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Dynamics of pulses on a thin strip-like domain in R”
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Abstract

The movement of pulse solutions on a sufficiently narrow strip-like domain in R?, say € is
considered. Suppose the width of €2 is constant and it is given by  := {C(s) 4+ dzv(s); —o0 <
s < +00, |2| < zo} for sufficiently small 6 > 0 and a sufficiently smooth curve C = {C(s)} in
R?, where s is arcwise length parameter of the center curve C' and v(s) is a unit normal vector
at C(s). Then it is shown that a pulse solution moves according to the gradient of x*(s), where
(s) is the curvature of the center curve C.

§1. Introduction

In this paper, we consider a sufficiently narrow strip-like domain in R? and inves-
tigate how solutions behave on it. For the researches on thin domains, there have been
so many works in various fields such as fluid dynamics, nonlinear waves, dissipative
systems though we omit to refer them.

From the biological point of view, problems on thin domains imply many situations
such as problems near cell membranes and problems in thin tubular domains like nerve
axons (refer to the book [14]). We focus on the problems in thin tubular domains in
this paper. One of the typical problems in thin tubular domains is the motion of nerve
impluses along nerve axons, which have been described by reaction-duffusion model
equations such as the FitzHugh-Nagumo model and the Hodgkin-Huxley model (see e.g.
[14]). In those models, a nerve impulse is represended as a pulse-like localized solution

on one dimensional axis. However, real axons are not one-dimensional but sufficiently
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thin tubular and curved domains. Then it is natural to consider how the geometrical
properties of the domains influence the motion of the pulse solutions. Intuitively, the
problems in sufficiently thin tubular domains are expected to be reduced to one dimen-
sional problems in some sense. Thus, our interest is how geometrical properties of the
original thin domains is reflected in the reduced one dimensional problems.

There have been several results for such problems. In [15], a thin tubular domain
Qs € R™" defined by Q5 := {C(s) x dD(s); 0 < s < sp} was treated, where C :=

R with arcwiselength parameter s and D(s) is a subset

{C(s)} is a smooth curve in
of m dimensional hyperplane intersecting normally C at C(s) (Fig.1). We call the curve

C 7Center curve” of 25 in this paper. It was shown that the dynamics of the scalar

SD(s)

Figure 1. Domain (5.

equation
(1.1) up = Au + f(u)

in Qs with the Neumann boundary condition is reduced to the dynamics of one-dimensional
scalar equation

1
(1.2) vy = @{a(s)vs}s + f(v), 0<s< s
with the Neumann boundary condition at s = 0, so as § — 0, where a(s) := |D(s)],

the area of D(s) as m dimensinal surface. By using (1.2), the existence of stationary
front solutions of (1.1) was shown in [15], which are some extended results of [11] and
[9]. In (1.2), there do not appear the geometrical porperties of the center curve C
because such geometrical properties are expected as the higher terms compared with
the modulations of a(s) in some sense. Moreover, the comparison principle was the
main tool for the proof, which is not applicable to general reaction-diffusion systems
including FitzHugh-Nagumo systems and other important model systems.

For the results treating reaction-diffusion systems, we can refer to [10] together
with results for large diffusivity problems (e.g. [1], [5], [12], [8]). But all of the results
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were on the first approximate motions which do not include the geometrical properties
of domains such as curvatures.

In order to investigate effects of the geometrical properties of the center curve C, we
consider the case that a(s) is constant. The typical example is a domain with constant
section. As the first step, we only consider the domain in R?, that is, a domain with
equal width as in Fig2 but we treat general reaction-diffusion systems.

For a domain with equal width in R?, the Allen-Cahn equation

(1.3) up = 2 Au + u(l — u?)

was considered in [7] for the domain Q(1) defined below as in Fig2 and it was shown
that the motion of a front solution is essentially given by

h = _54A(8){“2(3)}s |s=h,

where h denotes the location of O-level point of a front solution, A(s) is a positive
function and k(s) is the curvature of C'(s). That is, the front solution moves depending
on the gradient of k2?(s). The existence of stable stationary front solutions at points
with minimal x? was also shown.

