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Abstract

Cut‐off functions have been introduced in scalar reaction‐diffusion equations to model

regions in which the species concentrations are below a small threshold and hence the reactions

are effectively deactivated. This article continues our analysis of cut‐offs, in particular of

their impact on the propagation of fronts. Our previous analyses were for pulled fronts, see

Dumortier, Popovic, and Kaper, Nonlinearity 20 (2007), 855‐877, and bistable fronts, see

Dumortier, Popovic, and Kaper, PhysicaD 239 (2010), 1984‐1999, where we derived explicit
asymptotic formulas for the change in the wave speed due to a wide class of cut‐offs. In this

article, we examine pushed fronts in reaction‐diffusion equations with cut‐offs, and present

rigorous asymptotics for their wave speeds. The principal finding is that the wave speeds are

decreased by the cut‐offs, in contrast to the case for bistable fronts, and that the decrement

scales with a fractional power of the small parameter. Our analysis relies on the method of

geometric desingularization. It is presented for pushed fronts in the Nagumo equation with

cut‐off, and it is applicable to pushed fronts in general scalar reaction‐diffusion equations with

cut‐offs.
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§1. Introduction

Cut‐offs in reaction‐diffusion equations were introduced in [4] as a model in statis‐

tical physics. Cut‐offs decrease the amplitudes of the reaction terms (or even set them

to zero) in regions where the concentrations (or particle densities) are below a small

threshold. The pioneering study in [4] was carried out for the fronts in the Fisher‐

Kolmogorov‐Petrowskii‐Piscounov (FKPP) equation with cut‐off,

(1.1) $\phi$_{t}=$\phi$_{xx}+ $\phi$(1-$\phi$^{2})H( $\phi$- $\epsilon$) ,

where H denotes the Heaviside cut‐off function H( $\phi$- $\epsilon$)=0 if  $\phi$< $\epsilon$ and  H( $\phi$- $\epsilon$)=1
if  $\phi$> $\epsilon$ . A principal result was that the wave speed of pulled fronts approaches the

FKPP limit (c_{0}=2) slowly as  $\epsilon$\rightarrow 0 , namely

(1.2) c_{FKPP}( $\epsilon$)\displaystyle \sim 2-\frac{$\pi$^{2}}{(\ln( $\epsilon$))^{2}}.
In [7], we proved the existence of traveling front solutions in (1.1). The principal

result was that the wave speed for fronts in (1.1) is given by (1.2) for a broad range

of cut‐off functions, not just H
, including smooth and non‐smooth functions. This

analysis established a conjecture formulated in [4]. The coefficient -$\pi$^{2} was shown to

be universal within these classes of cut‐off functions. A second principal result of [7]
was that the logarithmic corrections to the wave speed arise for pulled fronts in general
reaction‐diffusion equations with cut‐offs, not just in the cut‐off FKPP equation.

The results in [7] were obtained using the method of geometric desingularization,
see [6]. This method is also known as the blow‐up method. Cut‐off functions make the

forward equilibrium state degenerate, in the phase space of the traveling wave system
associated to (1.1), and the blow‐up method is ideally suited to analyze the system

dynamics near degenerate fixed points such as these. Using this method, we were able

to carry out a constructive analysis of the shapes, locations, and speeds of the fronts.

An alternative approach for front speeds in (1.1) was subsequently developed in [2] using
a variational formulation.

In [8], we extended the scope of the above analysis to bistable fronts propagating
into metastable states in reaction‐diffusion equations with cut‐offs. The cut‐off func‐

tions again cause the forward equilibrium point in the phase space of the traveling wave

system to be degenerate, and hence we again employed the blow‐up method to con‐

struct geometrically the fronts as heteroclinic orbits in the associated phase space. The

principal results were explicit, rigorous asymptotics for the speeds of bistable fronts.

These revealed that cut‐offs increase the speeds and that the increases are proportional
to fractional powers of  $\epsilon$.

In this article, we turn our attention to a third class of fronts, which we have not

previously considered, namely pushed fronts propagating into unstable states. A front
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is said to be pushed [16] when the reaction term is strictly positive along the front, and

when its propagation speed is larger than the linear spreading speed. As was the case

for the pulled fronts and bistable fronts, the forward asymptotic state is degenerate in

the presence of a cut‐off, and the wave no longer decays exponentially in space. Another

consequence of a cut‐off is that the geometric selection criterion for pushed fronts —that

the wave speed is selected by requiring the heteroclinic orbit to approach along a strong
stable manifold— is absent. Hence, there is a need to determine how cut‐offs affect

pushed fronts.

Specifically, we will analyze the wave speeds for pushed fronts in the Nagumo

equation. This equation is a prototype model in mathematical biology and arises in

many applications, see for example [11]. As is typical of equations with pushed fronts,
there is a critical wave speed for traveling fronts. We will demonstrate that this traveling
front persists when a cut‐off is added; and, at the same time, we will derive the rigorous

asymptotics for the wave speed. In contrast to the situation for bistable fronts, cut‐

offs decrease the speed of pushed fronts. Moreover, the decrease is proportional to a

fractional power of  $\epsilon$ . Our results complement those for pushed fronts in the cut‐off

Nagumo equation that were presented in [3], following a variational approach.
The approach based on the geometric desingularization method is developed here

in such a way that it can be applied to pushed fronts in general scalar R‐D equations
with cut‐offs.

§1.1. Nagumo equation with cut‐off: propagation of a pushed front into

an unstable state

The main equation that we study in this article is

(1.3)  $\phi$_{t}=$\phi$_{xx}+ $\phi$(1- $\phi$)( $\phi$- $\gamma$)H( $\phi$- $\epsilon$) .

where H is as above. We consider the parameter regime− \displaystyle \frac{1}{2}< $\gamma$<0 ,
and we work with

the traveling wave variable  $\xi$=x-ct to study fronts.

In the absence of a cut‐off, i.e., when  $\epsilon$=0 , traveling fronts connect $\phi$^{-}=1 to

$\phi$^{+}=0 . The fronts that travel with the critical wave speed  c_{0}=\displaystyle \frac{1}{\sqrt{2}}-\sqrt{2} $\gamma$ decay at

the strong rate,  e^{-\frac{1}{\sqrt{2}} $\xi$}
,

as  $\xi$\rightarrow\infty ,
see for example [3]. These are the fronts we will

study. They are labeled as pushed fronts [16], because  f( $\phi$)= $\phi$(1- $\phi$)( $\phi$- $\gamma$) is strictly

positive along them for  $\gamma$<0 and because the wave speed c_{0} is larger than the linear

speed 2\sqrt{- $\gamma$} for  $\gamma$\in (- \displaystyle \frac{1}{2},0) . For completeness, we observe that there are also fronts

that travel with speed c>c_{0} and these decay at a weaker rate; however, we will not

study these.

