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Abstract

We discuss the behaviors of traveling 2\mathrm{D} spots arising in a three component reaction

diffusion system when the media has a jump heterogeneity along the line. The traveling spot

responds in various ways depending on the the height of the jump and the incident angle when

it encounters the jump line. Refraction and reflection are commonly observed. Two issues are

discussed here: One is the relation between the incident angle and the refraction angle when

the spot crosses the jump. In a scaling limit near a drift bifurcation, a Snell�s‐like law holds for

the refraction case. The other is the transition from refraction to reflection. Such a transition

occurs as the incident angle is increased for a fixed height or the height is increased for a fixed

incident angle. As the angle (or height) approaches the critical one, the spot spends much longer
time in the right half plane after crossing the jump line and it eventually converges to the one

traveling parallel to the jump line but infinitely far from it, namely it is a traveling spot in the

homogeneous space located at right infinity. We call such a special solution �scattor� located

at infinity. Since such a scattor was found originally for collision dynamics in which its role

is exemplified nicely, a short review is given before discussing the behaviors in heterogeneous
media. An interesting thing is that most of the scattors are common both in the collision and

heterogeneous problems, in fact we take a traveling peanut solution as a typical example, which

controls the transition between merging and splitting.

§1. Introduction

Spatially localized dissipative structures are observed in various fields such as chemical

reactions, discharge patterns, morphological dynamics, granular materials, and binary
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convection [1, 2, 3, 4, 8, 11, 12, 15, 16, 32, 39, 41, 42]. Those patterns are much simpler
than a single living cell, however they seem to inherit several characteristic features

of living state, for instance, self‐replication and self‐destruction can occur without any

external trigger [5, 13, 9, 17, 26, 27, 29]; a variety of deformations at collisions [20, 21,

22, 35, 36]; adaptive behaviors depending on external environments and heterogeneities

[33, 34, 40]. These behaviors come from the interplay between a variety of internal

dynamics of each localized pattern and the external triggers and environmental changes
such as collisions and spatial‐temporal heterogeneities in the system.

Although there are many important problems from single motion to coherent be‐

haviors related to spot dynamics, we have been interested in two main issues: one is the

collision dynamics and the other is the motion of traveling pulses and spots in hetero‐

geneous media. Since they are moving, it is unavoidable for them to collide each other

or meet the heterogeneities. The main difficulty of the first issue is two‐fold: one is how

we can describe the large deformation at collision, the other is to find the underlying
mechanism controlling input‐output relation. It has been uncovered that large defor‐

mation at collision is mapped into the network of unstable patterns called scattors

[20, 21, 22, 35]. Namely large deformations can be translated into the heteroclinic con‐

nections in the network. We shall give a quick survey on this issue in Section 3 and try
to explain how such a network becomes a backbone for large deformations at collisions.

We also show a traveling localized spot of peanut shape as a representative example of

scattor. As for the second issue, it is about the interaction between moving objects and

the surrounding environments, in particular, how spatial heterogeneities affect the mo‐

tion of traveling pulses and spots, which may be regarded as a kind of collision problem
between them. Even for the simple class of heterogeneity such as jump or bump shape,
the traveling objects can display a variety of dynamics after hitting the jump including

pinning and splitting as well as transmission and reflection [18, 24, 25, 28, 36, 43, 46].
This is mainly due to the fact that the heterogeneity becomes a trigger for the emergence

of instabilities hidden in the localized patterns.

The main issue in this paper is to study the behaviors of traveling spots in the

heterogeneous media, especially focus on the simplest case; a jump discontinuity along
the line. Figure 1 shows typical behaviors of traveling spots as the height of the jump is

gradually increased with the incident angle $\theta$_{i} being fixed to  $\pi$/4 . Here we employ the

model system (2.1) in Section 2 for the computation. When the height is low, it can

go over the jump, but refraction occurs as in Figs.1(a)(b) because of the difference of

velocities on both sides. As the height exceeds a critical level, the spot bends back and

reflection occurs. The same thing could happen when the incident angle is increased

with the height being fixed. Two natural questions arise here.

1. When transmission occurs, what is the relation between the incident angle $\theta$_{i} and
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Figure 1. Refraction and reflection behaviors of the traveling spots encountering the

jump heterogeneity. Time evolutions of oblique collisions for (2.1) with f_{1}^{L}=0.0623, $\theta$_{i}

being fixed to  $\pi$/4 and the vertical broken line indicating the location ofjump line. (a)(b)
Refraction: trajectories of spot motion bend away and towards from the perpendicular
for  $\epsilon$=3\times 10^{-5} and -1.2\times 10^{-4} , respectively, (c) Reflection for  $\epsilon$=6.0\times 10^{-5} . (d)
Schematic picture shows a manner how a traveling spot hits jump‐type heterogeneity
from left side. Solid line shows how f(r) spatially changes in the x_{1} direction. (e) The

 $\epsilon$‐dependence curves of the refraction and reflection angle,  $\theta$_{t} and $\theta$_{r} ,
for f_{1}^{L}=0.0623

and 0.0624 are indicated by gray and solid lines, respectively.

the refraction angle $\theta$_{t} ?

2. When the transition from transmission to reflection occurs, what is the separatrix
in between and how it controls the dynamics?

In order to characterize the velocities of traveling spots on both sides of thejump line, we

resort to a reduction method from PDEs to ODEs near a supercritical drift bifurcation
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in Section 4, which allows us to compute those quantities and study the change of angles
around the heterogeneity. It turns out that a reverse type of the Snell�s‐like law holds

for the first question.
To answer the second problem, it is necessary to introduce the two homogeneous

spaces located at \pm\infty taking a uniform value  f_{1}^{L} or f_{1}^{R} , respectively. It turns out

that traveling patterns in those homogeneous spaces play a key role to understand such

a transition and this is also the case for many other transitions including merging‐

splitting transition in Section 5. We will see that heteroclinic orbits naturally appear at

the transition point, each of which connects two scattors living in those homogeneous

spaces located at \pm\infty . A key message is to see that a network structure consisting
of heteroclinc orbits connecting various types of scattors play a key role to

resolve both collision and heterogeneous problems. Also note that exactly the same

type of patterns such as traveling peanut one plays as a scattor in both problems.

§2. MODEL

In this paper we employ the following three‐component reaction diffusion equations
as an representative model for the study of collision problem and the dynamics in

heterogeneous media. It is known that such a class of three‐component systems supports

stable traveling spots in higher dimensional space.

(2.1) \left\{\begin{array}{l}
u_{t} =D_{u}\nabla^{2}u-\frac{uv^{2}}{1+f_{2}w}+f_{0}(1-u)\\
v_{t} =D_{v}\nabla^{2}v+\frac{uv^{2}}{1+f_{2}w}-(f_{0}+f_{1})v\\
 $\tau$ w_{t}=D_{w}\nabla^{2}w+f_{3}(v-w) .
\end{array}\right.
The system (2.1) consists of the substrate u=u(t, r) ,

activator (or consumer) v=v(t, r)
and inhibitor w=w(t, r) in two‐dimensional space r=(x_{1}, x_{2}) ,

where (f_{0}, f_{1}, f_{2}, f_{3}) ,

the diffusion coefficients (D_{u}, D_{v}, D_{w})=(2.0\times 10^{-4},1.0\times 10^{-4},5.0\times 10^{-4}) ,
and  $\tau$ are

positive constants. If  w\equiv 0 ,
the system is reduced to the Gray‐Scott model [7]. Note

that H. Meinhardt already proposed the similar equations to (2.1) to describe the shell

patterns [14]. We employ the following values for the other parameters as f_{0}=0.05,

f_{2}=0.50 ,
and f_{3}=0.20 . The f_{1} and  $\tau$ are set to control parameters. For instance,

we set  $\tau$=40 for refraction‐reflection problem of Fig.1, since the drift bifurcation

from standing spot to traveling one becomes supercritical, which fits our framework of

reduction in Section 4.
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§3. LARGE DEFORMATION AT COLLISION AND NETWORK OF

UNSTABLE PATTERNS

Collision dynamics has been remained as an uncultivated area due to the complexity
and large deformation of colliding objects. Although it is still a difficult task to describe

all the aspects of the deformation, the network structure of the unstable patterns called

scattors relevant to collision process plays a key role to clarify the backbone of large
deformation process. Heteroclinic connections from high‐codimension scattors to lower

ones tell us how the deformation evolves after collision. It is clear that if initial and

final states are different and stable at least locally, then the orbit in between must cross

the basin boundaries. Collisions trigger the basin switching via large deformation. The

aim of this section is to give a quick survey of recent development of collision dynamics
of traveling spots. It turns out that those scattors are also relevant to the dynamics in

heterogeneous media.

