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A nonlinear boundary‐value problem
with an integral constraint

Dedicated to Profe ssor Ya sumasa Nishiura on the occasion of his 60th birthday
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Abstract

We consider a boundary‐value problem u''+Ru^{2}=f(R, x) ,
where f is a given function,

and u''+Ru^{2}= constant +f(R, x) , \displaystyle \int_{- $\pi$}^{ $\pi$}u(x)\mathrm{d}x=0 . We demonstrate that the integral
constraint yields a considerable difference in the structure of bifurcation. If \displaystyle \int_{- $\pi$}^{ $\pi$}u(x)\mathrm{d}x=0 is

present, a strange bifurcation diagram exists.

§1. Introduction

We consider simple nonlinear boundary‐value problems with a prescribed source

term and study the dependence of the solutions on the source term. Specifically, we

consider the following two equations. The first one is:

(1.1) u''+Ru^{2}+f(R, x)=0 (- $\pi$<x< $\pi$) ,

where R>0 is a parameter and the prime implies differentiation. u=u(x) (- $\pi$<
x< $\pi$) is an unknown function and f=f(R, x) is a given function. Throughout this

paper, we consider equations with the periodic boundary condition. The second one is

the following coupled system:

(1.2) u''+Ru^{2}+f(R, x)-\displaystyle \frac{1}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}(Ru(x)^{2}+f(R, x))\mathrm{d}x=0,
(1.3) \displaystyle \int_{- $\pi$}^{ $\pi$}u(x)\mathrm{d}x=0.
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Namely this is the nonlinear equation (1.1) with the integral constraint (1.3). The

nonlinear term u^{2} can be a more general one, but, since the simple choice u^{2} is already

interesting enough, we restrict ourselves to the case of u^{2} in the present paper.

Let us use the usual L^{2}(- $\pi$,  $\pi$) as the function space where we search solutions.

Then the only difference between (1.1) and (1.2)(1.3) is whether we consider the differ‐

ential equation in L^{2}(- $\pi$,  $\pi$) or in \dot{L}^{2}(- $\pi$,  $\pi$) ,
where

\displaystyle \dot{L}^{2}(- $\pi$,  $\pi$)=\{g\in L^{2}(- $\pi$,  $\pi$) \int_{- $\pi$}^{ $\pi$}g(x)\mathrm{d}x=0\}
Let P denotes the orthogonal projection from L^{2} onto \dot{L}^{2} . Then the system (1.2)(1.3)
is expressed as

u''+RP(u^{2})+Pf=0 (u\in\dot{L}^{2}) .

It seems to us that (1.1) has been studied well and only a little may be left for serious

study. However, (1.2)(1.3) may not be so. In fact we will show that the equation (1.1)
and the coupled system (1.2)(1.3) have considerable differences, which seem to have

been unnoticed so far. In what follows we explain why the constrained equation is

interesting, how much different it is from (1.1), and whatever consequences it produces.

§2. Background

We now explain why we are interested in these equations. Let us consider time‐

dependent versions without an external source f :

(2.1) u_{t}=u_{xx}+u^{2} ;

(2.2) u_{t}=u_{xx}+u^{2}-\displaystyle \frac{1}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}u(t, x)^{2} dx,

where the subscript implies the differentiation. With the periodic boundary condition,

they are considered to be an evolution equation in L^{2}(- $\pi$,  $\pi$) and \dot{L}^{2}(- $\pi$,  $\pi$) , respec‐

tively. It is known that if u(0, x)\geq 0 and is not identically zero, then the solution of

(2.1) with the periodic boundary condition blows up in finite time. Namely there exists

a finite T such that

\displaystyle \lim_{t\uparrow T}\int_{- $\pi$}^{ $\pi$}u(t, x)\mathrm{d}x=+\infty.
For (2.2), a solution exists globally in time if its initial data is small. On the other

hand, some solutions blow up in finite time if their initial data are large. The proof of

the last proposition is more complicated than (2.1): Existence of blow‐ups in (2.2) was

proved by [1]. Later a simpler proof was discovered by [9]. As t approaches the blow‐up

time, the solution of (2.1) remain bounded at all but finite point x . See [2, 10]. The
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situation is very different for (2.2), where �blow‐up everywhere� occurs in the sense that

|u(t, x)|\rightarrow\infty for all  x as t\uparrow T . However, u is dominantly large at a certain point in the

sense that  u(t, x_{0})\rightarrow+\infty at some  x_{0} ,
and at the same time, \displaystyle \lim_{t\rightarrow T}u(t, x)/u(t, x_{0})=0

if x\neq x_{0} . As far as we know, the blow‐up problem (2.2) is far from being well‐studied.

