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Abstract

Animals can locomote slickly and sinuously in a complex environment, whereas the most

advanced robots are unable to do so. This is because animals have a large number of degrees
of freedom, and they can control them in a well‐coordinated manner. Our objective is to

understand how animals attain such elegant motion. Autonomous decentralized control (ADC)
is a key concept that facilitates the control of a large number of degrees of freedom under

uncertain conditions in real time. First, we focus our attention on a single‐cell organism,
i.e., plasmodium of Physarum polycephalum. We extract the simple form of ADC from this

organism, which is termed as discrepancy control; then, we test it by implementing it in various

types of robots. In this article, we report the present status of our study.

§1. Introduction

Animals are capable of moving in a supple and adaptive manner under uncertain

real‐world conditions by orchestrating the large number of degrees of freedom embedded

in their bodies. Our objective is to understand this ability of animals. We tackle

this problem by performing biological experiments, constructing mathematical models,
and designing robots. The key concept is autonomous decentralized control (ADC).
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It is known that animals control their large number of degrees of freedom in a well‐

coordinated manner by means of distributed neural networks called central pattern

generators (CPGs) [1, 2], which generates rhythmic signals. Taga et al. presented a

framework in their pioneering work [3], in which biped walking is expressed by the limit

cycle in the product space of the body, controller, and environment. The formation of

this limit cycle is known as global entrainment, and it guarantees stability of locomotion

against small perturbations to the body, controller, or environment. Adopting CPG as

a controller seems to be an advantageous approach to realizing ADC in robots; however,
its design principle has not been established thus far. Our strategy for obtaining the

design principle of ADC is to learn from animals, especially from the most primitive

living system, i.e., true slime mold. The plasmodium of true slime mold is a large

single‐cell amoeboid organism with multiple nuclei. The pressure gradient caused by
mechanochemical oscillators distributed in its body generates a flow of protoplasm, and

consequently induces locomotion. Because it is a single‐cell organism, it has neither

a nervous system nor a central organ for information processing. Therefore, it can be

interpreted as a system in which ADC works in the purest form.

Kobayashi et al. proposed a model for the motion of true slime mold in [4], which

involved two important ideas linked to the present study. One is a spring whose natural

length changes, and the other is feedback to the oscillator based on the discrepancy

function. Let us introduce this model briefly.

Actine‐myosin filaments are distributed in the gel layer of the plasmodium, and

they exhibit contractile oscillation causing a change in the body thickness. In order to

express this oscillation using a mathematical model, imaginary springs were introduced,
whose natural lengths were controlled by oscillators; they yielded a force proportional to

the difference between the actual length and the natural length. In this mathematical

model, the springs and controllers (oscillators) are coupled and distributed in a two

dimensional region, and the pressure p is given by the force generated by the springs.

Then, the protoplasmic sol is assumed to stream at a rate proportional to the pressure

gradient, i.e., Darcy�s law. (See Fig.1.)
The imaginary spring introduced in this model was independently developed as

a real elastic actuator by Ishiguro�s group, and it was termed as a realtime tunable

spring (RTS). This device changes its natural length by winding up a part of the spring

using a DC motor (Fig.2). Backdrivability of the actuators (muscles) is important for the

animals to make sinuous movements. This is because it enables soft and safe interaction

between the animal�s body and its surroundings; moreover, it enables animals to easily
obtain mechanical information from their own bodies. We often make use of the RTS

in models and real robots because it has several advantages despite its simple structure:

(i) it has both of active and passive characters, (ii) backdrivability is guaranteed at the
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S : thickness s_{n:} natural thickness

 $\phi$ : oscillator  p : pressure  $\beta$ : stiffness

--\cdots \cdots -----
. ---

\mathcal{S} s_{n}

\mathrm{O} $\phi$ Feedback:  h
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Figure 1. Model of plasmodium :Natural thickness s_{n} and the pressure p are given by the

formula s_{n}=\overline{s}(1-a\cos $\phi$) and  p= $\beta$ (  s —sn), respectively. Phase oscillator  $\phi$ receives a

feedback signal through the pressure.

hardware level, and (iii) stiffness can be controlled easily.