§1.2. Statement of the main result

The following theorem is the main result of this article:
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Theorem 1.1. For any  $\gamma$\in (- \displaystyle \frac{1}{2},0) there exists a $\epsilon$_{0}>0 and sufficiently small such

that for every  $\epsilon$\in(0, $\epsilon$_{0} ] there exists a unique critical wave speed c( $\epsilon$) (dependent on

 $\gamma$) for which the traveling front solution, which propagates between $\phi$^{-}=1 and $\phi$^{+}=0
and which decays at the strong exponential rate when  $\epsilon$=0 , persists. Moreover,

c( $\epsilon$)=c(0)+\triangle c( $\epsilon$) ,
where  c(0)=\displaystyle \frac{1}{\sqrt{2}}-\sqrt{2} $\gamma$ and \triangle c is a negative, C^{1} ‐smooth function

in  $\gamma$ and  $\epsilon$ (including at  $\epsilon$=0 ) that satisfies

(1.4) \triangle c( $\epsilon$)=K_{ $\gamma$}$\epsilon$^{1+2 $\gamma$}+o($\epsilon$^{1+2 $\gamma$})

with

(1.5) K_{ $\gamma$}=\displaystyle \frac{ $\Gamma$(4)}{ $\Gamma$(1+2 $\gamma$) $\Gamma$(3-2 $\gamma$)}\frac{\sqrt{2} $\gamma$}{(1+2 $\gamma$)^{2 $\gamma$}}.
Here and in the following,  $\Gamma$ denotes the standard Gamma function, see Section 6.1 of

[1]. Moreover, the dependence of  c( $\epsilon$) on the parameter  $\gamma$ is suppressed for convenience

of notation.

Theorem 1.1 also yields the critical wave speed  c_{CL}( $\epsilon$) for pushed fronts in the real

Ginzburg‐Landau equation with cut‐off, $\phi$_{t}=$\phi$_{xx}+ $\phi$(1- $\phi$)(1+a $\phi$)H( $\phi$- $\epsilon$) ,
where

a>2 ,
see Section IV \mathrm{B} of [13]. Indeed, if we identify the parameters a=-\displaystyle \frac{1}{ $\gamma$} ,

where

 $\gamma$\in (- \displaystyle \frac{1}{2},0) and also transform the independent variables, time t=- $\gamma$\hat{t} and space

x=\sqrt{- $\gamma$}\hat{x} ,
then the Ginzburg‐Landau equation becomes: $\phi$_{\hat{t}}=$\phi$_{\hat{x}\hat{x}}+ $\phi$(1- $\phi$)( $\phi$- $\gamma$) ,

which is precisely the Nagumo equation. Moreover, in light of these transformations, the

wave speed for the Nagumo equation gets multiplied by a factor of \sqrt{a}=\sqrt{-\frac{1}{ $\gamma$}} to yield

c_{GL}( $\epsilon$) . This result confirms the scaling of \triangle c( $\epsilon$) with  $\epsilon$ found for the Ginzburg‐Landau

equation in Section IV. \mathrm{B} of [13].

Remark 1. One may compare the formula for K_{ $\gamma$} with that obtained in [3], where a

variational approach is used. They differ by a factor of (1+2 $\gamma$)^{2 $\gamma$}.

Remark 2. The formulas for \triangle c( $\epsilon$) and K_{ $\gamma$} turn out to be the same here for pushed
fronts with  $\gamma$\in (- \displaystyle \frac{1}{2},0) as they are for bistable fronts with  $\gamma$\displaystyle \in(0, \frac{1}{2}) ,

see [8]. However,
there are several important structural differences in the proof arising from the sign of  $\gamma$

and from the features of bistable and pushed fronts.

§1.3. Outline of the method of proof

The proof of Theorem 1.1 will be carried out in the context of the traveling front

ODE system,

(1.6)  u'=v, v'=-cv-u(1-u)(u- $\gamma$)H(u- $\epsilon$) , $\epsilon$'=0,
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where the prime denotes the derivative with respect to  $\xi$=x-ct.
In the absence of a cut‐off, i.e., with  $\epsilon$=0 and H\equiv 1

,
the front solution is

a heteroclinic connection of (1.6) between the fixed points Q_{0}^{-}=(1,0,0) and Q_{0}^{+}=
(0,0,0) . In the (u, v) plane, Q_{0}^{-} is a saddle fixed point, and Q_{0}^{+} is a stable node for

 $\gamma$\in (- \displaystyle \frac{1}{2},0) and c near c(0) ; the associated eigenvalues are $\lambda$_{\overline{\pm}}=-\displaystyle \frac{c}{2}\pm\sqrt{c^{2}+4(1- $\gamma$)}
and $\lambda$_{\pm}^{+}=-\displaystyle \frac{c}{2}\pm\sqrt{c^{2}+4 $\gamma$} , respectively. The heteroclinics lie in the coincidence of one

branch of W^{u}(Q_{0}^{-}) and one branch of the strong stable manifold W^{ss}(Q_{0}^{+}) precisely for

c=c(0) ,
and that is the geometric criterion that determines the unique, critical wave

speed when  $\epsilon$=0 . (This contrasts with the fact that Q_{0}^{+} is a saddle for  $\gamma$\displaystyle \in(0, \frac{1}{2}) ,

and hence uniqueness of the critical wave speed there stems from the codimension of a

saddle‐saddle connection, see Section 2 of [8].)
For  $\epsilon$\neq 0 , system (1.6) has fixed points at Q_{\overline{ $\epsilon$}}=(1,0,  $\epsilon$) and Q_{ $\epsilon$}^{+}=(0,0,  $\epsilon$) ,

and Theorem 1.1 will establish that the heteroclinic orbit —present when  $\epsilon$=0 and

c=c(0)- persists for  $\epsilon$>0 and sufficiently small. However, demonstrating this

persistence is technically challenging due to the facts that Q_{ $\epsilon$}^{+} is a degenerate equilibrium
of (1.6) for  $\epsilon$\neq 0 and the traveling wave no longer decays exponentially as  $\xi$\rightarrow\infty.

In order to prove this theorem, we will first desingularize the degenerate equilibrium

Q_{ $\epsilon$}^{+} in (1.6) using the blow‐up method, [6]. See Section 2 below. The phase space of the

blown‐up vector field naturally decomposes into three regions, an outer region in which

u=\mathcal{O}(1) ,
an inner region near u=0 ,

and an intermediate region that lies between them.

In the phase space of this blown‐up vector field, we will construct a singular ( $\epsilon$=0)
heteroclinic connection  $\Gamma$ between  Q_{0}^{-} and Q_{0}^{+} that traverses across the three regions.
See Section 3. Finally, in Section 4, we will prove that, for each  $\epsilon$>0 sufficiently small,
the singular heteroclinic orbit  $\Gamma$ persists as a heteroclinic connection between  Q_{\overline{ $\epsilon$}} and

Q_{ $\epsilon$}^{+} for a unique value c( $\epsilon$) of c in (1.6). That connection will correspond precisely to

the sought‐after front solution of (1.3) propagating with speed c( $\epsilon$) . The corresponding

persistence proof will also yield the leading‐order asymptotics of c( $\epsilon$) ,
thus establishing

formulas (1.4) and (1.5) in Theorem 1.1.