§3.1. HOW TO SET UP THE PROBLEM

One of the main questions for the collision dynamics is that how we can describe the

large deformation of two localized objects at collision and predict its output. The strong
collision usually causes topological changes such as merging into one body or splitting
into several parts as well as annihilation. It is in general quite difficult to trace the

details of the deformation unless it is a very weak interaction. We need a change in our

way of thinking to solve this issue. So far we may stick too much to the deformation

of each localized pattern and become shrouded in mystery. We try to characterize the

hidden mechanism behind the deformation process. It may be instructive to think about

the following metaphor: the droplet falling down the landscape with valleys and ridges
as in Fig.2 (see also [45]). The motion of droplets on a rugged landscape is rather

complicated; two droplets merge or split at the saddle points and they may sink into

the underground, i.e., annihilation. On the other hand, the profile of the landscape
remains unchanged and in fact controls the behaviors of droplets. It may be worth to

describe the landscape itself rather than deformation: where is a ridge or a valley, and

how they are combined to form a whole landscape. Such a change of viewpoint has been

proposed by [20, 21, 22, 35] (see also [17]) claiming that the network of unstable patterns

relevant to the collision process constitutes the backbone structure of the deformation

process, namely the deformation is guided by the connecting orbits among the nodes of

the network. Each node is typically an unstable ordered pattern such as steady state

or time‐periodic solution. This view point is quite useful and valid to various problems

including the heterogeneous problems in Section 4.
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Figure 2. Droplets falling the rugged landscape. They merge or split depending on the

local shape. They move around in a complicated way and deform largely when they
meet other droplets, however the profile of the landscape, which does not change during
the collision process, basically controls the dynamics of collisions.

§3.2. HEAD‐ON COLLISION

In order to observe collision phenomena, the system (2.1) has to have stable traveling

spots moving in different directions. One of the analytical methods for that purpose is

to find a drift bifurcation point for standing spots, in fact there is a light gray�standing�

region in Fig.3(a), in which stable standing spots exist. When the parameters (f_{1},  $\tau$)
cross the dotted solid line in the left‐upward direction, stable traveling spots emerge

supercritically, namely the dotted solid line is a drift bifurcation line above which stable

traveling spots exist. We first consider the head‐on collisions, i.e., two traveling spots

approach along the line connecting the two centers of mass. Note that left‐right and

up‐down symmetries hold for head‐on case, however up‐down symmetry is not preserved
for the oblique case. There are three different outputs depending on the parameters as

in Fig.3(a): RE (reflection), FD (fusion and drift), and AN (annihilation) [22]; \mathrm{F}\mathrm{D}
,

for

instance, means that two spots merge into one body and become a disk of circular shape,
then start to move in one‐direction due to the drift instability. One may wonder that the

circular spot after merging should not move in one direction due to the preservation of

symmetry for head‐on case. This is simply because there always exist numerical errors

or noise that breaks the symmetry. It seems natural that two colliding spots reflect

each other (i.e., the output belongs to RE regime) right after the drift bifurcation, since

their velocities are small and interact weakly. Note that when the parameter close to the

double critical point DH (the drift and Hopf instabilities), the dynamics becomes much
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more delicate and annihilation occurs even if the velocity is small (the thick vertical

dashed line in Fig.3(a) indicates the Hopf instability for large standing disk (SD) spot).
The main question here is to clarify the underlying mechanism for the transition I

from RE to \mathrm{F}\mathrm{D}
,

or the transition II from FD to AN in Fig.3(a). Here we only consider

the case near the boundary between RE and \mathrm{F}\mathrm{D} . As two traveling spots collide, they
form a peanut shape with two peaks, then the middle part of the two peaks either

grows or decays depending on the parameter set (f_{1},  $\tau$) being in either FD or RE.

Namely the peanut shape is a kind of separator controlling the output, in fact there is

an unstable steady state of peanut shape depicted in Fig.3(c), which can be detected by
the Newton method. The unstable manifold associated with the largest real eigenvalue
of the standing peanut (SP) pattern is connected to the large SD and splitting into

two traveling spots (TSs) moving in the opposite directions, depending on the sign of

perturbation. Such a separator is called the scattor introduced by [20, 21]. When the

parameter belongs to \mathrm{F}\mathrm{D}
,

the profile of orbit becomes very close to the large SD after

peanut shape of SP, however it is not the final destination, since it still keeps a drift

instability, therefore it eventually starts to move in one direction as mentioned before.

A schematic diagram for the transition from RE to FD is shown in Fig.3(b), in which

two scattors of SP and large SD appear and one of the unstable manifolds of SP is

connected to the stable manifold of large SD. The transition from RE to FD occurs,

when the orbit crosses the stable manifold of SP from below to above in Fig.3(b). There

are three different types of scattor for head‐on collision case: SP pattern, large SD, and

small SD. These three scattors play a role of separators among RE, \mathrm{F}\mathrm{D}
,
and AN outputs

as in Fig.3(c). It should be emphasized that the network of scattors connected by their

unstable manifolds constitutes a backbone structure responsible for large deformation

at collision. See [22] for more detailed discussions.

§3.3. OBLIQUE COLLISION

When collision occurs, it is generically an oblique one, i.e., it breaks at least up‐down

symmetry. We consider a class of oblique collisions in which left‐right symmetry is

preserved, namely it is equivalent to the case when the traveling spot hits the boundary
under the Neumann boundary condition. The incident angle $\theta$_{i} is varied as a parameter

besides f_{1} . See Fig.4(c), in which  $\tau$ is fixed to 90 and we study the spot behaviors near

the transition II between FD and AN regimes in the phase diagram of Fig.3(a). Those

head‐on collisions are associated with the case of  $\theta$_{i}=0^{\mathrm{o}} in \mathrm{F}\mathrm{i}\mathrm{g}.4(\mathrm{c}) . Note that RE

(reflection) regime appears besides FD and AN regimes for large incident angles. If $\theta$_{i}
is increased and approaches  $\pi$/2 ,

it becomes closer to a parallel motion, therefore the

reflection (RE) is possible and becomes dominant for larger incident angles as in the

phase diagram of Fig.4(c). In the next subsection we study the transition III between

RE and FD and find a new type of scattor for the oblique case of $\theta$_{i}\neq 0^{\mathrm{o}}
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Figure 3. (a) Phase diagram for the outputs of head‐on collisions with respect to (f_{1},  $\tau$) .

There are three qualitatively different outputs, reflection (RE), fusion and drift (FD),
and annihilation (AN). The black dashed and the white dotted lines indicate the Hopf
and drift bifurcations for the standing disk (SD) spot, respectively. (b) A schematic

diagram of scattors and their connections. Two saddle type of solutions standing peanut

(SP) and large SD are connected by their unstable and stable manifolds. The fate of each

orbit is determined by which side of the stable manifold of peanut contains its initial

profile. The connecting manner reflects how large deformation occurs after collision.

(c) Three scattors SP, large SD, and small SD and the change of connecting routes

as parameters vary. When annihilation occurs, small SD plays a key role, which is

connected to large SD via saddle‐node bifurcation. Only v‐component is shown here.

For details, see the reference [22].

3.3.1. FUSION‐REFLECTION TRANSITION We study how the behavior is

switched from FD to RE around the transition point III (f_{1}, $\theta$_{i})\approx (0.064465, 14^{\mathrm{o}}) . As

f_{1} is decreased, the output of the colliding spots is changed from RE to FD as shown

in Figs.4(a)(b). Right after the collision, the spots travel for certain time with keeping
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Figure 4. Spatio‐temporal behaviors for oblique collision to the Neumann wall and

the phase diagram of outputs in (f_{1},$\theta$_{i}) ‐plane. (a) Traveling spot coming from the

lower‐left reflects to the upper‐left after collision. We set to (f_{1},  $\tau$)\approx (0.064465, 90)
with the incident angle $\theta$_{i} around 14^{\mathrm{o}} . As f_{1} is decreased slightly, the transition from

RE to FD occurs as shown in (b). In both cases there appear quasi‐steady traveling

peanuts (TPs) that persist for certain time before settling down to final states. (c)
Phase diagram of output for oblique collision with respect to (f_{1}, $\theta$_{i}) . As the incident

angle is increased, the reflection regime is expanded. (d) Profiles of TP scattor and the

associated eigenmode $\xi$_{1} with the largest eigenvalue of  $\lambda$\approx 0.015 near the FD‐RE phase

boundary. The $\xi$_{1} has two minima and one high maximum. Only v‐component is shown

here.

two peaks before they reflect each other or merge together. They look like a peanut

shape. Such a transient peanut pattern can be captured as in Fig.4(d), namely getting
on the moving coordinate z=x_{2}-ct with c\approx 2.4\times 10^{-4} of (2.1). The TP pattern is
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unstable with the largest real eigenvalue ($\lambda$_{1}\approx 0.015) and the associated eigenfunction

$\xi$_{1} is depicted as Fig.4(d). Its profile has two minima and one maximum, suggesting
that merging or splitting occurs depending on the sign of the perturbation proportional
to the eigenform. In fact it is confirmed numerically (see Fig.5 (\mathrm{a}) ) that the difference

of sign induces that of output.