Figure 2. RTS(Realtime Tunable Spring)

In the model, it was assumed that the feedback signal shifts the phase of the

oscillators so as to decrease  p^{2} by taking the feedback signal h=h( $\phi$, p) as

(1.1) h( $\phi$,p)=-\displaystyle \partial_{ $\phi$}(\frac{ $\sigma$}{2}p^{2})
Pressure p is a result of the actuator�s force, and it can also be interpreted as an

index of the difference between the actual state of the actuator and the target state of

the actuator, which is required by the controller. Thus, the strength of the pressure

is termed as discrepancy (in this case, it is expressed by \displaystyle \frac{ $\sigma$}{2}p^{2} ), and we assumed that

the feedback to the controller decreases the discrepancy. It should be noted that a

discrepancy is not to be eliminated like an error. Actually, the controller continues to

produce a discrepancy, and it drives the motion. From the viewpoint of ADC, this

feedback signal should be generated only by locally available information. Actually,

h( $\phi$, p) can be calculated locally because p= $\beta$(s-s_{n}) and s_{n}=\overline{s}(1-a\cos $\phi$) .

In the motion of the plasmodium, a key property is the conservation of protoplasmic
sol that connects local and global behavior. This conservation law generates global

interactions, and consequently induces an anti‐phase oscillation instead of an in‐phase

oscillation, thereby producing a coherent protoplasmic flow. Another key property is

the stiffness of the body (gel layer), whose non‐uniformity determines the direction
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of motion. Actually, the plasmodium extends a softer part of its body to perform
locomotion. These key properties are utilized in the design of the robot �Slimy�, which

will be presented in section 3.

§2. A simple model of a discrepancy control

§2.1. Two RTSs model

In this section, we present a very simple model that consists of two RTS�s with

control signals derived from the discrepancy function. Let us consider two RTSs con‐

nected serially, with both ends anchored to the walls, as shown in Fig.3. The equation
of motion of the mass point is

(2.1) m\ddot{x}+ $\alpha$\dot{x}=T_{2}-T_{1}

where T_{i} is a tension of the i‐th spring. Tension T_{i} is expressed using the real length \ell_{i},
the natural length L_{i} as follows.

(2.2) T_{i}= $\kappa$(\displaystyle \frac{\ell_{i}}{L_{i}}-1) (i=1,2)
where \ell_{1}=L_{0}+x, \ell_{2}=L_{0}-x . The parameter  $\kappa$ determines the elastic property of the

material composing springs. It is assumed that the natural length  L_{i} of the i‐th spring
is controlled by a phase oscillator $\phi$_{i} in the following manner.

(2.3) L_{i}=\overline{L}(1+a\sin$\phi$_{i}) (i=1,2)

We also assume that each phase oscillator is driven at a constant rate and simultane‐

Controller 1\mathrm{O}$\phi$_{1} \mathrm{O}$\phi$_{2} Controller 2

Figure 3. Setting of the model: Distance between two walls is 2L_{0} ,
the x‐axis is set as shown

and the origin is taken to be a central point. Mass of the mass point is m
,

the position of the

mass point is x(t) and the resistance force is assumed to be proportional to the velocity.

ously receives a feedback signal derived from the discrepancy function which is denoted

by I_{i} hereafter. The interaction between controllers is not taken into account because
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we would like to observe only the effect of the feedback. Thus, we have the following

equation for driving the phase oscillator.

(2.4) $\phi$_{i}= $\omega$-\displaystyle \frac{\partial I_{i}}{\partial$\phi$_{i}} (i=1,2)
We have a wide range of choices to determine the form of the discrepancy function

I_{i} because it is the quantity that provides the difference between the actual state and

the state that the controller desires. It is plausible to use the square of the spring
tension as in the model of true slime mold or the absolute value of the spring tension;
in addition, the elastic energy stored in the spring can be a candidate. Here, we adopt
the last one, i.e., elastic energy (multiplied by positive constant  $\sigma$ ) as follows.