Remark 4. Examination of the local dynamics near the stable node Q_{0}^{+} reveals another

reason for the parameter restriction  $\gamma$>-\displaystyle \frac{1}{2} . In the (u, v) plane with c=c(0) ,
the

eigenvectors corresponding to $\lambda$_{\pm}^{+} are \mathrm{e}_{\pm}^{+}=(1, $\lambda$_{\pm}^{+})^{T} . Hence, for  $\gamma$\in (- \displaystyle \frac{1}{2},0) ,
the strong

stable eigendirection is given by \mathrm{e}_{-}^{+} and the weak stable eigendirection by \mathrm{e}_{+}^{+} ,
when

c=c_{0} . At  $\gamma$=-\displaystyle \frac{1}{2} ,
the two eigenvalues are equal, and hence there is no unique strong

stable eigendirection. Then, for  $\gamma$<-\displaystyle \frac{1}{2} ,
the roles of the eigendirections are switched.
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§2. Desingularization of the degenerate equilibrium point Q_{ $\epsilon$}^{+}

The degeneracy of the state Q_{ $\epsilon$}^{+}=(0,0,  $\epsilon$) of the system (1.6) can be removed by

desingularizing (�blowing‐up�) this point to an invariant two‐sphere, [6]. In the context

of (1.6), the desired blow‐up transformation takes the form

(2.1) u=\overline{r}\overline{u}, v=\overline{r}\overline{v},  $\epsilon$=\overline{r}\overline{ $\epsilon$}.

Here, (\overline{u},\overline{v},\overline{ $\epsilon$})\in S_{+}^{2}=\{(\overline{u},\overline{v},\overline{ $\epsilon$})|\overline{u}^{2}+\overline{v}^{2}+\overline{ $\epsilon$}^{2}=1\} ,
with \overline{ $\epsilon$}\geq 0 and \overline{r}\in[0, r_{0}] for r_{0}>0

sufficiently small. In other words, the transformation maps Q_{ $\epsilon$}^{+} to the two‐sphere S^{2} in

\mathrm{R}^{3} . The powers of r were chosen so that as much structure is retained in the vector

field as possible in the limit r\rightarrow 0.

The blow‐up regularizes the dynamics in a neighborhood of Q_{ $\epsilon$}^{+} . The dynamics on

and near the resulting two‐sphere can then be studied using standard techniques from

dynamical systems theory.
To study the dynamics on (and near) S_{+}^{2} of the flow induced by (1.6) under the

blow‐up, we introduce local coordinate charts: we define a phase‐directional chart K_{1}

by setting \overline{u}=1 in (2.1), and a rescaling chart K_{2} by setting \overline{ $\epsilon$}=1 in (2.1). Moreover,
the manifold S_{+}^{2} will be invariant under the induced dynamics in both of these charts,
and hence we will be able to regularize the singular limit  $\epsilon$\rightarrow 0 in (1.6).

Remark 5. Given any object \square in the original (u, v,  $\epsilon$) variables, we denote the corre‐

sponding blown‐up object by \square - . Also, in charts K_{i}(i=1,2) ,
the corresponding object

will be denoted by \square _{i} ,
as required.

§3. Construction of the singular heteroclinic orbit  $\Gamma$

In this section, we construct the singular heteroclinic connection  $\Gamma$ between  Q_{0}^{-}
and Q_{0}^{+} , working separately in each of the outer, inner, and intermediate regions.

§3.1. Outer region

In the outer region where u=\mathcal{O}(1) ,
the ODE system (1.6) corresponds precisely

to the traveling front equations without cut‐off,

(3.1) u'=v, v'=-cv-u(1-u)(u- $\gamma$) ,

as H=1 there. There is a traveling front solution that connects the rest states at ( 1, 0)
and (0,0) and that travels with the critical wave speed  c_{0}=\displaystyle \frac{1}{\sqrt{2}}-\sqrt{2} $\gamma$ . It is known

explicitly:

(3.2)  u( $\xi$)=\displaystyle \frac{1}{1+e^{\frac{1}{\sqrt{2}}( $\xi$- $\xi$-)}}, v(u, c_{0})=\displaystyle \frac{1}{\sqrt{2}}u(u-1) ,
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where $\xi$^{-} denotes an arbitrary phase.
The portion of the singular heteroclinic that lies in the outer region is now con‐

structed as follows. For  $\rho$ small, with  $\rho$\geq$\epsilon$_{0} ,
we let $\Sigma$^{-} denote the hyperplane \{u= $\rho$\}

in (u, v,  $\epsilon$) space, and we write P_{0}^{-}:( $\rho$, v^{-}, 0) for the point of intersection of W^{u}(Q_{0}^{-})
with $\Sigma$^{-} . (Here and in the following, we suppress the  $\rho$‐dependence of  $\Sigma$^{-} and P_{0}^{-} ,

for

the sake of brevity.) The section  $\Sigma$ ‐defines a local section for the flow of (1.6), and

the segment of  W^{u}(Q_{0}^{-}) lying between Q_{0}^{-} and P_{0}^{-} ,
which we label $\Gamma$^{-}

,
is precisely the

portion of the singular heteroclinic connection  $\Gamma$ that lies in this outer region, i.e., in

\{u\geq $\rho$\} with  $\rho$\geq$\epsilon$_{0}.
This completes the analysis of the outer region for  $\epsilon$=0 . However, before going on

to the other regions, it is useful to state one result concerning the equation of variations

about this solution. We let c=c_{0}+\triangle c ,
with \triangle c=c-c_{0}=o(1) . Then, noting that the

manifold W^{u}(Q_{ $\epsilon$}^{-}) is analytic in the state variables u and v (at least as long as  u\geq $\epsilon$ ),
as well as in the parameter  c

,
we may assume an expansion for W^{u}(Q_{\overline{ $\epsilon$}}) of the form

(3.3) v(u, c)=$\Sigma$_{j=0}^{\infty}\displaystyle \frac{1}{j!}\frac{\partial^{j}v}{\partial c^{j}}(u, c_{0})(\triangle c)^{j}.
Only the first two terms in this expansion will be needed below. The leading‐order term

is given by (3.2). The first‐order term in \triangle c is found from the variational equation
associated to (3.1) taken along v(u, c_{0}) :

\displaystyle \frac{\partial}{\partial u}(\frac{\partial v}{\partial c}(u, c_{0}))=-1+2\frac{u- $\gamma$}{u(1-u)}\frac{\partial v}{\partial c}(u, c_{0}) .

For u\in(0,1] ,
the unique solution \displaystyle \frac{\partial v}{\partial c}(u, c_{0}) that satisfies \displaystyle \frac{\partial v}{\partial c}(1, c_{0})=0 is given by

(3.4) \displaystyle \frac{\partial v}{\partial c}(u, c_{0})=\frac{1}{3-2 $\gamma$}u^{-2 $\gamma$}(1-u)F(3-2 $\gamma$, -2 $\gamma$;4-2 $\gamma$;1-u) ,

where F ;\cdot;\cdot ) denotes the hypergeometric function, see Section 15 of [1]. Moreover,

\displaystyle \frac{@v}{\partial c} is strictly positive for all u\in(0,1) . This solution is given in Lemma 2.1 of [8]. We

refer the reader to Appendix A of [8] for the proof. We also note that this derivative

is regular in the limit u\rightarrow 0^{+} ,
since -1/2< $\gamma$<0 here. This result will be useful in

Section 4.5, below.

§3.2. Inner region

In the inner region where  u< $\epsilon$ ,
we have  H=0 . Hence, the dynamics of (1.6) is

governed by the corresponding cut‐off equations,

(3.5) u'=v, v'=-cv, $\epsilon$'=0,
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where we have appended the trivial equation for  $\epsilon$ . We study these equations in the

rescaling chart  K_{2}, \{$\epsilon$_{2}=1\} ,
where the blow‐up transformation (2.1) is given by

u=r_{2}u_{2}, v=r_{2}v_{2},  $\epsilon$=r_{2}.