See [9].
(2.2) arises if we approximate self‐similar solutions of the two‐dimensional Navier‐

Stokes equations; [1, 9]. Stationary solutions of (2.2) arise in Oseen�s stationary flow of

incompressible viscous fluid; [3, 4, 8].
There is another reason why the author is interested in the equation with integral

constraint. It is rather tempting to believe that a simple input produces only a simple

output. For instance,

-u''+a^{2}u=\cos nx

has a solution  u=\displaystyle \frac{1}{n^{2}+a^{2}}\cos nx, which has as many peaks as the input \cos nx. But the

author found an interesting phenomena: in some equations the bifurcating solutions

exist and tend to a very simple function as  R\uparrow\infty . For instance, if we consider the

Proudman‐Johnson equation, even if the driving force is \sin nx or \cos nx with  n=

2
, 3, \cdots

, 10, the solution tends to a constant times \sin x . Namely the simplest solution

appears despite the complexity of the driving force, see [6, 7]. This phenomenon is

universal in the sense that for any n the solution tends to a constant multiple of \sin x

if R tends to infinity. This phenomenon does not occur in a simple reaction‐diffusion

equation, see [5]. Accordingly, the author wonders for what equation such a universal

unimodal solution exists. And he was led to an equation somewhere between the 2\mathrm{D}

Navier‐Stokes equations and the reaction‐diffusion equation. That is the one we are

going to consider in the present paper. With these observations, the author wishes to

compute more examples in the present paper.

§3. Bifurcation

We now consider the following boundary‐value problem:

(3.1) u''+Ru^{2}-\displaystyle \frac{R}{2}+\ell^{2}\cos\ell x-\frac{R}{2}\cos 2\ell x=0 (- $\pi$<x< $\pi$) ,

where \ell is a non‐negative integer. The external source  f(R, x) has been chosen so that

u=\cos\ell x becomes a solution for all R>0 . We consider only those solutions which is

even in x . We may therefore equivalently rewrite the equation as

(3.2) u''+Ru^{2}-\displaystyle \frac{R}{2}+\ell^{2}\cos\ell x-\frac{R}{2}\cos 2\ell x=0 (0<x< $\pi$) , u'(0)=u'( $\pi$)=0.

Numerical computations are performed by the spectral method. We thus set

 u^{N}=\displaystyle \sum_{n=0}^{N}a_{n}\cos nx.



96 Hisashi Okamoto

With  N=100 most solutions were easily computed. However, if R is very large, we

needed a larger N . For instance, we took N=1000 if R=10000.
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Figure 1. \ell=0 . (left) Bifurcation diagram, where the Fourier coefficient a_{1} is plot‐
ted against R . A pitchfork bifurcates at R=1/2 . (right) Profiles of the bifurcating
solutions: \ell=0, R=0.505 , 0.6, 2, 10, 50, and R=1000.

§3.1. \ell=0

If \ell=0 ,
the equation is well‐known. In fact, we have u_{xx}+R(u^{2}-1)=0 in

 0<x< $\pi$ with the Neumann boundary conditions at  x=0,  $\pi$ . The solutions can be

represented by the elliptic functions. Note that if  u(x) is a solution for R=R' and if m

is a positive integer, then u(mx) is a solution for R=m^{2}R' . We therefore compute only
those solutions which take their maximum at x=0 and are monotone decreasing in

 0<x< $\pi$ . We call such a solution a solution of mode one. The solution (m^{2}R, u(mx))
is called a solution of mode m . Since the linearized operator v''+2Rv=0 has an

eigenfunction v=\cos x at R=1/2 ,
the branch of solutions of mode one bifurcates at

R=1/2 . The diagram is shown in Figure 1 (left). Profiles of the solutions are drawn

in Figure 1 (right). They show that

\displaystyle \lim_{R\rightarrow\infty}u(0)=2, \lim_{R\rightarrow\infty}u(x)=-1 (x\neq 0) .