(2.5)  I_{i}= $\sigma$\displaystyle \frac{ $\kappa$}{2}L_{i}(\frac{\ell_{i}}{L_{i}}-1)^{2}
Since \displaystyle \frac{\partial I_{i}}{\partial L_{i}}=\frac{ $\sigma \kappa$}{2}[1-(\frac{\ell_{i}}{L_{i}})^{2}] holds, the equation of $\phi$_{i} is

(2.6) $\phi$_{i}= $\omega$-\displaystyle \frac{1}{2} $\sigma \kappa$ a\overline{L}[1-(\frac{\ell_{i}}{L_{i}})^{2}]\cos$\phi$_{i}
Here we assume \overline{L}=L_{0} and perform a proper non‐dimensionalization, then we get the

following model equation system.

m\displaystyle \ddot{x}+ $\alpha$\dot{x}=\frac{1-x}{1+a\sin$\phi$_{2}}-\frac{1+x}{1+a\sin$\phi$_{1}}
(2.7) $\phi$_{1}=1- $\sigma$[1-(\displaystyle \frac{1+x}{1+a\sin$\phi$_{1}})^{2}]\cos$\phi$_{1}

$\phi$_{2}=1- $\sigma$[1-(\displaystyle \frac{1-x}{1+a\sin$\phi$_{2}})^{2}]\cos$\phi$_{2}
Note that the equation system (2.7) has a in‐phase solution x(t)\equiv 0, $\phi$_{1}(t)\equiv$\phi$_{2}(t)
satisfying the equation below.

(2.8) $\phi$_{i}=1- $\sigma$[1-(\displaystyle \frac{1}{1+a\sin$\phi$_{i}})^{2}]\cos$\phi$_{i}
The equation (2.6) indicates that the feedback signal shift the phase backward if

RTS is pulled and forward if RTS is pushed during the contractile period (\cos$\phi$_{i}<0) ,

while the feedback signal works oppositely during the extensional period (\cos$\phi$_{i}>0) .

This can be interpreted that the controlling system compromises to the mechanical

system.
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§2.2. Overdamping case

Let us consider the case m=0,  $\alpha$>0 , meaning that the inertia force is negligible
with respect to the resistance force. As shown in Fig.4, the in‐phase solution is unstable

and the transition to the anti‐phase solution is observed, which causes a oscillatory mo‐

tion of the mass point. Roughly speaking, natural lengths L(t) and L(t) synchronize
in an almost anti‐phase manner, and the position x(t) follows to the target position

they offer with some delay. This delay produces a periodic discrepancy and produce a

driving force of the motion of the mass point. The amplitude of the oscillation of the

mass point is smaller than the amplitude of the oscillation of the target point, and the

observed angular velocity is always smaller than the intrinsic angular velocity of the

oscillators.

Feedback signals

h_{i}=-\displaystyle \frac{\partial I_{\dot{ $\gamma$}}}{\partial$\phi$_{i}}
Total discrepancy

I=I_{1}+I_{2}

Figure 4. Transition from in‐phase solution to anti‐phase solution : a=0.3,  $\sigma$=1.2,  $\alpha$=1.5

The situation under consideration is almost equivalent to the system in which the

two cylinders are connected by the narrow tube as shown in Fig.5 (a). Conservation of

the fluid amount corresponds to the constraint that the sum of the lengths of two RTSs

is kept constant. The fact that the anti‐phase oscillation appears as a stable solution can

be the simplest explanation of the experimental result that two plasmodium connected

by the narrow tube oscillates in the anti‐phase manner [6]. Note that the in‐phase
solution becomes stable and the anti‐phase solution becomes unstable if the coefficient

 $\sigma$ of the feedback signal is taken to be negative.

§2.3. Inertia dominant case

Let us consider the case  m>0 and  $\alpha$ is small, meaning that the inertia force

is dominant to the resistance force. The transition from the in‐phase solution to the
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(b)

Figure 5. (a) 2 cylinders model: Each cylinder is filled with the incompressible viscous fluid

and RTS generate the pressure. (b) Model of antagonistic muscle

anti‐phase solution is also observed in Fig.6. The amplitude of the oscillation of the

mass point is greater than the amplitude of the oscillation of the target position, which

is contrasting to the dissipation dominant case. Observed angular velocity is smaller

than the intrinsic angular velocity of the controllers.