Substituting this transformation into (3.5), we find the equivalent system

(3.6) u_{2}'=v_{2}, v_{2}'= − cv2, r_{2}'=0.

This is the system with which we work in this section.

The dynamics of (3.6) are straightforward. All points on the u_{2} ‐axis are equilibria
of (3.6) for r_{2}(= $\epsilon$) fixed. However, only points on the line \ell_{2}^{+}=\{(0,0, r_{2})|r_{2}\in[0, r_{0}]\}
can correspond to Q_{ $\epsilon$}^{+} for  $\epsilon$>0 after blow‐down (i.e., after transformation to the original

(u, v,  $\epsilon$) coordinates). Therefore, we will only consider those equilibria of system (3.6)
here.

Now, in the singular limit (r_{2}\rightarrow 0) ,
the u_{2}-v_{2} subsystem of (3.6) may be written

equivalently as the scalar equation \displaystyle \frac{dv_{2}}{du_{2}}=-c_{0} ,
where  c_{0}=\displaystyle \frac{1}{\sqrt{2}}-\sqrt{2} $\gamma$ ,

recall Section

3.1. We are interested in the solution that satisfies  v_{2}(0)=0 . Therefore, the unique
solution is given by v_{2}(u_{2})=-c_{0}u_{2} . We label the corresponding orbit in phase space

as $\Gamma$_{2}^{+} ,
and we observe that it is precisely the stable manifold W_{2}^{s}(Q_{0_{2}}^{+}) .

Finally, we define the section $\Sigma$_{2}^{+} for the flow of (3.6) by

$\Sigma$_{2}^{+}=\{(1, v_{2},  $\epsilon$)|(v_{2},  $\epsilon$)\in[-v_{0}, 0]\times[0, $\epsilon$_{0}]\},

for v_{0}>0 sufficiently small and fixed, and we note that $\Sigma$_{2}^{+} represents a natural bound‐

ary for the inner region. Since  u= $\epsilon$ is equivalent to  u_{2}=1, $\Sigma$_{2}^{+} marks the transition

between the cut‐off and unmodified regimes in the original first‐order system (1.6) af‐

ter blow‐up and transformation to chart K_{2} . The orbit $\Gamma$_{2}^{+} intersects $\Sigma$_{2}^{+} in the point

P_{0_{2}}^{+}=(1, -c_{0},0) ,
as v_{2}(1)=-c_{0} . Therefore, $\Gamma$_{2}^{+} is the portion of the singular orbit  $\Gamma$

that lies in this inner region. The geometry in chart  K_{2} is illustrated in Figure 1.

§3.3. Intermediate region

The intermediate region, where  $\epsilon$<u<\mathcal{O}(1) and hence H=1
, provides the

connection between the outer and inner regions and is most conveniently studied in

chart K_{1} . Here, the blow‐up transformation (2.1) is given by

(3.7) u=r_{1}, v=rv, and  $\epsilon$=r_{1}$\epsilon$_{1}.

In the new (r_{1}, v_{1}, $\epsilon$_{1}) coordinates, system (1.6) becomes

(3.8) r_{1}'=r_{1}v_{1}, v_{1}'=-cv_{1}-v_{1}^{2}+ $\gamma$-(1+ $\gamma$)r_{1}+r_{1}^{2} $\epsilon$_{1}'=-$\epsilon$_{1}v_{1}.
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u_{2}

\mathrm{t}^{r_{2}}

Figure 1. The geometry in chart K_{2}.

Since c reduces to  c_{0}=\displaystyle \frac{1}{\sqrt{2}}-\sqrt{2} $\gamma$ for  $\epsilon$(=r_{1}$\epsilon$_{1})=0 ,
it follows that the equilibria

of (3.8) are located at P_{1}^{s}=(0, -\displaystyle \frac{1}{\sqrt{2}},0) and P_{1}^{u}=(0, \sqrt{2} $\gamma$, 0) , respectively. These

equilibria correspond to the strong stable and weak stable eigendirections, respectively,
of the linearization at Q_{0}^{+} of the Nagumo equation without cut‐off for  $\gamma$\in (- \displaystyle \frac{1}{2},0) .

(In other words, the blow‐up transformation teases apart the asymptotics of solutions

in a neighborhood of Q_{ $\epsilon$}^{+} and, hence, desingularizes the dynamics of (1.6) down to

 $\epsilon$=0.) Both P_{1}^{s} and P_{1}^{u} are hyperbolic saddle equilibria of (3.8), with eigenvalues
‐ \displaystyle \frac{1}{\sqrt{2}}, \displaystyle \frac{1}{\sqrt{2}}(1+2 $\gamma$) ,

and \displaystyle \frac{1}{\sqrt{2}} , respectively, and \sqrt{2} $\gamma$, -\displaystyle \frac{1}{\sqrt{2}}(1+2 $\gamma$) ,
and -\sqrt{2} $\gamma$.

The relevant equilibrium for us is P_{1}^{s} ,
since v_{1}=\displaystyle \frac{v}{u}\rightarrow-\frac{1}{\sqrt{2}} as u\rightarrow 0^{+} ,

recall (3.2).
The linear analysis of P_{1}^{s} is similar to that carried out in [8]. Hence, the rest of the

construction of the singular heteroclinic in the intermediate region proceeds along the

same lines as that used in [8], with some important modifications to account for the

sign of  $\gamma$.

In particular, we observe that the hyperplanes \{r_{1}=0\} and \{$\epsilon$_{1}=0\} are invariant

for (3.8), as well as that both hyperplanes correspond to the singular limit as  $\epsilon$\rightarrow 0^{+}

in (1.6). The resulting reduced dynamics determines the location of the singular hete‐

roclinic orbit  $\Gamma$ in this intermediate region. Specifically, in \{$\epsilon$_{1}=0\} ,
the orbit passing

through P_{0_{1}}^{-} (which is the image of the point P_{0}^{-} under the blow‐up transformation)
is asymptotic to P_{1}^{s} as  $\xi$\rightarrow\infty . We denote this orbit by $\Gamma$_{1}^{-} ,

and we observe that $\Gamma$_{1}^{-}



126 Dumortier and Kaper

corresponds to the unstable manifold W^{u}(Q_{0}^{-}) ,
after blow‐up and transformation to

K_{1} . (Alternatively, $\Gamma$_{1}^{-} can be interpreted as the equivalent, in K_{1} ,
of the tail of the

traveling front solution to (1.3) in the absence of a cut‐off.)
Next, in the invariant hyperplane \{r_{1}=0\} ,

the orbit through P_{0_{1}}^{+} (which is the

image of the point P_{0_{2}}^{+} in $\Sigma$_{2}^{+} under the coordinate transformation between charts K_{2}

and K_{1}) asymptotes to P_{1}^{s} in backward time, i.e., as  $\xi$\rightarrow-\infty . We denote that orbit

by $\Gamma$_{1}^{+} ,
and it is given implicitly by

(3.9) \displaystyle \ln|$\epsilon$_{1}|-\frac{1}{2}\ln|(v_{1}+\frac{1}{\sqrt{2}})(v_{1}-\sqrt{2} $\gamma$)|-\frac{c_{0}}{\sqrt{c_{0}^{2}+4 $\gamma$}}\mathrm{a}\mathrm{r}\mathrm{c}\coth(\frac{2v_{1}+c_{0}}{\sqrt{c_{0}^{2}+4 $\gamma$}})=0,
as one obtains from integrating (3.8) on \{r_{1}=0\} . For  $\gamma$\in (- \displaystyle \frac{1}{2},0) , v_{1} goes from − \displaystyle \frac{1}{\sqrt{2}}
at P_{1}^{s} down to v_{0_{1}}^{+}=-\displaystyle \frac{1}{\sqrt{2}}+\sqrt{2} $\gamma$<-\frac{1}{\sqrt{2}} at P_{0_{1}}^{+} , along the orbit $\Gamma$_{1}^{+} . Also, the quantity