It is quite instructive and suggestive to see the interrelation among all relevant

patterns to collision dynamics. Figure 5(b) shows solution branch of TS and TP families

bifurcated from the drift points of SD patterns. The deformation from TP to TS is

indicated by an up‐pointing arrow in the middle part of TP branch in Fig.5(b). In view

of Fig.5, the network structure of scattors (i.e., connecting manner among unstable

patterns) changes as f_{1} varies so that the passage of deformation also changes even if

the manner of collision remains the same as before. Also note that scattors for the

collision problem like TP play a key role to understand the deformation process of spots

in heterogeneous media as will be discussed in the next section.

§4. DYNAMICS IN HETEROGENEOUS MEDIA

§4.1. REFRACTION AND REFLECTION AT JUMP

HETEROGENEITY

Refraction and reflection are well‐known phenomena in optics when light enters from

air to water. We study similar problems for the traveling spot of (2.1) as if it were like

a photon. We assume a heterogeneity of jump type along a line and study the behavior

of traveling spot as the height of the jump and the incident angle vary. For definiteness,
we introduce spatial heterogeneity to f_{1} as f_{1}(r)=f_{1}^{L}+ $\epsilon \chi$(r) where

(4.1)  $\chi$(r)=\displaystyle \frac{1}{1+\mathrm{e}^{- $\gamma$ x_{1}}},
We set f_{1} (, x_{2})=f_{1}^{L} and f_{1}(+\infty, x_{2})=f_{1}^{R} with  $\epsilon$\equiv f_{1}^{R}-f_{1}^{L} . The parameter  $\gamma$

controls the steepness of the jump and is fixed to be 100. Note that the media varies in

the  x_{1} direction only and  $\epsilon$ controls the height of the jump. Moreover we take  $\tau$=40.0

in this section, which guarantees that the drift bifurcation becomes supercritical as in

Fig.5(c) and the traveling velocity is increased when f_{1} is decreased. For more detailed

discussions, see the references of [37, 38].
Typical refraction and reflection are shown in Fig.1 as the height  $\epsilon$ is varied. It

is clear that spots can transmit the jump region when  $\epsilon$=0 . Recalling that, for

positive (resp. negative)  $\epsilon$
,

the propagation velocity in the right half region is smaller

(resp. larger) than that in the left half region due to the supercriticality of the drift

bifurcation as in Fig.5(c), it is expected that the spot entering a higher velocity medium,
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Figure 5. (a) The responses of the TP to the perturbations of the constant‐multiples
of the eigenfunction of Fig.4(d). If it is positive, then the middle part grows and it

becomes a single TS like the upper figure. If it is negative, it splits into two TSs as in

the lower figure. Only v‐component is shown here. Spectral computations are done with

the system size 1.5\times 1.5 . (b) Global bifurcation diagram of traveling spot solutions to

(2.1) for  $\tau$=90 . The vertical axis corresponds to the propagation velocity of traveling

spots. The solid and gray lines indicate the stable and unstable solutions. The black and

white squares indicate the pitchfork (drift) and Hopf points and the black disks show

the saddle node points, respectively. The number attached to each branch indicates

that of unstable eigenvalues. TS emanates from SD via a drift bifurcation. TP solution

is associated with the TS solution which loses its stability through the saddle‐node

bifurcation. (c) Global bifurcation diagram of spot solutions for  $\tau$=40 . The right drift

bifurcation from SD is supercritical and the emanated TS remains stable up to the Hopf

instability. Crossing the saddle‐node point, it deforms to a peanut‐like shape, and it

falls to the SP branch at the left drift bifurcation point.

i.e.,  $\epsilon$\leq 0 bends towards the perpendicular, and bends away from the perpendicular for

 $\epsilon$\geq 0 . In fact, it is the case as is depicted in Fig.1(e), which shows the  $\epsilon$‐dependence
of the refraction angle  $\theta$_{t} . For negative  $\epsilon$

,
the spot always transmits the jump line and

no reflection occurs. On the other hand, for positive  $\epsilon$
,
the transition from refraction to

reflection occurs at some critical level  $\epsilon$_{c} ; the angle $\theta$_{t} exceeds  $\pi$/2 . It is in a sense that

the traveling spot turns back from a bad environment of lower velocity.
There are two issues to be discussed in the following.
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1. What is the relation between the incident and refraction angles? Does the Snell�s‐

like law hold for traveling spots ?

2. What is the separatrix for the transition from refraction to reflection ?

To answer these questions, we will derive a finite‐dimensional system from our PDEs

(2.1) near the drift bifurcation. Such a reduction is possible thanks to the fact that the

traveling spots are spatially localized. A resulting system allows us to unveil a deeper
mechanism behind these phenomena and capture the essential dynamics observed in the

original PDEs.

It may be instructive to regard the refraction as a mapping from a traveling spot

living in the homogeneous space located at -\infty with the incident angle $\theta$_{i} to that with

the refraction angle $\theta$_{t} living in the homogeneous space located at +\infty ,
and similarly

for the reflection case. These mappings and the transition from refraction to reflection

can be schematically depicted as in Fig.8(a).

§4.2. REDUCTION TO A FINITE DIMENSIONAL SYSTEM

The spot dynamics in two‐dimensional system can be reduced to a finite‐dimensional

one when the associated parameter values are close to the drift bifurcation of  f_{1}=f_{1}^{c}
(see Fig. 5(\mathrm{c}) ), namely the pulse velocity is slow.

Let us derive such a system in the following general setting with small parameter

 $\eta$ as  f_{1}=f_{1}^{c}+ $\eta$,

(4.2) u_{t}=D\triangle u+F(u;f_{1})\equiv \mathcal{L}(u;f_{1}^{c})+( $\eta$+ $\epsilon \chi$(r))g(u) ,

where g is a N‐dimensional vector‐valued function. Let X:=\{L^{2}(\mathbb{R}^{2})\}^{N}, U(t, r)=
(u_{1}, \cdots, u_{N})^{T}\in X be an N‐dimensional vector. We assume that the non‐trivial stand‐

ing pulse solution S(r;f_{1}) exists at f_{1}=f_{1}^{c} , i.e., \mathcal{L}(S;f_{1}^{c})=0.
Let L be the linearized operator as L=\mathcal{L}(S(r, f_{1}^{c} L has a singularity at f_{1}=f_{1}^{c}

consisting of drift bifurcation in addition to the translation‐free 0 eigenvalues. That

is, there exist two eigenfunctions $\phi$_{i}(r) and $\psi$_{i}(r)(i=1,2) such that L$\phi$_{i}=0 and

L$\psi$_{i}=-$\phi$_{i} ,
where $\phi$_{i}=\partial S/\partial x_{i} . Note that $\phi$_{i}(r) and $\psi$_{i}(r) are odd functions. $\psi$_{i}(r)

represents the deformation vector with Jordan form for the drift bifurcation.