Feedback signals

 h_{i}=-\displaystyle \frac{\partial I_{\dot{ $\gamma$}}}{\partial$\phi$_{i}}
Total discrepancy

I=I_{1}+I_{2}

Figure 6. Transition from the in‐phase solution to the anti‐phase solution: a=0.3,  $\sigma$=1.2,
 $\alpha$=0.2, m=2.5

The results when the mass parameter m is gradually changed are presented in

Fig.7. As m becomes larger, the amplitude of the steady oscillation becomes larger,
and the angular velocity becomes smaller. This can be interpreted that the controller

decreases the angular velocity from their intrinsic one to compromise to the angular

velocity which the mechanical system prefer.
The model setting shown in Fig.3 can be interpreted as a model of antagonistic

muscle driving the joint, if it is rewritten to the setting in Fig.5(b). By changing the
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Figure 7. Profiles of oscillation obtained by controlling the parameter m : m=0.5 , 2.5, 5.0

from above. a=0.3,  $\sigma$=1.2,  $\alpha$=0.2

central value \overline{L} of the natural length oscillation of RTSs, we can control the stiffness of

joints. HAUBOT 2, the robot introduced in the next section, makes use of this stiffness

control.

§3. Robots

We extracted a control method from the plasmodium of true slime mold, and named

it discrepancy control. We examined its effectiveness by constructing mathematical

models and by making robots with various types of bodies. In this section, we briefly
introduce how discrepancy control was implemented to the robots and how it worked in

each example.

§3.1. Amoeboid robot: Slimy

We started from the robot with the amoeboid body having a similar nature to

the plasmodium of true slime mold, which was named Slimy[5]. The body of this

robot is essentially two dimensional which consists of the contractile outer skin and

the protoplasmic sol (its substitute) inside it. The outer skin is composed of passive

springs ans RTSs as indicated in Fig.8(a). The i‐th RTS is controlled by the phase
oscillator $\phi$_{i} in the way that the natural length L_{i} is given by L_{i}=\overline{L}_{i}(1-a\cos$\phi$_{i}) .

By this, the outer skin can produce contractile force periodically. Also, we assumed

diffusive interaction between the pair of adjacent oscillators. In the design of Slimy, the

discrepancy function was given in the form proportional to the sum of the square of
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Figure 8. (a) Sschematic of Slimy (b) Slimy 1 (c) Slimy 2

tension T_{i} as follows.

I_{i}=\displaystyle \frac{ $\sigma$}{2}T_{i}^{2} where T_{i}= $\kappa$(\displaystyle \frac{\ell_{i}}{L_{i}}-1)
Then the feedback signal h_{i} to the i‐th RTS is given by

h_{i}=-\displaystyle \frac{\partial I_{i}}{\partial$\phi$_{i}}=- $\sigma$ T_{i}\frac{\partial T_{i}}{\partial$\phi$_{i}}
It should be emphasized that the feedback signal h_{i} can be generated only by locally
available information.

Slimy is equipped with friction controlling units at the joints of the connected RTSs

as shown in Fig.8(a). The phase oscillator controls not only the natural length of RTS

but also the switching of the friction control unit locally. In addition, stiffness in the

frontal part is lowered in imitation of true slime mold by making the mean natural

length \overline{L}_{i} larger at the near side to the attractant.

