values for u_{1,2} (denoted
A_{1} and A_{3} , respectively), which are ultimately derived from the initial conditions of the

full model. For our parameters, the equilibrium values are positive, denoted ũl and ũ,
and comprise a linearly stable node. Transforming back into our original variables, the

slow solution, Wlow, satisfies

(4.45) c_{t}=\displaystyle \frac{1}{$\delta$_{3}}(v_{1}-h_{t}) , c_{b}=\frac{1}{$\delta$_{3}}(v_{2}-h_{b})
(4.46) b_{t}=u_{1}-\displaystyle \frac{$\delta$_{1}}{$\delta$_{3}}(v_{1}-h_{t}) , b_{b}=u_{2}-\frac{$\delta$_{1}}{$\delta$_{3}}(v_{2}-h_{b}) .

Explicit large time asymptotic solutions are found readily and yield the steady state

solutions in our original variables. By extracting leading order terms with our chosen

parameters, we find

(4.47) \displaystyle \tilde{h}_{t}=\frac{(\frac{$\delta$_{3}\hat{ $\Delta$}_{2}}{\hat{ $\Delta$}_{1}}+\frac{\hat{ $\Phi$}_{1}}{ $\epsilon$\hat{ $\Gamma$}_{3}})}{$\delta$_{3}$\alpha$_{2}(\frac{\hat{ $\Phi$}_{2}\hat{ $\Delta$}_{2}}{\hat{ $\xi$}_{1}\triangle_{1}^{\wedge}}-\frac{$\delta$_{1}\hat{ $\Phi$}_{1}}{\hat{ $\Gamma$}_{1}$\delta$_{3} $\epsilon$})}+O(\frac{1}{$\delta$_{3}}) .

To leading order \tilde{h}_{t} is proportional to \hat{ $\xi$}_{1} and inversely proportional to $\alpha$_{2}, \hat{ $\Gamma$}_{3}, \hat{ $\Gamma$}_{1} ,
and

\hat{ $\Phi$}_{2} ,
so that \mathrm{H}^{+} levels in the tumour can be lowered either by decreasing the glomerular

filtration rate ($\xi$_{1}) or by increasing the acid secretion rate ($\Phi$_{2}) ,
carbon dioxide vessel

permeability ($\Gamma$_{3}) ,
or bicarbonate vessel permeability ($\Gamma$_{1}) . A comparison between the

numerical and analytical solutions for the slow timescale shows good agreement for both

tumour (Figure 4\mathrm{b} ) and blood (not shown).
It is now straightforward to construct an approximate uniformly valid solution

using our fast, intermediate, and slow solutions. This uniform solution has the form

(448) Wuniform = Wfast + Wintermediate + Wslow -\tilde{W}_{f} ast -\tilde{W}intermediate
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where \tilde{W}_{fast,intermediate} are the quasi‐steady state solutions to the W_{fast} and Wi_{intermediate}

equations, respectively. These results are in good agreement with numerics [6].
Two conclusions have arisen from this analysis. First, a dangerous rise in blood

\mathrm{p}\mathrm{H} is predicted in mice at the established dosage levels; this rise has been confirmed

experimentally [6]. Second, re‐parameterisation of the model suggests that bicarbonate

therapy will have a reduced efficacy in humans. Our derived, uniformly valid, solutions

are amenable to a sensitivity analysis that can suggest possible methods for increasing

efficacy; these include alternative buffers and combination therapies that target aspects

of renal function in conjunction with bicarbonate. Further details can be found in [6].

§5. Discussion

We have presented a system of coupled nonlinear PDEs to describe acid‐mediated inva‐

sion, focusing on the dynamics of invasion that occur after destabilisation of the healthy

steady state by the developing tumour, and have dealt to asymptotic accuracy with the

subtleties of the resulting invasive tumour wavefront. We also have addressed the ques‐

tion of buffer efficacy in humans by deriving an ODE model and utilising a nonstandard

scaling to clarify, again to asymptotic accuracy, the behaviour across three timescales of

biological interest. Together these models and analyses have yielded valuable insights
into tumour‐host behaviour and therapeutic possibilities, and motivate further exper‐

iments, such as additional mouse studies in which tumours are implanted in different

types of tissue to further elucidate the role of tissue density in acid‐mediated inva‐

sion. In the case of the first model, however, several mathematical questions remain.

Our asymptotics have confirmed that although the system is more complicated and in

a higher dimension than the canonical Fisher‐Kolmogorov system, it does appear to

evolve to the minimum wavespeed; but as asymptotic techniques are not rigorous, the

existence of this minimum wavespeed remains an open question. Further complications
arise from propagation into an unstable steady state, including uncertainty of velocity
selection due to degeneracy of the dynamics [9, 10], and robustness to fluctuations, \mathrm{a}

topic important to mathematical biology in general. These are ongoing mathematical

problems and can be explored using (for example) the concept of marginal stability [11].
Additionally, underlying simplifying assumptions render the models presented here

incomplete descriptions of acid‐mediated invasion. For example, they omit competition
between tumour and healthy cells for space and resources, justified in [5] by restricting
the scope to cases in which the tumour and host populations are sharply delineated; but

this limits the flexibility for accommodating microenvironmental complexity and clinical

variation in tumour aggressiveness. In fact, adding cellular competition to the model

[5] can produce, under low‐acid conditions, tumours that establish standing rather than

invading waves. As these are stable to perturbations they may represent benign tumours,
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Figure 4: Comparison of numerical (stars) and approximate analytical solutions (lines)
in the tumour for the (a) fast and (b) intermediate and slow timescales in an untreated

human. In both (a) and (b), shown are the \mathrm{p}\mathrm{H} (upper left) and nondimensional \mathrm{H}\mathrm{C}\mathrm{O}_{3}^{-}
(upper right), \mathrm{C}\mathrm{O}_{2} (lower left), and \mathrm{H}^{+} (lower right) over appropriately scaled time.

The analytical solutions for the intermediate and slow timescales are calculated with

initial conditions as the steady‐state solutions of the fast and intermediate timescales,

respectively. Both numerical and analytical solutions were calculated with the human

parameters as in Table 1, but with $\Theta$_{1}=0.
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and thus potentially are important features which have been explored recently (McGillen
et al., in preparation). In general, for a full picture of a developing tumour it is necessary

to determine how the tissue‐level properties of invasion emerge from the underlying
behaviour of individual cells at the tumour‐host interface, and therefore continuum

modelling alone is insufficient for a truly comprehensive understanding. Instead, a dual

approach is needed in which the strengths of each approach compensate for weaknesses

in the other. Population‐level continuum models, such as those presented herein, are

mathematically tractable but less accurate, while discrete stochastic representations,
such as hybrid cellular automata approaches [12], capture fine detail but the formulation

and large parameter sets preclude rigorous mathematical analysis. Thus, there is great

scope for developing both in parallel so that, in the long term, we can make strides

toward the realisation of therapies that contain and reduce the threat of cancer.
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