Similar properties also hold for L^{*} . That is, there exist $\phi$_{i}^{*} and $\psi$_{i}^{*} such that L^{*}$\phi$_{i}^{*}=
0 and L^{*}$\psi$_{i}^{*}=-$\phi$_{i}^{*} . Let E=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{$\phi$_{i}, $\psi$_{i}\} and the eigenfunctions are normalized by

\langle$\psi$_{i}, $\phi$_{j}\rangle_{L^{2}}=\langle$\psi$_{i}, $\psi$_{j}^{*}\rangle_{L^{2}}=0 , and,

(4.3) \langle$\phi$_{i}, $\psi$_{j}^{*}\rangle_{L^{2}}=\langle$\psi$_{i}, $\phi$_{j}^{*}\rangle_{L^{2}}=\left\{\begin{array}{l}
 $\pi$ i=j,\\
0i\neq j.
\end{array}\right.
The motion of a spot u is essentially described by the two‐dimensional vector

functions of time t;p=(p_{1}, p_{2}) denotes the location of the spot; q=(q_{1}, q_{2}) denotes
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its velocity. For small  $\eta$ ,
we can approximate a solution  u by

(4.4) U= $\tau$(p)(S+\displaystyle \sum_{i=1}^{2}q_{i}$\psi$_{i}+q_{1^{2}}$\zeta$_{1}+q_{2^{2}}$\zeta$_{2}+q_{1}q_{2}$\zeta$_{3}+ $\eta \zeta$_{4}) ,

where  $\tau$(p) is the translation operator with ( $\tau$(p)u)(r)=u(r-p) . The coefficient

vectors of remaining quadratic terms $\zeta$_{k}(k=1, \cdots 4)\in E^{\perp} are defined by solutions of

(4.5) \left\{\begin{array}{l}
-L$\zeta$_{1}=\frac{1}{2}F''(S)$\psi$_{1}^{2}+$\psi$_{1x_{1}},\\
-L$\zeta$_{2}=\frac{1}{2}F''(S)$\psi$_{2}^{2}+$\psi$_{2x_{2}},\\
-L$\zeta$_{3}=F''(S)$\psi$_{1}$\psi$_{2}+$\psi$_{1x_{2}}+$\psi$_{2x_{1}},\\
-L$\zeta$_{4}=g(S) .
\end{array}\right.
Substituting (4.4) into (4.2) and taking the inner product with the adjoint eigen‐

functions, we obtain the principal part by the following system.

(4.6) \left\{\begin{array}{l}
\mathrm{P}=q- $\epsilon \Gamma$^{0}(p) ,\\
\dot{q}=M_{1}|q|^{2}q+M_{2} $\eta$ q+ $\epsilon \Gamma$^{1}(p) .
\end{array}\right.
The extra terms $\Gamma$^{k}(k=0,1) encode the heterogeneity as

$\Gamma$_{i}^{0}(p)=\displaystyle \int_{\mathbb{R}^{2}} $\chi$(r)g(S(r-p))\cdot$\psi$_{i}^{*}(r-p)\mathrm{d}r,
$\Gamma$_{i}^{1}(p)=\displaystyle \int_{\mathbb{R}^{2}} $\chi$(r)g(S(r-p))\cdot$\phi$_{i}^{*}(r-p)\mathrm{d}r.

The effect of heterogeneity becomes acceleration (resp. deceleration) when  $\epsilon \Gamma$_{i}^{1}> (resp.
<)0 . Note that the heterogeneous term $\Gamma$^{k}(p) contains the information coming from

the original PDE in terms of linearized eigenfunctions as well as the constants M_{1} and

M_{2} in (4.6).

Proposition 4.1. The constants M_{1} and M_{2} are given as follows:

(4.7) \left\{\begin{array}{l}
 $\pi$ M_{1}=\frac{1}{6}\langle F'''(S)$\psi$_{1}^{3}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{1}$\zeta$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle$\zeta$_{1x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}},\\
 $\pi$ M_{2}=\langle F''(S)$\psi$_{1}$\zeta$_{4}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle g'(S)$\psi$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle$\zeta$_{4x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}.
\end{array}\right.
The proof will be shown in the Appendix. Note that the last terms of the right‐hand

side, \langle$\zeta$_{1x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}} and \langle$\zeta$_{4x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}} ,
are new and crucial ones added to the constants M_{1}

and M_{2} in Theorem 2 of [6].
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§4.3. OBLIQUE COLLISION AND OPTICS‐LIKE LAW

Now we assume  $\epsilon$=| $\eta$|^{3/2}\hat{ $\epsilon$} , and introduce the following rescaling q=| $\eta$|^{1/2}Q and

\tilde{t}=| $\eta$|^{1/2}t . The leading order equations for (4.6) become

(4.8) \left\{\begin{array}{l}
\mathrm{P}=Q,\\
\dot{Q}=| $\eta$|^{1/2}(M_{1}|Q|^{2}Q+\mathrm{s}\mathrm{g}\mathrm{n}( $\eta$)M_{2}Q+\hat{ $\epsilon$}$\Gamma$^{1}(p)) ,
\end{array}\right.
where we omit the tilde for simplicity. Here negative signs of coefficients are numerically
confirmed as M_{1}\approx-61.349<0 and M_{2}\approx-0.264<0 from Proposition 4.1. The

heterogeneous term of the first equation disappears thanks to the above scaling near

the pitchfork bifurcation. For the homogeneous case \hat{ $\epsilon$}=0 ,
the second equation of (4.8)

can be rewritten as \dot{Q}=-| $\eta$|^{1/2}\nabla_{Q}W ,
where W(Q)=-M_{1}|Q|^{4}/4-\mathrm{s}\mathrm{g}\mathrm{n}( $\eta$)M_{2}|Q|^{2}/2.

The velocity of traveling spot for this case is given by the invariant circle of W , i.e.,

|Q|^{2}=Q_{1}^{2}+Q_{2}^{2}=-\mathrm{s}\mathrm{g}\mathrm{n}( $\eta$)M_{2}/M_{1}\equiv Q_{0}^{2} for  $\eta$<0 . Since W(Q) is a function of Q=|Q|,
we can rewrite it as W(Q) such that W(Q_{0})=\displaystyle \min W(Q)=-M_{2}^{2}/4M_{1} . Hereafter we

only consider the case of  $\eta$<0.
From the symmetry of (4.1), the component of the heterogeneous term $\Gamma$^{k}(p) which

is tangent to the heterogeneity becomes zero, i.e., $\Gamma$^{k}(p)=($\Gamma$_{1}^{k}(p), 0)^{T} . As shown in

Fig.6, the heterogeneous term $\Gamma$_{1}^{1}(p) (resp. $\Gamma$_{1}^{0}(p) ) is a negative (resp. positive) even

function which decays exponentially to 0 as  p_{1}\rightarrow\pm\infty ,
and it has the minimum (resp.

maximum) at  p_{1}=0 . They keep the same profiles in the direction parallel to the p_{2}

axis. It is easy to see that there exist no equilibria of (4.8) with |Q|=0 except which

located at  p_{1}=\pm\infty . It should be remarked that the second component of the velocity

 Q_{2} is conserved during crossing thejump line if we neglect the higher order terms O(| $\eta$|)
owing to the fact that the second component of the heterogeneous term is equal to zero.

4.3.1. LAW OF REFRACTION Let us consider the relation between angles
of incidence and output. Since the angle near the jump line is not well‐defined, we

resort to the asymptotic behaviors of spots far from the jump line with the aid of

\displaystyle \lim_{p_{1\rightarrow\pm\infty}}$\Gamma$_{1}^{k}(p)=0 . Let Q(0) be the initial velocity which is given at the initial position

p(0) located sufficiently away from jump line and Q() be the asymptotic velocity
after refraction or reflection. Then we define the angle of incidence $\theta$_{i} and the angle of

output $\theta$_{o} by

(4.9) $\theta$_{i}=\displaystyle \arctan(\frac{Q_{2}(0)}{Q_{1}(0)}) , $\theta$_{o}=\arctan(\frac{Q_{2}(\infty)}{Q_{1}(\infty)}) ,

where Q(0)=Q_{0}e($\theta$_{i}) with e( $\theta$)=(\cos $\theta$, \sin $\theta$)^{T}.
The issue is to study the fate of the orbit starting from  p_{1}=-\infty for a given jump

heterogeneity of (4.1). When it goes to  p_{1}=+\infty(resp. -\infty) as  t\rightarrow+\infty ,
it means
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Figure 6. (a) The v‐component profile of the deformation vector $\psi$_{1} of standing disk

spot solution. The left (right)‐half part has negative (positive) sign. The profiles along

p_{1} ‐axis of the heterogeneous terms $\Gamma$_{1}^{0}(p) and $\Gamma$_{1}^{1}(p) are shown in (b) and (c).

that the spot transmits (resp. reflects from) the jump line. Depending on the height
\hat{ $\epsilon$}

,
the orbits behave as in Figs.7(a)(b). The output $\theta$_{o} belongs to one of the followings:

transmission $\theta$_{t}=$\theta$_{o} for 0<$\theta$_{o}< $\pi$/2 ,
and reflection $\theta$_{r}= $\pi-\theta$_{o} for  $\pi$/2<$\theta$_{o}< $\pi$.