This can be proved rigorously if we represent the solution by elliptic functions. We omit

the proof, however.

Along those solutions we computed eigenvalues of the linearized operator to find

that no secondary bifurcation occurs in 1/2<R<1000 . We also computed eigenvalues
for solutions of mode two to find that secondary bifurcation does not occur in 2<R<

1000.
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§3.2. \ell=1

We now consider (3.1) with \ell=1 . There exist many bifurcation points along the

trivial solution \cos x . They appear at approximately R=5.32 , 17.35, 36.26, 62.04 etc.,

which we verified by computing the eigenvalue problem of the linearized operator by
N=300 . The first three bifurcations are drawn in Figure 2. Here all the bifurcations

are transcritical. Bifurcating solutions from the primary bifurcation point, R\approx 5.32,
are shown in Figures 3 and 4. As we trace these solutions up to R=1000 ,

the solutions

show a peculiar interior layers. See Figure 5.
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Figure 2. Bifurcation diagram. \ell=1.

Apart from these solutions, there exist many solutions which do not arise from the

bifurcation from the trivial solution. If we add these solution branches, the bifurcation

diagram looks like Figure 6. Solutions of R=1000 are shown in Figures 7, 8, 9, and 10

§3.3. \ell=2

The case where \ell=2 was considered in [6, 7]. Non‐trivial solutions branch off the

trivial solution at R\approx 0.908 . They form a supercritical pitchfork as is shown in Figure
11 (left). The nontrivial solutions extend indefinitely to  R\rightarrow\infty . If we look at the

solutions at very large  R we did not find any unimodality: u'' has three crests and three

troughs, see [6].
As far as we computed up to R=10000 ,

there was no other bifurcation point on

the branch of the trivial solution, and we concluded that  R=0.908\cdots was the only
bifurcation point at the trivial solution.

These were obtained in [6]. There was no other bifurcation from the trivial solution,
but we did not examine secondary bifurcation from the non‐trivial solutions. We exam‐
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Figure 3. Graphs of solutions from R=6 to R=100 . The upper part of the leftmost

bifurcating branch in Figure 2. \ell=1.
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Figure 4. Graphs of solutions on the lower part of the leftmost bifurcating branch in

Figure 2. \ell=1.
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Figure 5. Two solutions at R=1000 , bifurcating from the primary bifurcation point.
\ell=1.

Figure 6. Bifurcation diagram. \ell=1 . Solid lines represent branches which bifurcate

from the trivial solutions. Broken lines represent those branches which are separated
from the trivial solutions.
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Figure 7. Two solutions at R=1000 , bifurcating from the second bifurcation point.
\ell=1.
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Figure 8. Two solutions at R=1000 , bifurcating from the third bifurcation point.
\ell=1.
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Figure 9. Two solutions at R=1000 ,
on the branch separated from the trivial solutions.

\ell=1.

2

1.5

1

0.5

0

-0.5

-1
-3 -2 -1 0 1 2

2

1.5

1

0.5

0

-0.5

-1
-3 -2 -1 0 1 2

Figure 10. Two solutions at R=1000 ,
on the branch separated from the trivial solu‐

tions. \ell=1.
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Figure 11. (left) Bifurcation diagram of (3.1) in (R, a_{1}) . \ell=2 . This diagram is taken

from [6]. (right) the diagram in (R, a_{1}+a_{2}) . Secondary branches are added.

ined this in the present paper and found secondary branches bifurcating at R\approx 21.3.

The bifurcation is transcritical. The diagram is shown in Figure 11 (right).
At R=40 we have six non‐trivial solutions, three of which are depicted in Figure

12 (left). Other solutions are obtained by the shift u(x)\mapsto u(x+ $\pi$) . Solutions on

the secondary branch exhibit a sharp spine at R=10000 ,
see Figure 12 (right). It is

interesting that three solutions agree well with one another in  $\pi$/2\leq|x|\leq $\pi$ if  R=40.