In this paper, we consider an infinitely long thin strip-like domain with equal width,
that is, R* D Q(6) := {C(s) 4+ dzv(s); —o0 < 5 < +00, |z| < 2} for sufficiently small
§ > 0, where C = {C(s)} is a smooth curve in R* and v(s) is a unit normal vector
at C(s) (Fig2). We suppose the domain §2(d) does not intersect itself for simplicity.

Figure 2. Domain Q(8) C R? with equal width.

Equations which we consider here are general types of reaction-diffusion systems:
(1.4) u; = DAu+ F(u), t > 0,2 := (z,9) € Q(5), u e RN

with the Neumann boundary condition and D := diag{dy,ds, - ,dy} with positive
components. To extract the geometorical properties of the center curve C(s), we assume:

H1) There exists a linearly stable stationary symmmetric pulse solution P(s) € RN
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with P(s) — 0 as |s| — oo for the one dimensional equation

(1.5) uy = Dugs + F(u), —00 < s < 400.

Let L; be the linearized operator L; := D&? + F/(P(s)) and ¢*(s) be the adjoint
eigenfunction satisfying Lip* = 0 and { Ps,¢* ), = 1, where L} := D% + 'F'(P(s))
and (-,- ), denotes the L? innner product with respect to s € R.

Here, we rewrite u(t, x, y) of the arguments (x, y) to u = u(t, z, s) of the arguments

(2,5) by
(j) = C(s) + dzv(s).

Theorem 1.1.  If u(0, 2, s) is sufficiently close to P(s — hg) for ho € R, then
the solution u(t, z, s) keeps close to P(s — h(t)) and h(t) satisfies

1

(1.6) h = 3

6225 ( D(K*(s + h)Ps)s, ™ ), + O(5°),
where k(s) is the curvature of C(s).

Corollary 1.2. If D = 2D’ for sufficiently small € > 0, then the solution
u(t, z,s) keeps close to P((s — h(t))/e) and h(t) satisfies

h= =022 My (K*(5))s|s=n + O(e36% + %),

1 - -
where My := §z§ (D'(sPs)s, " ), and P(s) is a a linearly stable stationary symmmetric

pulse solution ?(s) e RY satisfying
(1.7) 0=D'P,y+ F(P), —00 < 5 < +00
with P(s) = 0 as |s| — oo.

Thus, the pulse solution essentially moves along the center curve C' depending on
the gradient of x2(s). But the direction of the movement crucially depends on each
model equation. As one example which we can calculate the equation (1.6) explicitly, a
pulse solution for the Gray-Scott model will be treated.

The organization of this paper is as follows: Precise assumptions and the main
results are stated in Section 2. The formal derivation of (1.6) and the application to the
Gray-Scott model are in Sections 3 and 4, respectively. Proofs will be given in Section
5.
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§ 2. Main results

In this section, we mention the precise assumptions and statements. Let us consider
the reaction-diffusion systems (1.4) in Q(d) := {C(s) + dzv(s); —c0 < s < 400, |z] <
20} and assume (H1). We give assumpitions for the linearized operator Lj;.

(H2) The spectrum of L; consists of ogUcy, where oy := {0} and o3 C {\ € C; Re()\) <
—0} for 7o > 0. Moreover, 0 is a simple eigenvalue with the associated eigenfunction
P.

Let Q¢ := (—20, +20) X R. Then we have the following theorem which is the precise
statement of Theorem1.1:

Theorem 2.1.  If[|u(0, z,8)—P(s—ho)|| 1 (0,) < O(), then the solution u(t, z, s)
satisfies ||u(t, z,58) — P(s — h(t))|| Lo (o) < O(9) uniformly fort >0 and

(2.1) = —%5%3 ( D(2(s + )P,)s, 0" ), + O(°)

holds, where k(s) is the curvature of C(s).

1
Let Hy(h) := —§z§ { D(K*(s + h)Ps)s, " ), and consider the ODE
dh
(2.2 D m),

where T := §%t.

Theorem 2.2. Let h = h* be an equilibrium of (2.2). If H{(h*) < 0 ( or
H{(h*) > 0) holds, then there exists a stable stationary pulse solution ( or an unstable
stationary one, respectively ), say uw*(z,s) satisfying

[u”(z,8) = P(s = h")| Lo (05) < O(9).