Now we consider the transmission case in which refraction is observed. Recalling
that the heterogeneous term decays monotonically as \displaystyle \lim $\Gamma$_{1}^{k}(p)=0 ,

the velocity
|p_{1}|\rightarrow\infty

change occurs mainly around the jump line. In view of Fig.7(d), the transmission angle

$\theta$_{t} is determined by the incident angle $\theta$_{i} via sine functions, namely the ratio \sin$\theta$_{i}/\sin$\theta$_{t}
is constant for each fixed \hat{ $\epsilon$} . This reminds us the Snell�s law in optics, in fact a Snell�s‐like

holds but its dependency on the velocities is reversed as will be explained shortly.
Now recall that the drift bifurcation is supercritical for  $\tau$=40 ,

then the prop‐

agation velocities are calculated from (4.6) as \sqrt{M_{2}}/M_{1} in the left half‐plane and

\sqrt{(1-\hat{ $\epsilon$}| $\eta$|^{1/2})M_{2}}/M_{1} in the right half‐plane. Hence the relative velocity of the two

media is defined by n=\sqrt{1-\hat{ $\epsilon$}| $\eta$|^{1/2}} . As we remarked at the end of the last section,
the tangential component of Q is conserved in the rescaled system. Expressing the

tangential velocity by sine functions, this is equivalent to the following relation.

\sin$\theta$_{i}
(4.10) -=n.

\sin$\theta$_{t}

The well‐known Snell�s law in optics states that the ratio of the sines of the angles of

incidence and refraction is equivalent to the ratio of phase velocities in the two media.

Here the the ratio is equal to the opposite ratio of two velocities of traveling spots. The

numerical results in Figs.7(c)(d) agree with the relation (4.10).
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Figure 7. Orbit flows in the (p_{1},p_{2}) plane for (a) $\theta$_{i}= $\pi$/4 and (b)  $\pi$/6 . The parameter

 $\eta$ is set to -1.0\times 10^{-4} . The solid, gray, and dotted lines show for \hat{ $\epsilon$}=-350 , 35,
and 70, respectively. The heterogeneous term $\Gamma$_{1}^{1}(p) is indicated by the background

gray gradation. The \hat{ $\epsilon$}‐dependence of the transmission angle $\theta$_{t} for ODE dynamics are

shown in (c). The horizontal broken line indicates $\theta$_{t}=$\theta$_{i} . (d) The incident angle $\theta$_{i^{-}}

dependence of $\theta$_{t} . The solid and gray lines show \hat{ $\epsilon$}=-350 and 35. The vertical broken

line indicates the critical angle $\theta$_{c} for \hat{ $\epsilon$}=35.0>0 . The graphs obtained from (4.10)
are depicted by the dotted lines in (c) and (d). (e) Orbit flows are depicted for the

transition from transmission to reflection around $\theta$_{i}\approx$\theta$_{c} for (\hat{ $\epsilon$},  $\eta$)=(35, -1.0\times 10^{-4}) .

4.3.2. TRANSITION FROM TRANSMISSION TO REFLECTION In this

subsection, we focus on the transition from transmission (TR) to reflection (RE) as the

height \hat{ $\epsilon$} or the incident angle $\theta$_{i} is increased. For positive \hat{ $\epsilon$}>0, $\theta$_{t} becomes larger



Refraction, Refiection and Splitting 183

\mathrm{p} =+\infty Refraction ( $\theta  \theta$)Refraction ( $\theta  \theta$) Reflection

Reflection

C^{\mathrm{L},\mathrm{R}} 111111111111
Reraction ($\theta$_{t}<$\theta$_{i})

(a) (b)

Figure 8. (a) Schematic picture of orbit flows in three‐dimensions of (p_{1}, Q_{1}, Q_{2}) . The

solid circles C^{\mathrm{L},\mathrm{R}} show the invariant circles of TS solutions at  p_{1}=\mp\infty , respectively.
The solid curves indicate the orbit flows starting from $\theta$_{i}= $\pi$/4 for the reflection of

\hat{ $\epsilon$}=70 and refraction for 35 and -350 , respectively. The white disk on C^{\mathrm{R}} indicates the

traveling spot solution moving parallel to the jump line, corresponding to $\theta$_{t}= $\pi$/2 . It

plays a role of scattor for the transition between reflection and refraction behaviors. (b)
The projection of orbit flows onto the (Q_{1}, Q_{2}) ‐plane. The refraction behaviors initially
move on the plane where Q_{2} is conserved, indicated by the gray plane in (a), and then

they gradually depart from that into the final destination of TS on C^{\mathrm{R}} along its stable

manifold in the direction of e($\theta$_{t}) .

than $\theta$_{i} as shown in Fig.7(d). The orbit of transmitted spot gradually approaches the

line parallel to the jump line, as $\theta$_{i} is increased. Eventually, $\theta$_{t} reaches  $\pi$/2 at some

critical incident angle $\theta$_{i}=$\theta$_{c} . The larger \hat{ $\epsilon$} (i.e., the smaller n) is, the smaller $\theta$_{c} is.

For $\theta$_{i} greater than $\theta$_{c} ,
the spot turns back to the left‐half plane. A careful numerical

simulation shows as in Fig.7(e) that the orbit just before or after the transition point
from TR to RE behaviors behaves like a quasi‐traveling spot moving almost parallel
to the jump line for a certain time, then it transmits or reflects depending on the

parameter. There is a tendency that the distance between the jump line and this

quasi‐traveling spot becomes larger, as $\theta$_{i} becomes closer to $\theta$_{c} . It is expected that

this quasi‐orbit eventually converges to the traveling spot moving parallel to the

jump line in the homogeneous space located at  p_{1}=\infty . The PDE counterpart is

also numerically obtained. This type of separating orbit is called a scattor living in the

homogeneous space located at \pm\infty . When \displaystyle \lim $\Gamma$_{1}^{k}(p)=0 ,
the system recovers the

|p_{1}|\rightarrow\infty
rotational and translational invariance, i.e., the spots go straight in the homogeneous
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space. There exist the invariant circles  C^{L,R} of Q_{1}(t)^{2}+Q_{2}(t)^{2}=Q_{0}^{2} in the (Q_{1}, Q_{2}) ‐

plane at left and right infinity.
Here we introduce the complex variables z=Q_{1}+iQ_{2} ,

and we can rewrite as

(4.11) \dot{z}=| $\eta$|^{1/2}(M_{1}|z|^{2}z-M_{2}z+\hat{ $\epsilon$}$\Gamma$_{1}^{1}) .

Moreover, letting z=Qe^{i $\theta$} ,
we rewrite (4.11) as

(4.12) \left\{\begin{array}{l}
\dot{Q}=| $\eta$|^{1/2}(M_{1}Q^{3}-M_{2}Q+\hat{ $\epsilon$}$\Gamma$_{1}^{1}\cos $\theta$) ,\\
\dot{ $\theta$}=-| $\eta$|^{1/2}\hat{ $\epsilon$}\frac{$\Gamma$_{1}^{1}}{Q}\sin $\theta$.
\end{array}\right.
It is easily seen that \dot{ $\theta$}<0 (resp. \dot{ $\theta$}>0 ) for \hat{ $\epsilon$}<0 (resp. \hat{ $\epsilon$}>0 ) and \dot{ $\theta$} gets closer to zero

after sufficiently long time when spot moves far apart from a jump line. Actually, it is

found by the stability analysis of (4.12) that the traveling spot solution on C^{\mathrm{L},\mathrm{R}} has one

zero and one negative eigenvalue of 2| $\eta$|^{1/2}M_{2} . The zero eigenvalue is associated with

the neutral deformation vector perpendicular to the moving direction e( $\theta$) . We expect

that the orbit flow slowly approaches to the TS solution on C^{\mathrm{R}} along its stable manifold

in the moving direction e($\theta$_{t}) . In particular, the fates of orbit near the transition from

transmission to reflection are sorted out according to which side of the stable manifold

of TS ($\theta$_{t}= $\pi$/2) the orbit belongs. Once $\theta$_{t} exceeds  $\pi$/2 ,
the orbit turns back to the

jump line and accelerate to the left by the heterogeneity of  $\epsilon \Gamma$_{1}^{1}(p) . The details will be

shown in [38]. In the next section, we will discuss similar types of scattors.