If R=10000 , they differ significantly only in -1\leq x\leq 1 . We however do not know

why this happens.

Figure 12. (left) Graphs of the bifurcating solutions u of (3.1) at R=40 . (right) Graphs
at R=10000. A, B

,
and C correspond to those marked in Figure 11.
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§3.4. \ell=3

If \ell=3 ,
we obtain Figure 13(left) as the diagram. Non‐trivial solutions bifurcate

at around R\approx 1.729 . The bifurcation is transcritical.

There are four non‐trivial solutions at R=1000 . They are drawn in Figure 14.

Figure 13. (left) Bifurcation diagram of (3.1) in (R, a_{1}) . \ell=3 . (right) Graphs of u in

the upper part of the branch.

§4. Constrained equation

We now compare (3.1) with the following problem for \ell\geq 1 :

(4.1) u''+Ru^{2}+\displaystyle \ell^{2}\cos\ell x-\frac{R}{2}\cos 2\ell x-\frac{R}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}u(x)^{2}\mathrm{d}x=0, \displaystyle \int_{- $\pi$}^{ $\pi$}u(x)\mathrm{d}x=0.
Again, the external force is chosen so that u=\cos\ell x becomes a solution.

For \ell=0 ,
we consider the following equation:

(4.2) u''+R(u^{2}-\displaystyle \frac{1}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}u(x)^{2}\mathrm{d}x)=0 (- $\pi$<x< $\pi$) , \int_{- $\pi$}^{ $\pi$}u(x)\mathrm{d}x=0.
u\equiv 0 is a trivial solution. The linearized operator shows that there is no bifurcation

from it. Non‐trivial solutions exist. In fact, if we consider Oseen�s spiral flow of the

Navier‐Stokes equation, the author found in [8] that the 2\mathrm{D} Navier‐Stokes equations are

reduced to

U''+AU=U^{2}-\displaystyle \frac{1}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}U(x)^{2}\mathrm{d}x (- $\pi$<x< $\pi$) , \int_{- $\pi$}^{ $\pi$}U(x)\mathrm{d}x=0,
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Figure 14. Graphs of u of (3.1) at R=1000. \ell=3.
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where A is a real parameter. He showed that a solution exists for all A\in \mathbb{R} ,
in particular,

for A=0 . Later the properties of the solutions were analyzed by [3, 4]. If U solves

(4.3) U''=U^{2}-\displaystyle \frac{1}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}U(x)^{2}\mathrm{d}x (- $\pi$<x< $\pi$) ; \displaystyle \int_{- $\pi$}^{ $\pi$}U(x)\mathrm{d}x=0,
then u=-\displaystyle \frac{1}{R}U solves (4.2). The graph of U is given in Figure 16 (right). The solution

of (4.3) can be represented by the elliptic functions, see [4].

§4.1. \ell=1

Set \ell=1 . Then we obtain

(4.4) u''+Ru^{2}+\displaystyle \cos x-\frac{R}{2}\cos 2x-\frac{R}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}u(x)^{2}\mathrm{d}x=0, \int_{- $\pi$}^{ $\pi$}u(x)\mathrm{d}x=0.
u=\cos x is a solution for all  0<R<\infty . A bifurcation occurs transcritically at

 R\approx 1.89 ,
as is shown in Figure 15. Along the branch in 0<R<1.89 ,

the solution

becomes bigger in the way that Ru tends to a certain limit as R\downarrow 0 ,
see Figure 16.

Asymptotic behavior as R\downarrow 0 can easily be guessed. Set  u=\displaystyle \frac{1}{R} $\phi$ and let  R tend to

zero. We then obtain

(4.5) $\phi$''+$\phi$^{2}-\displaystyle \int_{- $\pi$}^{ $\pi$} $\phi$(x)^{2}\mathrm{d}x=0, \int_{- $\pi$}^{ $\pi$} $\phi$(x)\mathrm{d}x=0,
which is the equation we obtained when \ell=0 ((4.2) with R=1 ). Its solution matches

very well with Ru, as Figure 16 (right) demonstrates.