\displaystyle \frac{2v_{1}+c_{0}}{\sqrt{c_{0}^{2}+4 $\gamma$}} goes from -1 down to -1+\displaystyle \frac{4 $\gamma$}{1+2 $\gamma$}.
In summary, we find that the union of the two segments $\Gamma$_{1}^{-} and $\Gamma$_{1}^{+} constitutes

that portion of  $\Gamma$ that lies in the intermediate region. (We refer the reader to Figure 2 in

[8] for an illustration of a similar though slightly different situation, with the difference

that here the  v coordinate of P_{0_{1}}^{+} lies to the left of -1/\sqrt{2} for  $\gamma$\in(-1/2,0). )

§3.4. Summary of the construction of  $\Gamma$

In summary, the singular heteroclinic connection  $\Gamma$ (more specifically, the corre‐

sponding orbit \overline{ $\Gamma$} in the phase space of the blown‐up vector field) has been defined

as the union of the orbits \overline{ $\Gamma$}^{-} and \overline{ $\Gamma$}^{+} with the singularities \overline{Q}_{0}^{-}, \overline{P}^{s}
,

and \overline{Q}_{0}^{+} . It is

illustrated in Figure 2.

§4. Existence and asymptotics of c( $\epsilon$)

In this section, we establish the persistence of the singular heteroclinic orbit  $\Gamma$ for

 $\epsilon$>0 sufficiently small. To that end, we consider successively the dynamics obtained

in the three regions above, the outer, inner, and intermediate.

§4.1. Persistence of the invariant manifolds in the outer and inner regions

In the outer region, the unstable manifold W^{u}(Q_{0}^{-}) persists in an analytic fashion

to the unstable manifold W^{u}(Q_{ $\epsilon$}^{-}) (at least as long as  u\geq $\epsilon$ for  $\epsilon$>0 sufficiently small).
For each fixed  $\epsilon$>0, W^{u}(Q_{ $\epsilon$}^{-}) corresponds precisely to that segment of the sought‐after

persistent heteroclinic in the outer region. In addition, we are interested in the unstable

manifold W^{u}(\displaystyle \ell^{-})=\bigcup_{ $\epsilon$\in[0,\in 0]}W^{u}(Q_{ $\epsilon$}^{-}) ,
which is simply a foliation in  $\epsilon$\in[0, $\epsilon$_{0}] with

fibers W^{u}(Q_{ $\epsilon$}^{-}) .
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Figure 2. The global geometry of the blown‐up vector field.

In the inner region, the stable manifold W_{2}^{s}(Q_{0_{2}}^{+}) ,
which is given explicitly by

v_{2}(u_{2})=-c_{0}u_{2} for  $\epsilon$=0 , perturbs analytically for r_{2}(= $\epsilon$)>0 small and u_{2}\leq 1

to the manifold W_{2}^{s}(Q_{ $\epsilon$}^{+}) . In fact, the persistent manifold is also known explicitly in

this chart; it is given by the graph of v_{2}= −cu2, for c=c_{0}[1+o(1)] . For  $\epsilon$ fixed,

 W_{2}^{s}(Q_{ $\epsilon$}^{+}) corresponds to the segment of the sought‐after persistent heteroclinic that is

located in the inner region (after blow‐down). In addition, we are also interested in the

corresponding stable manifold W_{2}^{s}(\ell_{2}^{+}) of the line of equilibria \ell_{2}^{+} ; this is the union of

the persistent manifolds over  $\epsilon$\in[0, $\epsilon$_{0}].

§4.2. Outline of proof strategy in the intermediate region

To prove Theorem 1.1, we will show that for each  $\epsilon$>0 sufficiently small, the two

manifolds W^{u}(\ell^{-}) and W_{2}^{s}(\ell^{+}) connect in the intermediate region for a unique value

of c in (1.6). The existence of that connection is equivalent to the persistence of the

singular heteroclinic orbit  $\Gamma$ . The strategy of the proof is as follows.

We will henceforth denote the corresponding  c‐value by c( $\epsilon$) . Also, we will show

that c( $\epsilon$) reduces to c_{0} in the singular limit as  $\epsilon$\rightarrow 0^{+} ,
and hence we will identify c(0)

and c_{0} once the existence of c( $\epsilon$) has been proven below in Proposition 4.1. That proof
will be carried out entirely in the intermediate region, i.e., in chart K_{1} . In a first step,
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we define the two sections $\Sigma$_{1}^{-} and $\Sigma$_{1}^{+} for the flow of (3.8), as follows:

$\Sigma$_{1}^{-}=\{( $\rho$, v_{1},  $\epsilon \rho$^{-1})|(v_{1},  $\epsilon$)\in[-v_{0}, 0]\times[0, $\epsilon$_{0}]\} and

(4.1)
$\Sigma$_{1}^{+}=\{( $\epsilon$, v_{1},1)|(v_{1},  $\epsilon$)\in[-v_{0}, 0]\times[0, $\epsilon$_{0}

where v_{0} is as defined above. (The restriction to the negative v_{1} ‐axis is possible due to

the fact that we are only interested in the dynamics of (3.8) in a neighborhood of P_{1}^{s} ;

recall the discussion in Section 3.3.) We note that $\Sigma$_{1}^{-} corresponds to the section $\Sigma$^{-}

introduced in Section 3.1, after blow‐up and transformation to chart K_{1} ; moreover, we

again suppress the  $\rho$‐dependence of that section, for convenience of notation. Similarly,

 $\Sigma$_{1}^{+} is equivalent to $\Sigma$_{2}^{+} under the change of coordinates between the charts. Clearly, $\Sigma$_{1}^{-}
separates the outer region from the intermediate region, while $\Sigma$_{1}^{+} defines the boundary
between the intermediate and inner regions.

Now, the crucial step in showing existence and uniqueness of c( $\epsilon$) consists in de‐

scribing the transition map $\Pi$_{1} : $\Sigma$_{1}^{-}\rightarrow$\Sigma$_{1}^{+} sufficiently accurately. In other words, we

will require that, for  $\epsilon$>0 small enough, the point of intersection of W^{u}(Q_{ $\epsilon$}^{-}) with

the section $\Sigma$^{-}
,

which we denote by P^{-}
,

is mapped to the point of intersection P_{2}^{+} of

W_{2}^{s}(Q_{ $\epsilon$}^{+}) with $\Sigma$_{2}^{+} in the transition through the intermediate region. (Here, we note

that the corresponding orbit constitutes that portion of the persistent heteroclinic that

lies in this region; moreover, we omit the parameter dependence of the points P^{-} and

P_{2}^{+} ,
for brevity.) Also, the required persistence proof will reveal that \triangle c( $\epsilon$)=c( $\epsilon$)-c_{0}

must be negative and must satisfy (1.4) and (1.5).