§5. SPLITTING AND TRAVELING PEANUT SCATTOR LOCATED

AT INFINITY

Heterogeneities also trigger the splitting instability besides refraction and reflection

as discussed in previous sections. It is known for spontaneous splitting, i.e., without

external effects such as heterogeneities, that a saddle‐node bifurcation is responsible for

such a splitting as was discussed in [26, 27]. On the other hand our basic setting is that

the traveling disk spots (TSs) on both sides of line heterogeneity are locally stable and

hence they do not split spontaneously in each homogeneous space. Nevertheless splitting
can occur when the traveling spot crosses the line heterogeneity. A natural question
is what is the underlying mechanism that is responsible for the splitting in

heterogeneous media ? It turns out that traveling peanut (TP) patterns as shown in

Fig.5 play a key role to answer it. Loosely speaking, the traveling spot is distorted when

it encounters the heterogeneity, and if the associated deformation is strong enough to

escape from the basin of TS, then it starts to split. TP is located on the basin boundary
and its stable manifold is a separator between splitting and non‐splitting depending on
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Figure 9. (a) Phase diagram for the outputs of traveling spots with heterogeneity with

respect to (f_{1}^{L},  $\epsilon$) . Note that the parameter f_{1}^{L} are chosen in the neighborhood of the

saddle‐node point of TS branch in Fig.5(c). There are three qualitatively different

outputs, reflection (RE), transmission (TR), and splitting (SP). (b) Schematic picture
of spot solutions in homogeneous spaces \mathrm{H}^{\mathrm{L},\mathrm{R}} projected onto (q_{1}, s) ‐plane. The super‐

scripts L,R depends on whether the homogeneous space locates at left or right infinity of

p_{1} . The subscripts \pm show the propagating directions of traveling objects corresponding
to the sign of  q_{1} . The axis s indicates the amplitude of deformation into splitting.

the parameters. The size of the basin of TS shrinks as the distance to a saddle‐node

point becomes shorter, for instance, f_{1} approaches 0.0604 (the location of the saddle‐

node point) as in Fig.5(c) for  $\tau$=40 . See Fig.1 of [37] for more precise descriptions
of TS and TP branches. Therefore even for the tiny jump, the spot can easily split
when the parameter is close to the saddle‐node point. In what follows we only consider

the case in which the spot meets the jump line at right angle ($\theta$_{i}=0) . The phase

diagram of Fig.9(a) shows how the outputs depend on the parameter (f_{1}^{L},  $\epsilon$) where  $\epsilon$

is the height of the jump. As is expected, the splitting behaviors are observed when

the parameter  f_{1}^{L} is close to the saddle‐node point of TS solutions. What we observe

here are transmission (TR), splitting (SP), and reflection (RE). As f_{1}^{L} is increased and

becomes greater than the triple junction (TJ) point of f_{1}^{L}\approx 0.06047 ,
the SP regime

disappears and only TR and RE are observed.

The splitting behavior is quite interesting, in fact, for (f_{1}^{L},  $\epsilon$)\approx (0.06046,  7.2817\times

 10^{-4}) ,
the orbit first crosses the jump line, then turns back and crosses the line again,

finally it splits into two traveling spots as in Fig.10(b). In order to understand this

behavior as well as transitions among TR, SP, and RE, it is necessary to introduce the

two homogeneous spaces \mathrm{H}^{\mathrm{L},\mathrm{R}} located at  p_{1}=\pm\infty (see Fig.  9(\mathrm{b}) ), namely f_{1}\equiv f_{1}^{L} in
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Figure 10. (a) Response of the traveling spot coming from the left when it meets the

heterogeneity. We set to (f_{1}^{L},  $\epsilon$)\approx (0.06046, 7.2817\times 10^{-4}) . The left two figures show

the behaviors when the spots turn back and cross the jump line for the second time. The

left upper figure first shows the initiation of splitting, but it recovers the original shape
afterwards. As  $\epsilon$ is decreased slightly, the transition from reflection to splitting occurs as

shown in the left lower figure (b). The middle figures show the associated time evolutions

of the cross section at  x_{2}=1 along the x_{1} ‐axis. In both cases there appear quasi‐steady

traveling peanuts (TPs) that persist for a certain time before settling down to each final

state. (c) Schematic picture of orbit flows in the three‐dimensions of (p_{1}, q_{1}, s) near

triple junction point of Fig.9(a). The orbits starting from \mathrm{T}\mathrm{S}_{+}^{\mathrm{L}} are sorted out along the

heteroclinic connection between \mathrm{S}\mathrm{D}^{\mathrm{R}} and \mathrm{T}\mathrm{P}_{-}^{\mathrm{L}}.

\mathrm{H}^{\mathrm{L}} and similarly for \mathrm{H}^{\mathrm{R}} . This is because the separatrix responsible for these transitions

are the orbits connecting the solutions living in those homogeneous spaces as illustrated

in Fig.10(c). The solutions in \mathrm{H}^{\mathrm{L},\mathrm{R}} have super and sub scripts like \mathrm{T}\mathrm{S}_{+}^{\mathrm{L}} : the superscript
denotes to which homogeneous space the solution belongs and the subscript shows the

traveling direction. See the caption of Fig.9 for details.

It is clear that the TR behavior corresponds to the orbit starting from TSL
+

and

ending up with \mathrm{T}\mathrm{S}_{+}^{\mathrm{R}} . In view of the phase diagram of Fig.9(a), the transition from TR

to RE occurs for larger values of f_{1}^{L} as the height  $\epsilon$ is increased. On the other hand,
for smaller values of  f_{1}^{L} ,

we observe the transitions as  $\epsilon$ is increased: \mathrm{T}\mathrm{R}\rightarrow \mathrm{S}\mathrm{P}\rightarrow

RE as mentioned above. Although it may sound paradoxical, in order to understand
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these transitions simultaneously, we look at the most degenerate situation in the phase

diagram of Fig.9(a), i.e., the TJ point. There is a degenerate network of heteroclinic

orbits consisting of connecting orbits between two homogeneous spaces \mathrm{H}^{\mathrm{L},\mathrm{R}} . Those

connecting orbits are \mathrm{T}\mathrm{S}_{+}^{\mathrm{L}}\rightarrow \mathrm{S}\mathrm{D}^{\mathrm{R}}, \mathrm{S}\mathrm{D}^{\mathrm{R}}\rightarrow \mathrm{T}\mathrm{S}_{+}^{\mathrm{R}}, \mathrm{S}\mathrm{D}^{\mathrm{R}}\rightarrow \mathrm{T}\mathrm{S}_{-}^{\mathrm{R}}, \mathrm{T}\mathrm{S}_{-}^{\mathrm{R}}\rightarrow \mathrm{T}\mathrm{P}_{-}^{\mathrm{L}}, \mathrm{T}\mathrm{P}_{-}^{\mathrm{L}}\rightarrow
\mathrm{T}\mathrm{S}_{-}^{\mathrm{L}} ,

and \mathrm{T}\mathrm{P}_{-}^{\mathrm{L}}\rightarrow \mathrm{t}\mathrm{w}\mathrm{o} different \mathrm{T}\mathrm{S}_{-}^{\mathrm{L}} . At the TJ point, the orbit starting from TS_{L}^{+} is

on this degenerate network. A tiny perturbation in the parameter space (f_{1}^{L},  $\epsilon$) induces

an unfolding of the degenerate network and either TR, SP or RE emerges depending on

the direction of the perturbation as is shown in Fig.10(c). The degenerate network of

heteroclinic connections among scattors is deserved to be called an organizing center

for the outputs of traveling spots for the jump heterogeneity. The results in this section

are based on the numerical path‐tracking of global branches of relevant patterns as well

as careful numerical simulations of (2.1). As a future work, it is a challenge to show

rigorously such a network connection, in particular, the organizing center with the aid

of reduction method discussed in Section 4.

§6. CONCLUDING REMARKS

We have studied refraction, reflection, and splitting phenomena for the system (2.1)
and a special class of solutions called the scattor plays a crucial role to understand

the transition dynamics among them. In the following remarks, we take a slightly
different type of three‐component reaction diffusion system and discuss similar problems
in the previous sections. It turns out that exactly the same type of scattors appear as

before, but at the same time, there is a difference depending on how the heterogeneity
is introduced in the system. The system reads

(6.1) \left\{\begin{array}{l}
u_{t}=D_{u}\nabla^{2}u+f(u)-k_{3}v-k_{4}w+k_{1},\\
 $\tau$ v_{t}=D_{v}\nabla^{2}v+u-v,\\
 $\theta$ w_{t}=D_{w}\nabla^{2}w+u-w,
\end{array}\right.
where f(u)=u-u^{3}, k_{1}, k_{3}, k_{4} are positive parameters, and D_{u}, D_{v}, D_{w}>0 are diffu‐

sion coefficients. This model was originally proposed as a qualitative model describing

gas‐discharge phenomena [2, 31]. Without the second inhibitor, i.e., w\equiv 0 ,
this is

reduced to the well‐known FitzHugh‐Nagumo equations so that (6.1) can be regarded
as a generalized FitzHugh‐Nagumo system via adding an another inhibitor w . Here we

employ the following parameters: (D_{u}, D_{v}, D_{w})=(0.9\times 10^{-4},1.0\times 10^{-3},1.0\times 10^{-2}) ,

(k_{2}, k_{3}, k_{4})= (2.0,1.0,8.5) for kinetic parameters and ( $\tau$,  $\theta$)=(40,1) for time constants.