We performed simulations under such setting and obtained several results. Fig.9(a)
indicates that the phase gradient is generated and the phase wave runs from the frontal

part (near side to the attractant) to the rear, and the robot can make locomotion if the

anchoring timing is appropriately taken. The simulation that robot successfully pass

through the narrow aisle is presented in Fig.9(b). These results indicates that adaptive

motility function emerges through spontaneous arrangement of the phase distribution,
which is achieved by the complete ADC.
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(a)

(b)

1^{\cdot}\mathrm{i}\mathrm{m}\mathrm{c} stcps

1^{\cdot}\mathrm{i}\mathrm{m}\mathrm{c} stcps

Figure 9. (a) Generation of the locomotion to the direction of attractant (b) Representative
data of the locomotion through the narrow aisle
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On the basis of this model we produced real robots Slimy 1 and Slimy 2, shown in

Fig.8 (b), (c), both of which control the friction by switching electromagnets. The part

of protoplasmic sol is realized approximately by the balloon filled with the air in Slimy

1, while the connected cylinders are equipped in a radial fashion so as to guarantee the

strict conservation law in Slimy 2. It was confirmed that both of them could perform
locomotion toward the attractant by applying the same control rule with the model.

In our study of Slimy, effective locomotion was attained through the conservation

of the protoplasm and the stiffness control in the same way with the plasmodium. Thus,
the locomotion of Slimy is a direct imitaion of the locomotion of true slime mold, and

the motion of Slimy is rather amoeba‐like. However, the robots have no mechanism

corresponding to the sol‐gel transition, which is indispensable for the locomotion of real

amoeba. Thus, they inevitably have characters of a crawler (need a friction control),
which is different from true slime mold and amoeba. Therefore, Slimy is regarded as

a new type of soft robot inspired by amoeba, rather than as a copy of some animal.

Although the simulation could exhibit smooth locomotions, hardness of the devices

prevented the real robots from attaining sufficiently soft motion. In order to produce

really soft robots, we need soft materials for the hardware, and it is the objective of the

next step of our study.

§3.2. Snake‐like robot: HAUBOT

HAUBOT series are robots targeting the snake‐like locomotion in our project [7, 8].
We present HAUBOT 2 in which the discrepancy is used for generating not only a phasic
feedback signal but also a tonic one.

HAUBOT 2 has a one‐dimensional link mechanism as a backbone, and it generates
a motion similar to snakes� lateral undulation by giving torque to each joint. In order to

torque the joint, we use either the antagonistic muscles or direct rotation of the motor.

In the mathematical model, we adopt the former and express the antagonist by the pair
of RTSs, which enables us to provide backdrivability to the actuators and to control the

torque and the stiffness simultaneously. The real robot HOUBOT 2 employ the latter,
and has elastic elements that can store a discrepancy between the target angle given

by the motor (exactly speaking, the mean of angles given by the upper and the lower

motor) and the actual joint angle. In addition, HAUBOT 2 has a special mechanism to

attain tonic control (See Fig. 10(\mathrm{b}) ).
In the simulations of HAUBOT 2, we set actuators (RTS) and controllers aligned

along the left line and the right line, in which the controllers are expressed by the phase
oscillators $\phi$_{i}^{p} where p=0 denotes the left line and p=1 ,

the right line. The equation
of the controllers given below produces phase waves with a proper velocity running from

head to tail in both the left and the right lines, and maintain the anti‐phase relation
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(b) (C)

Figure 10. (a) Schematic of HAUBOT 2 (b) HAUBOT 2 (c) Distortion caused by opposite
rotations of the upper and the lower motor can adjust the degree of muscle tonus  $\eta$.

between the two waves.

(3.1) $\phi$_{i}^{p}= $\omega$+$\epsilon$_{1}\sin($\phi$_{i-1}^{p}-$\phi$_{i}^{p}-\triangle $\phi$)+$\epsilon$_{2}\sin($\phi$_{i}^{p}-$\phi$_{i}^{1-p})+h_{i}^{p}

where h_{i}^{p} is a feedback signal to the oscillator $\phi$_{i}^{p} derived from the discrepancy function.
Let us define the discrepancy function I_{i}^{p} by using the tension of RTS T_{i}^{p}= $\kappa$(\displaystyle \frac{\ell_{i}^{p}}{L_{i}^{p}}-1)
as follows.