§4.3. Normal form in the intermediate region

It is useful to recast (3.8) in a form that is more convenient. We begin with the

coordinate transformation c=c_{0}+(c-c_{0})=\displaystyle \frac{1}{\sqrt{2}}-\sqrt{2} $\gamma$+\triangle c and the new variable

z=v_{1}+\displaystyle \frac{1}{2}c_{0}=v_{1}+\frac{1}{2\sqrt{2}}(1-2 $\gamma$) . System (3.8) becomes

r\displaystyle \'{i}=-[\frac{1}{2\sqrt{2}}(1-2 $\gamma$)-z]r_{1},
(4.2)

$\epsilon$_{1}=z'=\displaystyle \ovalbox{\tt\small REJECT}_{\frac{}{}(1-2 $\gamma$)-z}^{\frac{1}{2\sqrt{2}2\sqrt{2}1}(1-2 $\gamma$)-z}]$\epsilon$_{1}\triangle c-z^{2}+\frac{1}{8}(1+2 $\gamma$)^{2}-(1+ $\gamma$)r_{1}+r_{1}^{2},
(Here, we observe that the terms that are linear in z in (3.8)(b) cancel due to our choice

of constant in the definition of z. ) Next, from the right‐hand sides of the vector field,
we divide out the factor of [\displaystyle \frac{1}{2\sqrt{2}}(1-2 $\gamma$)-z] ,

which is positive for the range of z values

considered here,

r\'{i}=-r_{1}

(4.3) z'=\displaystyle \triangle c-\frac{z^{2}-\frac{1}{8}(1+2 $\gamma$)^{2}}{\frac{1}{2\sqrt{2}}(1-2 $\gamma$)-z}+\frac{-(1+ $\gamma$)r_{1}+r_{1}^{2}}{\frac{1}{2\sqrt{2}}(1-2 $\gamma$)-z},
 $\epsilon$ í =$\epsilon$_{1}.
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This transformation corresponds to a rescaling of  $\xi$ that leaves the phase portrait of the

system unchanged; correspondingly, the prime now denotes differentiation with respect

to a new independent variable  $\zeta$ . Moreover, since the equations in (4.3) are autonomous,

we may assume without loss of generality that  $\zeta$^{-}=0 in $\Sigma$_{1}^{-} independent of the choice

of $\xi$^{-} in (3.2).
Now, we derive the normal form for (4.3), as follows:

Proposition 4.1. Let \mathcal{V}=\{(r_{1}, z, $\epsilon$_{1})|(r_{1}, z, $\epsilon$_{1})\in[0,  $\rho$]\times[-z_{0}, 0]\times[0, 1]\} ,
where

z_{0}=v_{0}+\displaystyle \frac{1}{2\sqrt{2}}(1-2 $\gamma$) with v_{0} as in (4.1). Then, there exists a C^{\infty} ‐smooth coordinate

transformation

V \rightarrow V
 $\psi$ : \mathcal{V}\rightarrow $\psi$(\mathcal{V}) with (r_{1}, z, $\epsilon$_{1})\rightarrow(r_{1},\hat{z}, $\epsilon$_{1})

where \hat{z}(z, r_{1})=z+\mathcal{O}(r_{1}) ,
such that (4.3) can be written as

r\'{i}=-r_{1}

(4.4) \displaystyle \hat{z}'=\triangle c-\frac{\hat{z}^{2}-\frac{1}{8}(1+2 $\gamma$)^{2}}{\frac{1}{2\sqrt{2}}(1-2 $\gamma$)-\hat{z}}
 $\epsilon$ í =$\epsilon$_{1}.

Proof. The result follows from standard normal form theory; see for example [5] and

the references therein. In particular, we note that the r_{1} ‐dependent terms in (4.3)(b)
are non‐resonant and that hence they can be removed completely via a near‐identity
coordinate change  $\psi$ . (Here, we append the equation \triangle c'=0 ,

and make a linear

shift in the variable \hat{z} so that the fixed point is at the origin. In addition, if one

uses standard normal form theory with the vector field in polynomial form, one can

binomially expand.)
Moreover,  $\psi$ can only depend on the variables  r_{1} and z

,
since (4.3)(b) is independent

of $\epsilon$_{1} . Therefore, \hat{z}=z+\mathcal{O}(r_{1}) ,
as claimed. \square 

This normal form is the system of equations we will work with in the remainder of this

section.

§4.4. Uniqueness of \triangle c

Let P_{1}^{-} and P_{1}^{+} denote the points that correspond to P^{-} and P_{2}^{+} , respectively,
after transformation to chart K_{1} ,

and let \hat{P}_{1}^{-} and \hat{P}_{1}^{+} be the respective corresponding

points after application of the normal form transformation  $\psi$ defined in Proposition 4.1.

Finally, let \hat{z}^{-} and \hat{z}^{+} denote the associated \hat{z}‐values that are obtained from z^{-} and

z^{+}
, respectively. We find

Lemma 4.1. For any  $\rho$\in( $\epsilon$, 1) with  $\epsilon$\in(0, $\epsilon$_{0} ], and for each \triangle c sufficiently small, the
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points \hat{P}_{1}^{-}:( $\rho$,\hat{z}^{-},  $\epsilon \rho$^{-1}) and \hat{P}_{1}^{+}:( $\epsilon$,\hat{z}^{+}, 1) are such that

(4.5)

\displaystyle \hat{z}^{-}=\hat{z}^{-}( $\rho$, \triangle c)=-\frac{1}{2\sqrt{2}}(1+2 $\gamma$)+v( $\rho$, \triangle c)\triangle c ,
with v( $\rho$, 0)=\displaystyle \frac{1}{ $\rho$}\frac{\partial v}{\partial c}( $\rho$, c_{0})[1+v_{1}( $\rho$)]>0

and

(4.6) \displaystyle \hat{z}^{+}=\hat{z}^{+}(\triangle c,  $\epsilon$)=-[\frac{1}{2\sqrt{2}}(1-2 $\gamma$)+\triangle c]+ $\omega$(\triangle c,  $\epsilon$) $\epsilon$.
Here, v( $\rho$, \triangle c) is a C^{\infty} ‐smooth function in  $\rho$ and \triangle c

,
while v_{1} is C^{\infty} smooth down to

 $\rho$=0 ,
with v_{1}(0)=0 . Finally,  $\omega$(\triangle c,  $\epsilon$) is C^{\infty} smooth in \triangle c and  $\epsilon$ , including in a

neighborhood of (0,0) .

This lemma is precisely the same as Lemma 2.2 in [8], where the analysis was

carried out for  $\gamma$\displaystyle \in(0, \frac{1}{2}) . We note that the proof given there also applies directly to

the case under consideration here of  $\gamma$\in (- \displaystyle \frac{1}{2},0) ,
and hence we refer there for the proof.