On the right hand side of the bifurcation point, the bifurcating solutions behave

very curiously. They move from the bifurcation point to the right. Then a turning

point (limit point) appears at around R\approx 5.7 . They then move to the left and another

turning point appears at around R\approx 2.79 . Solutions then move to the right and merge

the trivial solution at around R\approx 10 . This bifurcation is again transcritical and the

branch moves to the right. This pattern from the trivial solution to the trivial solution

at higher R is repeated, as is shown in Figure 15 (c). As a result, the branch constitutes

a spiral curve with occasional merges with the trivial solution.

The solution changes from a simple unimodal function (= trivial solution, u=\cos x )
to a two‐peak solution during its course from R=1.89 to R=10 . See Figures 17 and

18. It comes back to the trivial solution at R\approx 10 ,
but in the right hand side of the

second bifurcation point, it shows a three‐peak profile. See Figure 19.

We now see that as R increases the number of the peaks of the solution increases

or decreases as: 1\rightarrow 2\rightarrow 1\rightarrow 3\rightarrow 1\rightarrow 4 and so forth. For example, in 115<R<125,
the metamorphose of the solutions is shown in Figure 20. They have seven peaks.
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Figure 15. Bifurcation diagrams. \ell=1.
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(a) 0<R<80 . (b) 0<R<40 . (c)
40<R<250 . Intersections with the horizontal axis marked by a small disk are

bifurcation points. Those intersections without a mark are not a bifurcation point:

They simply occur because of the projection onto the (a_{1}+a_{2}-1, R) plane.
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Figure 16. Profiles of bifurcating solutions. \ell=1 . Various solutions in 0.005<R<1.8

(left). Solution of (4.3) versus Ru of (4.4).

§4.2. \ell=2

Set \ell=2 . Then u=\cos 2x is a solution for all  0<R<\infty . A bifurcation

occurs at  R=0.908\cdots . This critical Reynolds number is almost identical with the one

in section 3. But in the present case, it produces a subcritical pitchfork. Along the

branch,  R decreases monotonically and a_{1} increases indefinitely, see Figure 21 (left).
Figure 21 (right) clearly shows that as R decreases toward zero, u transforms itself

from a two‐peaked functions to a single‐peaked function. It is not difficult to see that

u(x)\sim R^{-1} $\phi$(x) ,
where  $\phi$ is given by (4.5).

There exists another bifurcation point at  R=7.58\cdots ,
see Figure 22. The branch

is transcritical and the left branch extends to the left toward  R\rightarrow 0 . The solutions

diverge in the sense that \displaystyle \lim_{R\downarrow 0} Ru exists. As Figures 23 and 24 show, these solutions

are (4R, u(2x)) ,
where (R, u) is the solution of (4.4).

§5. Concluding remarks

We have found a bifurcation branch where, as R increases, the number of the peaks
of the solution increases in such a way that: 1\rightarrow 2\rightarrow 1\rightarrow 3\rightarrow 1\rightarrow 4 and so forth.

A big question is: Does this spiral structure repeat indefinitely? It is likely to do, but

we have no way of proving it. Also, we do not have an intuitive explanation for that

phenomena.
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Figure 17. Profiles of bifurcating solutions. \ell=1. (\mathrm{a})2<R<10.



110 Hisashi Okamoto

-4 -3 -2 -1 0 1 2 3 4

x

Figure 18. Profiles of bifurcating solutions. \ell=1. (\mathrm{a})2<R<10.
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Figure 19. Profiles of bifurcating solutions. \ell=1.12<R<25.
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Figure 20. Profiles of bifurcating solutions. \ell=1.115<R<160.



A nonlinear BouNDARY‐value problem with an integral constraint 113

0 0. 1 02 0. 3 0.

405R
06 0 0 0. 9 1

x

Figure 21. (left): Bifurcation diagrams. (right): Graphs of u for 0.1\leq R\leq 0.908.
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Figure 22. Diagrams. Points indicated by the arrows are bifurcation points. Other

intersections are artificial, caused by the projection onto (R, a_{2}+a_{4}-1) ‐plane.
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Figure 23. Solutions of mode two with smaller R.

Figure 24. Solutions A, B, C ,
and D in Figure 22 (right).
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