The parameter k_{1} is a control parameter and we introduce the jump heterogeneity along
the line in this parameter [24].
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§6.1. TRAVELING PEANUT SCATTOR FOR A GENERALIZED

FITZHUGH‐NAGUMO SYSTEM

Figure 11 shows a behavior of traveling spot encountering a line heterogeneity of jump

type at right angle for the model system (6.1). As the height of the jump is decreased,
the spot changes its behavior from splitting of Fig.11(a) to transmission of (b). Numerics

also shows an interesting transient pattern, namely a traveling peanut (TP); just before

the splitting, it travels for a while with keeping the peanut shape, similarly the same

TP pattern appears before merging into one TS for the transmission case. Such a TP

pattern can be detected and has only one real positive eigenvalue whose associated

eigenfunction has a sharp peak similar to Fig.4(d) indicating that its positive (resp.
negative) perturbation is responsible for merging (resp. splitting). Such an unstable

pattern persists for a long time as the height of the jump approaches the critical level.

Therefore, at exactly the separation point between splitting and transmission, it survives

for infinite time and converges to the unstable TP pattern living in the homogeneous

space with k_{1}\equiv k_{1}^{R} located at right infinity. This suggests that the traveling peanut

spot living in the homogeneous space at right infinity is a scattor (i.e., saddle point)
separating two regimes, which supports the view point discussed in Section 5.

§6.2. HETEROGENEITY‐INDUCED ORDERED PATTERNS (HIOPs)
AND PATTERN GENERATOR

The heterogeneity in f_{1} of (2.1) does not affect the existence of the constant background
state u_{0}=(1,0,0) ,

since it is introduced in multiplicative way. This is not the case

for (6.1), if we introduce the heterogeneity in k_{1} in an additive way, i.e., such constant

background state u_{0} is no more a solution to (6.1). Since the critical states associated

with k_{1}^{\mathrm{L}} and k_{1}^{\mathrm{R}} are different, a class of new solutions instead emerges, which connects

the left rest state to the right one to compensate the jump. It turns out that there

are many such heteroclinic orbits including both stable and unstable ones depending
on the parameters. This means that there are options for the background state in

the case of (6.1). We call those solutions the heterogeneity‐induced‐ordered‐patterns

(HIOPs), which have been found and classified in [24, 25, 36, 43] for the case of jump
and bump types in 1\mathrm{D} and 2\mathrm{D} cases. The traveling pulse or spot displays a variety
of dynamics when it collides HIOPs at the jump point such as transmission, pinning,

splitting, annihilation and so on. Those HIOPs are interrelated each other as appropriate

parameters are varied and various types of instabilities and singularities are detected

in the global bifurcation diagram, which actually allows us to understand the dynamics
in heterogeneous media. For instance, the pinning and de‐pinning phenomena of the

trapped pulse around the heterogeneity of bump type as discussed in [36]. The trapped

pulse oscillates back and forth inside of bump and can be released as the height is
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Figure 11. Traveling peanut scattor for the generalized FitzHugh‐Nagumo system (6.1).
(a) Time evolution sequence of a traveling spot coming from the left in heterogeneous
media with (k_{1}^{L}, k_{1}^{R})\approx (7.1,6.754). The jump line of the heterogeneity is indicated

by the broken line. A traveling spot (t=150) becomes a traveling peanut (t=250)
just after colliding with the HIOP, the unstable traveling peanut then splits into two

traveling spots (t=350) . (b) As k_{1}^{R} is slightly decreased to -6.755 ,
a traveling peanut

right after collision at (t=250) merges into a stable traveling spot (t=350) . For

details, see the reference [24].

decreased, i.e., de‐pinning. This can be explained by the fact that periodic motion of

pulse approaches homoclinic or heteroclinc orbits depending on the shape of the bump
after reducing the PDE dynamics to the associated ODE dynamics [36].

Finally, we describe about the class of spontaneous pattern generation (SPG), which

is also one of the exciting dynamics as if it were alive. One of the well‐known examples
is the self‐replicating pattern (or wave‐splitting) first discovered in experiments [4, 9],
then numerically [29], and some analysis have been done, for instance, [17, 26]. There

are many other examples of SPG such as [10], for instance, however here we focus on

the SPG created by heterogeneities as indicated by [30, 43]. It is quite remarkable that

the simplest heterogeneity of jump type can produce such dynamics as shown numer‐

ically in [43]. To find a mechanism behind the scene, it may be helpful to recall the

pinning‐depinning dynamics studied in [36]. Namely a traveling pulse is trapped by a

heterogeneity of bump type and it oscillates back and forth within the bump, but it can

be released as the height of the bump is decreased. This can be regarded as a one pulse

generator but it needs an external control of the height of bump, therefore it does not
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deserve to be called a SPG. What is needed here is that newly born oscillating pulse
should be created spontaneously near the heterogeneity even after the first pulse is emit‐

ted to the outside of the heterogeneity. In other words there must be a seamless cycle of

creation and emitting pulses without external force. Very recently one characterization

for the onset of pulse generation caused by a jump heterogeneity is proposed for (6.1)
in [23] by studying the global interrelations of all relevant solutions to SPG. It can be

regarded as a conversion mechanism from time‐periodic pulse motion localized near the

jump point to releasing it to outside of the heterogeneity. More detailed discussion will

be reported elsewhere.
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§7. APPENDIX

§7.1. Proof of Proposition 2.1 (Constants of M_{1} and M_{2} )

The derivations of (4.6) and (4.7) are given in this appendix. The correction terms to

the results shown in [6] are obtained. We consider the inner products with $\phi$_{1}^{*} and $\phi$_{2}^{*},

(7.1) \left\{\begin{array}{l}
\langle U_{t}, $\phi$_{1}^{*}\rangle_{L^{2}}=\dot{q}_{1}\langle$\psi$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}}-\dot{p}_{1}q_{1}^{2}\langle$\zeta$_{1x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}\\
-\dot{p}_{1}q_{2}^{2}\langle$\zeta$_{2x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}-\dot{p}_{2}q_{1}q_{2}\langle$\zeta$_{3x_{2}}, $\phi$_{1}^{*}\rangle_{L^{2}}-\dot{p}_{1} $\eta$\langle$\zeta$_{4x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}},\\
\langle \mathcal{L}(U) , $\phi$_{1}^{*}\rangle_{L^{2}}=(\frac{1}{6}\langle F'''(S)$\psi$_{1}^{3}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{1}$\zeta$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}})q_{1}^{3}\\
+(\frac{1}{2}\langle F'''(S)$\psi$_{1}$\psi$_{2}^{2}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{1}$\zeta$_{2}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{2}$\zeta$_{3}, $\phi$_{1}^{*}\rangle_{L^{2}})q_{2}^{2}q_{1}\\
+ $\eta$(\langle F''(S)$\psi$_{1}$\zeta$_{4}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle g'(S)$\psi$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}})q_{1},
\end{array}\right.
(7.2) \left\{\begin{array}{l}
\langle U_{t}, $\phi$_{2}^{*}\rangle_{L^{2}}=\dot{q}_{2}\langle$\psi$_{2}, $\phi$_{2}^{*}\rangle_{L^{2}}-\dot{p}_{2}q_{2}^{2}\langle$\zeta$_{2x_{2}}, $\phi$_{2}^{*}\rangle_{L^{2}}\\
-\dot{p}_{2}q_{1}^{2}\langle$\zeta$_{1x_{2}}, $\phi$_{2}^{*}\rangle_{L^{2}}-\dot{p}_{1}q_{1}q_{2}\langle$\zeta$_{3x_{1}}, $\phi$_{2}^{*}\rangle_{L^{2}}-\dot{p}_{2} $\eta$\langle$\zeta$_{4x_{2}}, $\phi$_{2}^{*}\rangle_{L^{2}},\\
\langle \mathcal{L}(U) , $\phi$_{2}^{*}\rangle_{L^{2}}=(\frac{1}{6}\langle F'''(S)$\psi$_{2}^{3}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{2}$\zeta$_{2}, $\phi$_{2}^{*}\rangle_{L^{2}})q_{2}^{3}\\
+(\frac{1}{2}\langle F'''(S)$\psi$_{1}^{2}$\psi$_{1}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{2}$\zeta$_{1}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{1}$\zeta$_{3}, $\phi$_{2}^{*}\rangle_{L^{2}})q_{1}^{2}q_{2}\\
+ $\eta$(\langle F''(S)$\psi$_{2}$\zeta$_{4}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle g'(S)$\psi$_{2}, $\phi$_{2}^{*}\rangle_{L^{2}})q_{2}.
\end{array}\right.
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We know that \dot{p}_{1}=q_{1} and p_{2}=q_{2} from the inner products with $\psi$_{1}^{*} and $\psi$_{2}^{*} , respectively.
Here we show only nonzero terms.