For given \triangle c small,  $\epsilon$\in(0, $\epsilon$_{0} ], and  $\rho$\in( $\epsilon$, 1) ,
we now consider the solution to

(4.4) with initial \hat{z} value \hat{z}(0)=\hat{z}^{-}( $\rho$, \triangle c) ,
where \hat{z}^{-} is as in (4.5). Let \hat{z}_{-}^{+} denote the

corresponding value of that solution at time $\zeta$^{+}, \hat{z}($\zeta$^{+}) . Then, we have:

Lemma 4.2. For \hat{z}_{-}^{+}=\hat{z}($\zeta$^{+}) ,
there holds \displaystyle \frac{\partial\hat{z}_{-}^{+}}{\partial c}( $\rho$, \triangle c)>0 . Moreover, there can exist

at most one value of \triangle c such that \hat{z}_{-}^{+}( $\rho$, \triangle c)=\hat{z}^{+} ,
where \hat{z}^{+} is as in (4.6).

This lemma is precisely the same as Lemma 2.3 in [8], where the analysis was

carried out for  $\gamma$\displaystyle \in(0, \frac{1}{2}) . We note that the proof given there also applies directly to

the case under consideration here of  $\gamma$\in (- \displaystyle \frac{1}{2},0) ,
and hence we refer there for the proof.

Lemma 4.2 implies, in particular, that, if it exists, a connection between the points

\hat{P}_{1}^{-} and \hat{P}_{1}^{+} under the flow of (4.4) can exist for at most one value of \triangle c in (4.4). As a

consequence, persistence of the singular heteroclinic orbit  $\Gamma$ constructed in Section 3 is

also only possible for at most one value of \triangle c.

§4.5. Existence and asymptotics of \triangle c

We are now in a position to complete the proof of Theorem 1.1. We will prove that

there exists a function \triangle c=\triangle c( $\epsilon$) so that the singular heteroclinic orbit  $\Gamma$ persists,
for  $\epsilon$>0 positive and sufficiently small and c=c_{0}+\triangle( $\epsilon$) in (1.6). In particular, we

integrate the normal form system obtained in (4.4)(b), taking into account the estimates

for \hat{z}^{-} and \hat{z}^{+} found in Lemma 4.1 above, and noting that this proof differs in several

important respects from that of Proposition 4.2 in [8] due to the difference in the range
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of the values of the parameter  $\gamma$ under consideration here. Moreover, this function \triangle c

will be unique by the results of the previous section.

Proposition 4.2. Let  $\gamma$\in (- \displaystyle \frac{1}{2},0) . Then, for every  $\epsilon$\in(0, $\epsilon$_{0} ], with $\epsilon$_{0}>0 sufficiently

small, there exists a function c( $\epsilon$)=c_{0}+\triangle c( $\epsilon$) ,
with \triangle c(0)=0 ,

such that the singular
orbit  $\Gamma$ persists if and only if  c=c( $\epsilon$) in (1.6). Moreover, \triangle c is negative, as well as C^{1}

smooth in  $\gamma$ and  $\epsilon$ , including at  $\epsilon$=0.

Proof. Given the normal form (4.4), we need to determine \triangle c so that \hat{P}_{1}^{-} is mapped
to \hat{P}_{1}^{+} under $\Pi$_{1} . We first integrate the second component of (4.4) using separation of

variables to obtain

(4.7)

$\zeta$^{+}-$\zeta$^{-}-\displaystyle \frac{1}{2}\ln|2\hat{z}^{2}+2\triangle c\hat{z}-\frac{1}{\sqrt{2}}(1-2 $\gamma$)\triangle c-\frac{1}{4}(1+2 $\gamma$)^{2}||_{\hat{z}-}^{\hat{z}^{+}}

-\displaystyle \frac{\frac{1}{\sqrt{2}}(1-2 $\gamma$)+\triangle c}{\sqrt{\frac{1}{2}(1+2 $\gamma$)^{2}+\sqrt{2}(1-2 $\gamma$)\triangle c+(\triangle c)^{2}}}
\times arccoth (\displaystyle \frac{2\hat{z}+\triangle c}{\sqrt{\frac{1}{2}(1+2 $\gamma$)^{2}+\sqrt{2}(1-2 $\gamma$)\triangle c+(\triangle c)^{2}}})|_{\hat{z}-}^{\hat{z}^{+}}=0.

Next, we recall that $\zeta$^{+}=-\displaystyle \ln\frac{ $\epsilon$}{ $\rho$} and $\zeta$^{-}=0 ; moreover, we make use of \hat{z}^{+}=

-[\displaystyle \frac{1}{2\sqrt{2}}(1-2 $\gamma$)+\triangle c]+ $\omega$(\triangle c,  $\epsilon$) $\epsilon$ and \displaystyle \hat{z}^{-}=-\frac{1}{2\sqrt{2}}(1+2 $\gamma$)+v( $\rho$, \triangle c)\triangle c ,
as given in (4.6)

and (4.5), respectively. Substituting into (4.7), using the identity

arccoth (x)=\displaystyle \frac{1}{2}\ln(\frac{x+1}{x-1}) ,

and expanding the result in terms of \triangle c and  $\epsilon$ , we find that

(4.8)

-\displaystyle \ln\frac{ $\epsilon$}{ $\rho$}-\frac{1}{2}\ln[-2 $\gamma$-\sqrt{2}(1-2 $\gamma$) $\omega$(\triangle c,  $\epsilon$) $\epsilon$+\mathcal{O}(2)]

+\displaystyle \frac{1}{2}\ln[-\sqrt{2}[1+(1+2 $\gamma$)v( $\rho$, 0)+\mathcal{O}(1)]\triangle c]-\frac{1}{2}\{\frac{1-2 $\gamma$}{1+2 $\gamma$}+\frac{8\sqrt{2} $\gamma$}{(1+2 $\gamma$)^{3}}\triangle c+\mathcal{O}((\triangle c)^{2})\}
\displaystyle \times\{\ln[-2 $\gamma$+\frac{4\sqrt{2} $\gamma$}{1+2 $\gamma$}\triangle c-\sqrt{2}(1+2 $\gamma$) $\omega$(\triangle c,  $\epsilon$) $\epsilon$+\mathcal{O}(2)]

-\displaystyle \ln[-\sqrt{2}\frac{1+(1+2 $\gamma$)v( $\rho$,0)+\mathcal{O}(1)}{(1+2 $\gamma$)^{2}}\triangle c]\}=0.
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Here, \mathcal{O}(1) denotes terms of at least order 1 in \triangle c
,

and \mathcal{O}(2) stands for terms of at

least order 2 in \triangle c and  $\epsilon$ ,
both \mathcal{O}(1) and \mathcal{O}(2) are C^{\infty} ‐smooth, and uniform in their

respective arguments, if  $\rho$ is restricted to compact subsets of (0,1) .

Since (4.8) can have a solution for at most one value of \triangle c by Lemma 4.2, we will

restrict ourselves to \triangle c<0 and show that a solution exists in that case. That solution

will then necessarily be unique.