(3.2) I_{i}^{p}= $\sigma$|T_{i}^{p}|

Following the rule of the discrepancy control, the feedback signal h_{i}^{p} is calculated by

(3.3) h_{i}^{p}=-\displaystyle \frac{\partial I_{i}^{p}}{\partial$\phi$_{i}^{p}}
In the design of HAUBOT 2, not only a phasic feedback but also a tonic feedback

is taken into account. Tonic feedback is given by the policy �strengthen the stiffness in

more stressed actuators�, which is achieved by changing the mean natural length \overline{L}_{i}^{p} as

follows.

(3.4) \displaystyle \overline{L}_{i}^{p}=\overline{L}- $\mu$\int_{-\infty}^{t}I_{i}^{p}(t')e^{-(t-t')/ $\tau$}dt'
Fig.11 shows the results of the simulation in which the robot crawls on the high

friction surface and the ascending slope. The results of four cases where phasic and tonic

feedback are switched on and off, respectively, are compared. These results indicate

that the phasic feedback enhances the energy efficiency and the tonic feedback achieves

powerful motion, and both of them can collaborate, as shown in Fig.11(iv).
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Figure 11. Simulations of HAUBOT 2 crawling across the high friction surface and the

ascending slope. In the panels (i) -(\mathrm{i}\mathrm{v}) , X(t) (black line) indicates the distance which the

robot gained, and W(t) (gray line) indicates the consumed energy. (i) No feedback. Fails to

climb a slope. (ii) Only phasic feedback. Energy efficiency is better than (i), but fails to climb

a slope. (iii) Only tonic feedback. Succeeds in climbing a slope, but energy efficiency is not

so good. (iv) Both of feedback work. Succeeds in climbing a slope, and achieves good energy

efficiency.
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§3.3. Quadruped Robot — OSCILLEX

We also tried to apply discrepancy control to the quadruped robot which is termed

as OSCILLEX [9]; it is shown in Fig.12 (a). Each leg of OSCILLEX is controlled

by the phase oscillator. More specifically, the target position of the i‐th leg�s toe is

determined by the phase oscillator $\phi$_{i} ,
as shown in Fig.12 (b), and its orbit is given by

the combination of two ellipses. Sensors and elastic elements are provided at the tips
of the legs, which enable the robot to obtain the floor reflection force.

(a)

Figure 12. (a) OSCILLEX (b) Target position of the toe given by the phase oscillator

In the design of the controller, no direct interaction between the oscillators is as‐

sumed and the discrepancy function is defined by

(3.5) I_{i}= $\sigma$ N_{i}\sin$\phi$_{i}

Thus, the equation of the phase oscillator $\phi$_{i} is

(3.6) $\phi$_{i}= $\omega$- $\sigma$ N_{i}\cos$\phi$_{i}

This discrepancy function is not completely the same as the previous two examples in

which the discrepancy function is a direct measurement of the difference between the

real state of actuator and the state of actuator desired by controller. As long as the

i‐th leg is in a swing phase (i.e. N_{i}=0) ,
no effects exist on the discrepancy function.

Once the leg becomes a supporting leg (i.e. N_{i}>0) ,
the system resists the increase in

\sin$\phi$_{i} . If the floor reflection force exists, the larger it is, the stronger is the feedback

for maintaining the leg as a supporting leg. This seems to be a quite natural feedback.

The discrepancy function introduced here can be considered to express �some sort of

uneasiness of the body�, and it is an extended concept of the original meaning in some
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sense. Thus, in this robot, each oscillator shift its phase so as to reduce the uneasiness

by discrepancy control.

In this robot, no direct interactions were assumed between the oscillators because

our target here is spontaneous emergence of gait patterns not induced by the elaborated

control signals. Of course, there exist implicit interactions between oscillators through
the body, and it modifies the phases of oscillators. Actually, if some leg enters a swing

phase and the ground reflection vanishes, the ground reflections of the other supporting

legs increase, and consequently, they are affected by the feedback signal.
The experiments of the real robot showed good results, i.e., very quick transitions

from the initial state to the steady gait. (See Fig.13.) If we use a coupled oscillator

system as a controller, it usually takes a long time to attain the phase distribution

that assures steady motion from the initial phase distribution, which is in contrast to

OSCILLEX. The ability of OSCILLEX for quick adjustment arises from the fact that

the character of the controller governed by the equation (3.6) changes from �

oscillatory�
to �excitable� when  $\sigma$ N_{i} becomes greater than  $\omega$ . In other words, the equation (3.6)
defines active rotator, which is an extended concept of the phase oscillator [10]. In

this robot, legs with high load are used as supporting legs until the load is weakened;

thus, the quick transition to the steady gait is attained. In addition, it is observed that

the duty ratio and the diagonality changes adaptively, corresponding to the physical
characteristic of the body of robots.