In what follows we calculate each term of (7.1) and (7.2). Since $\psi$_{1}=\cos $\theta \psi$(r)
and $\phi$_{1}=\cos $\theta \phi$(r) and so on, the first term is given as

\displaystyle \frac{1}{6}\langle F'''(S)$\psi$_{1}^{3}, $\phi$_{1}^{*}\displaystyle \rangle_{L^{2}}=\frac{ $\pi$}{8}\int_{0}^{\infty}r\langle F'''(S)$\psi$^{3}, $\phi$^{*}\rangle d  r .

By similar calculations to the above, we have

\displaystyle \frac{1}{6}\langle F'''(S)$\psi$_{1}^{3}, $\phi$_{1}^{*}\rangle_{L^{2}}=\frac{1}{2}\langle F'''(S)$\psi$_{1}$\psi$_{2}^{2}, $\phi$_{1}^{*}\rangle_{L^{2}}
=\displaystyle \frac{1}{6}\langle F'''(S)$\psi$_{2}^{3}, $\phi$_{2}^{*}\rangle_{L^{2}}=\frac{1}{2}\langle F'''(S)$\psi$_{1}^{2}$\psi$_{2}, $\phi$_{2}^{*}\rangle_{L^{2}}.

We can rewrite (4.5) as

\left\{\begin{array}{l}
-L$\zeta$_{1}=\frac{1}{2}F''(S)\cos^{2} $\theta \psi$^{2}+\cos^{2} $\theta \psi$_{r}+\frac{\sin^{2} $\theta$}{r} $\psi$,\\
-L$\zeta$_{2}=\frac{1}{2}F''(S)\sin^{2} $\theta \psi$^{2}+\sin^{2} $\theta \psi$_{r}+\frac{\cos^{2} $\theta$}{r} $\psi$,\\
-L$\zeta$_{3}=\frac{1}{2}\sin 2 $\theta$(F''(S)$\psi$^{2}+2($\psi$_{r}-\frac{ $\psi$}{r})) ,\\
-L$\zeta$_{4}=g(S) .
\end{array}\right.
The term of $\zeta$^{*}\equiv$\zeta$_{1}-$\zeta$_{2} satisfies

-L$\zeta$^{*}=\displaystyle \frac{1}{2} (cos2  $\theta$-\sin^{2} $\theta$ ) (F''(S)$\psi$^{2}+2($\psi$_{r}-\displaystyle \frac{ $\psi$}{r}))
=\displaystyle \frac{1}{2}\sin(2 $\theta$+\frac{ $\pi$}{2})(F''(S)$\psi$^{2}+2($\psi$_{r}-\frac{ $\psi$}{r}))

Hence we have $\zeta$^{*}(r,  $\theta$)=$\zeta$_{3}(r,  $\theta$+ $\pi$/4) .

We note that $\zeta$_{1}=\cos^{2} $\theta$\tilde{ $\zeta$}_{1}(r)+\sin^{2} $\theta$\tilde{ $\zeta$}_{2}(r) , $\zeta$_{2}=\sin^{2} $\theta$\tilde{ $\zeta$}_{1}(r)+\cos^{2} $\theta$\tilde{ $\zeta$}_{2}(r) , $\zeta$_{3}=

\sin 2 $\theta$\tilde{ $\zeta$}_{3}(r) holds and $\zeta$_{4} is radially symmetric as $\zeta$_{4}=\tilde{ $\zeta$}_{4}(r) . It is easy to see that

$\zeta$_{2}(r,  $\theta$)=$\zeta$_{1}(r,  $\theta$+ $\pi$/2) . Therefore, we show

\langle F''(S)$\psi$_{1}$\zeta$_{1}, $\phi$_{1}^{*}\displaystyle \rangle_{L^{2}}=\frac{3 $\pi$}{4}\int_{0}^{\infty}r\langle F'' $\psi$\tilde{ $\zeta$}_{1}, $\phi$^{*}\displaystyle \rangle \mathrm{d}r+\frac{ $\pi$}{4}\int_{0}^{\infty}r\langle F'' $\psi$\tilde{ $\zeta$}_{2}, $\phi$^{*}\rangle d  r .

Similarly, we have

\langle F''(S)$\psi$_{1}$\zeta$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}}=\langle F''(S)$\psi$_{1}$\zeta$_{2}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{2}$\zeta$_{3}, $\phi$_{1}^{*}\rangle_{L^{2}}

=\langle F''(S)$\psi$_{2}$\zeta$_{2}, $\phi$_{2}^{*}\rangle_{L^{2}}=\langle F''(S)$\psi$_{2}$\zeta$_{1}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle F''(S)$\psi$_{1}$\zeta$_{3}, $\phi$_{2}^{*}\rangle_{L^{2}}.

Here we use the relation of \tilde{ $\zeta$}^{*}(r)=\tilde{ $\zeta$}_{1}(r)-\tilde{ $\zeta$}_{2}(r)=\tilde{ $\zeta$}_{3}(r) .
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The last term to constant M_{1} is obtained as

\langle$\zeta$_{1x_{1}}, $\phi$_{1}^{*}\displaystyle \rangle_{L^{2}}=\frac{3 $\pi$}{4}\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{1r}, $\phi$^{*}\displaystyle \rangle \mathrm{d}r+\frac{ $\pi$}{4}\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{2r}, $\phi$^{*}\displaystyle \rangle \mathrm{d}r-\frac{ $\pi$}{2}\int_{0}^{\infty}\langle\tilde{ $\zeta$}^{*}, $\phi$^{*}\rangle dr.

Here, we also obtain

\langle$\zeta$_{1x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}-\langle$\zeta$_{2x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}-\langle$\zeta$_{3x_{2}}, $\phi$_{1}^{*}\rangle_{L^{2}}

=\displaystyle \frac{ $\pi$}{2}\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{1r}, $\phi$^{*}\rangle \mathrm{d}r-\frac{ $\pi$}{2}\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{2r}, $\phi$^{*}\rangle \mathrm{d}r+ $\pi$\int_{0}^{\infty}r\langle\tilde{ $\zeta$}^{*}, $\phi$^{*}\rangle \mathrm{d}r
‐ \displaystyle \frac{ $\pi$}{2}\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{3r}, $\phi$^{*}\displaystyle \rangle \mathrm{d}r- $\pi$\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{3}, $\phi$^{*}\rangle \mathrm{d}r=0.

By comparing above results, we have

\langle$\zeta$_{1x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}=\langle$\zeta$_{2x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle$\zeta$_{3x_{2}}, $\phi$_{1}^{*}\rangle_{L^{2}}

=\langle$\zeta$_{2x_{2}}, $\phi$_{2}^{*}\rangle_{L^{2}}=\langle$\zeta$_{1x_{2}}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle$\zeta$_{3x_{1}}, $\phi$_{2}^{*}\rangle_{L^{2}}.

Others are shown quite similarly as

\langle F''(S)$\psi$_{1}$\zeta$_{4}, $\phi$_{1}^{*}\rangle_{L^{2}}+\langle g'(S)$\psi$_{1}, $\phi$_{1}^{*}\rangle_{L^{2}}

= $\pi$\displaystyle \int_{0}^{\infty}r\langle F''(S) $\psi$\tilde{ $\zeta$}_{4}, $\phi$^{*}\rangle \mathrm{d}r+ $\pi$\int_{0}^{\infty}r\langle g'(S) $\psi,\ \phi$^{*}\rangle \mathrm{d}r
=\langle F''(S)$\psi$_{2}$\zeta$_{4}, $\phi$_{2}^{*}\rangle_{L^{2}}+\langle g'(S)$\psi$_{2}, $\phi$_{2}^{*}\rangle_{L^{2}}.

The last term to M_{2} is obtained as

\displaystyle \langle$\zeta$_{4x_{1}}, $\phi$_{1}^{*}\rangle_{L^{2}}= $\pi$\int_{0}^{\infty}r\langle\tilde{ $\zeta$}_{4r}, $\phi$^{*}\rangle \mathrm{d}r=\langle$\zeta$_{4x_{2}}, $\phi$_{2}^{*}\rangle_{L^{2}}.
Substituting the results into (7.1) and (7.2), we arrive at (4.6) and (4.7).
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