Taking into account that v( $\rho$, 0)>0 by Lemma 4.1, we exponentiate (4.8) to obtain

(\displaystyle \frac{ $\epsilon$}{ $\rho$})^{2(1+2 $\gamma$)}=2(-2 $\gamma$)^{-2}\{[1+(1+2 $\gamma$)v( $\rho$, 0)]\triangle c\}^{1+2 $\gamma$}
(4.9)

. \displaystyle \{\frac{1+(1+2 $\gamma$)v( $\rho$,0)}{(1+2 $\gamma$)^{2}}\triangle c\}^{1-2 $\gamma$}[1+\mathcal{O}(1)],
where the \mathcal{O}(1) ‐terms are now C^{\infty} ‐smooth in \triangle c, \triangle c\ln(\triangle c) ,

and  $\epsilon$ . (Here, the occur‐

rence of logarithmic terms in \triangle c is due to the \triangle c\ln(\mathrm{c}) ‐terms in (4.8).) Clearly, the

relation in (4.9) is satisfied at (\triangle c,  $\epsilon$)=(0,0) ; moreover, it is C^{1} ‐smooth in  $\epsilon$, \triangle c,  $\gamma$,

and  $\rho$ in a uniform fashion, for  $\epsilon$ and \triangle c sufficiently small (including at (\triangle c,  $\epsilon$)=(0,0) )
and  $\gamma$ and  $\rho$ in a compact subset of (- \displaystyle \frac{1}{2},0) and (0, $\rho$_{1}) , respectively. Finally, since

1+(1+2 $\gamma$)v( $\rho$, 0)>0 ,
it follows from the Implicit Function Theorem that (4.9) has a

solution \triangle c( $\epsilon$,  $\gamma$,  $\rho$) that is C^{1} ‐smooth in  $\epsilon$ (down to  $\epsilon$=0 ),  $\gamma$ and  $\rho$ ,
as claimed.

By definition, that solution yields precisely the value of \triangle c for which a heteroclinic

connection exists between the points Q_{\overline{ $\epsilon$}} and Q_{ $\epsilon$}^{+} in (1.6). Hence, \triangle c=\triangle c( $\epsilon$,  $\gamma$) must

hold, i.e., \triangle c cannot depend on  $\rho$ . In other words, \triangle c must be independent of the

definition of the section $\Sigma$^{-}
,

which was chosen arbitrarily.

Finally, to determine the asymptotics of \triangle c( $\epsilon$)\equiv\triangle c( $\epsilon$,  $\gamma$) ,
we solve (4.9) to leading

order to obtain

(4.10) \triangle c( $\epsilon$)=K_{ $\gamma$}$\epsilon$^{1+2 $\gamma$}+o($\epsilon$^{1+2 $\gamma$}) ,

where the constant K_{ $\gamma$} is defined by

(4.11) K_{ $\gamma$}=\displaystyle \frac{\sqrt{2} $\gamma$(1+2 $\gamma$)^{1-2 $\gamma$}}{1+(1+2 $\gamma$)v( $\rho$,0)}\frac{1}{$\rho$^{1+2 $\gamma$}}\equiv\frac{\sqrt{2} $\gamma$(1+2 $\gamma$)^{1-2 $\gamma$}}{(1+2 $\gamma$) $\delta$( $\gamma$)}<0,
and we have suppressed the  $\rho$ dependence in  $\delta$ . Here,

(4.12)  $\delta$( $\gamma$)=[\displaystyle \frac{1}{1+2 $\gamma$}+v( $\rho$, 0)]$\rho$^{1+2 $\gamma$}
denotes a strictly positive function that is C^{\infty} smooth in  $\gamma$\in (- \displaystyle \frac{1}{2},0) ,

for any  $\rho$\in(0,1)
fixed and sufficiently small. This completes the proof of Proposition 4.2. \square 

We emphasize that the definition of K_{ $\gamma$} has to be independent of  $\rho$ ,
since \triangle c( $\epsilon$) is

defined by the global condition that the singular heteroclinic orbit  $\Gamma$ persists for  $\epsilon$
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sufficiently small: while the Implicit Function Theorem is applied for  $\rho$ fixed in the

proof of Proposition 4.2, our argument is valid for arbitrary  $\rho$ . (To state it differently,

although the function  v( $\rho$, 0) ,
as defined in (2.22), may depend on the definition of

$\Sigma$_{1}^{-} and, hence, on  $\rho$ ,
that dependence must cancel, as a matter of principle, once the

dynamics of (2.4) in the outer region has been taken into account.) Therefore, the

function  $\delta$( $\gamma$) also cannot depend on  $\rho$ ,
and we may obtain the value of  $\delta$ by evaluating

(4.12) for any  $\rho$\in(0,1) ; in particular, we may pass to the limit in which  $\rho$=0 . Recalling
the definition of v( $\rho$, 0) from (18), we obtain

(4.13)  $\delta$( $\gamma$)=\displaystyle \lim_{ $\rho$\rightarrow 0+}\{$\rho$^{1+2 $\gamma$}v( $\rho$, 0)\}=\lim_{ $\rho$\rightarrow 0+}\{$\rho$^{2 $\gamma$}\frac{\partial v}{\partial c}( $\rho$, c_{0}
Therefore, it remains to evaluate the above limit. From the explicit solution \displaystyle \frac{\partial v}{\partial c} of

the variational equation, recall (3.4), we find:

Lemma 4.3. The function defined in (4.12) satisfies

(4.14)  $\delta$( $\gamma$)=\displaystyle \lim_{ $\rho$\rightarrow 0+}\{$\rho$^{2 $\gamma$}\frac{\partial v}{\partial c}( $\rho$, c_{0})\}=\frac{ $\Gamma$(3-2 $\gamma$) $\Gamma$(1+2 $\gamma$)}{ $\Gamma$(4)},
where \displaystyle \frac{\partial v}{\partial c}(u, c_{0}) is as given in (3.4).

Proof. Evaluating (3.4) at  u= $\rho$ ,
for  $\rho$>0 and small, and noting that the hypergeo‐

metric function F converges absolutely at  $\rho$=0 since {\rm Re}(1+2 $\gamma$)>0 ,
see Section 15.1

of [1], we find

$\rho$^{2 $\gamma$}\displaystyle \frac{\partial v}{\partial c}( $\rho$, c_{0})=\frac{1}{3-2 $\gamma$}(1- $\rho$)F(3-2 $\gamma$, -2 $\gamma$;4-2 $\gamma$;1- $\rho$) .

Then, making use of identity

(4.15) F(a, b;c;1)=\displaystyle \frac{ $\Gamma$(c) $\Gamma$(c-a-b)}{ $\Gamma$(c-a) $\Gamma$(c-b)} for c\not\in \mathrm{Z}_{-} and {\rm Re}(c-a-b)>0,

see (15.1.20) in [1], and taking the limit  $\rho$\rightarrow 0^{+} in the resulting equation, we find

 $\delta$( $\gamma$)=\displaystyle \frac{1}{3-2 $\gamma$}\frac{ $\Gamma$(4-2 $\gamma$) $\Gamma$(1+2 $\gamma$)}{ $\Gamma$(4)}.
Then, since  $\Gamma$(4-2 $\gamma$)=(3-2 $\gamma$) $\Gamma$(3-2 $\gamma$) ,

we find that (4.14) follows, which completes
the proof. \square 

We are now in a position to complete the proof of Theorem 1.1. In fact, by com‐

bining (4. 11) and (4. 14), we obtain

K_{ $\gamma$}=\displaystyle \frac{ $\Gamma$(4)}{ $\Gamma$(1+2 $\gamma$) $\Gamma$(3-2 $\gamma$)}\frac{\sqrt{2} $\gamma$}{(1+2 $\gamma$)^{2 $\gamma$}},
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which is precisely (1.5). This completes the proof of Theorem 1.1.
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