(a)
LF

LH |\blacksquare |
RF

RH

0 20

\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}[\mathrm{s}]
0 20

time [ \mathrm{s}]

Figure 13. (a) Gait diagram (b) Graph of time vs. \sin$\phi$_{i}(t)

§4. Discussion

In this report, we presented a control method based on the discrepancy function,
which was learned from the plasmodium of true slime mold. We applied it to robots
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with several types of bodies, and examined its potential. We believe that our method

is sufficiently effective under the framework of ADC, using coupled oscillators such as

CPG.

An important objective of our project was to establish the design principle of ADC.

Our current scheme is as follows :

1. Provide backdrivability to the actuators to achieve flexibility of the body and to

easily acquire the local sense of force.

2. Design a discrepancy function appropriately and generate a feedback signal to the

phase of oscillator so as to reduce it.

3. Generate a tonic feedback to the actuator as necessary.

The second item listed above is limited to the case where coupled oscillators or active

rotators are used as controllers.

Animals exhibit various types of locomotion; thus, many types of robots mimicking
them can be designed. Therefore, one specific control method cannot be a panacea for all

types of robots. Our principle is to design a good discrepancy fiunction so as to generate

good feedback to the controller. It is similar to the approach in mechanics to design
the Lagrangian in individual cases, and to then derive the Euler‐Lagrange equation.

(Particular factors such as the shape of the object or selection of the coordinate system
are involved in the design of the Lagrangian.) In our method, particular factors in each

case are taken into account in the design of the discrepancy function, and the guideline
for designing it is to express�some sort of uneasiness of the body� using locally available

information. Unfortunately, this design guideline is not as straightforward as that in

the case of the Lagrangian, L=T-U . We believe that this is unavoidable because

the objects under consideration are not simple physical systems, but complex coupled

systems composed of physical systems and controllers. At present, we have to determine

more concrete design guideline by studying numerous examples.

Although discussions in this report supposed the usage of coupled oscillators (or
active rotators), it is not always appropriate. From Nematoda to snakes, many animals

have one‐dimensional string shapes, and they perform locomotion in almost all the

cases by running some wave along their body axis. HAUBOT could mimic the lateral

undulation of snakes by assuming a one‐dimensional array of coupled oscillators to run

a wave from head to tail. It surely indicates the effectiveness of discrepancy control;

however, it is questionable to adopt coupled oscillators as a controller in such a string‐

shaped robot. When the one‐dimensional array of oscillators is used as a controller, the

initial transition of motion is always a problem. Actually, the motion is disordered until

the initial phase distribution transforms into coherent distribution, which realizes steady
motion. In contrast, animals show a tight and smooth motion from the beginning. In
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addition, it seems unnatural to generate a traveling wave along the coupled oscillators

because it is equivalent to assuming a very slow wave running through the nervous

system. Therefore, we believe that a coupled oscillator is not an appropriate controller

for animals with one‐dimensional bodies. Instead, a more plausible description is that

units consisting of the local nervous system and musculoskeletal system are lined up in

a one‐dimensional array. We will discuss this issue in a future study.

Finally, we would like to conclude by quoting Prof. Masami Ito, who has been a

source of inspiration us.

�Animals get information coming from various sensors located on their body surface.

If they integrate all information and examine their all possible combinations searching
for the optimum behavior, the decision making process should be too time‐consuming.

Instead, they must have found a way to obtain good enough and less conflicted solution

quickly in their evolution process. In any case, the most important mission of animals

is to survive.�
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