As mentioned in Corollaryl.2, H;(h) can be calculated explicitly in a special case
as follows:

Corollary 2.3. If D =¢eD’ for sufficiently small € > 0, then
Hi(h) = —* My (5*(5))s]s=n + O(?)

1 - ~
holds, where M, := §z§ ( D'(sPy)s, 9" ), and P(s) € R" is a a linearly stable stationary

symmmetric pulse solution with P(s) — 0 as |s| — oo for the equation

(2.3) u; = D'ugs + F(u), —00 < s < +00.
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§3. Derivation of (2.1)

By the coodinate tranformation from (z,y) to (z, s), we write u(t, z,y) = U(7, 2, 5)
and (1.4) becomes

1 1 k(s) 1 1
o0Ur = D{é_QUzZ B gTzn(s)Uz * 1 —0zk(s) (1 — 0zk(s) Us>s} +FU),

U, =0 (z = £20),

where 7 := 6t. Let Ls5(U) be the right hand side of the above equation. We also
tranform the equation by ¢ := s — h(7) and then U = U(7, 2, () satisfies

(3.1) U, — h,Ue = Ls(U).

Expanding U(7,2,() = P(¢) +6Ui(7,2,{)+--- and h, = Hy+dH; + - - -, we first have
the following proposition:

Proposition 3.1. U; and Uy are independent of z arqgument.

This proposition is easily checked by considering terms with orders 6! and ¢° in
(3.1).
By Proposition 3.1, we can assume U; and Us are in ECL ={U € L*(R); (U, p* e =
0}.
1 1
Next, we consider terms of orders §* and 62 in (3.1). Let oo ( UC> =
B ¢

1—6zk
Uee + 02K,U + 6222KoU + - - -, where K U = {kUcc + (kU )¢} and KU := {k2*Ugc +
k(kU:)¢ + (K2U¢)¢ } and so on. Equating terms of §' in (3.1), we have

(3.2) —HoP; = D{02Us 4+ 0Uy + zK1P} + F'(P)Uy.

Integrating both side of (3.2) with respect to z by using the Neumann boundary condi-
tions at z = +2zp and the oddness of 2K P with respect to z, we see

(3.3) —HoP; = DO?Uy + F'(P)Uy = L1 U.
Hence taking the L? inner product with ¢*(¢), we have
—Ho( Pe,¢" )¢ =(L1U1, 9" ), =0

and Hy = 0 is obtained. Then (3.3) leads to L1U; = 0 and U; = 0 holds by U; € E<L
Next, equating terms of 62 in (3.1), we have

(3.4) —H\P; = D{92Uy — k0.Us + 83Uz + 2° Ko P} + F'(P)Us.
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Integrating both side of (3.4) with respect to z by using the Neumann boundary condi-
tions at z = £2¢, we find (3.4) becomes

2
(3.5) —220H, Pe = —k[DU3]™, + 220L,Us + §zS’DK2P.

Here U; satisfies
0= DO?Us + zDK, P

from (3.2) and U; = 0. Integrating the equation, we have
Lo o o
0=D0,Us + 5(,2 —25)DK, P
and therefore
2
(3.6) [DUs)?, = gzg’DKIP

holds. Substituting (3.6) into (3.5), we obtain

2
(3.7 Hy = =2 (DR ).

where k = k(¢ + h).

§4. Application to the Gray-Scott model

In this section, we consider the application to the Gray-Scott model

_ a2 2 _
(41) {ut—Au uwv® +ea(l — u),

1
vy =e2Av — e2bv 4+ uv?

in Q(J) with positive constants a, b and a sufficiently small € > 0. For the one dimen-
sional equation of (4.1)

(4.2)

Up = Uz — uv? + e2a(l — u),
_ 2 _ lb 2
Vg = E“Vgpp — €20V + UV~

the existence of a stable stationary symmmetric pulse solution P(x) € R? was shown in
[2]. And also the adjoint eigenfunction ¢* was explicitly calculated for the Gray-Scott
model in [3] as follows: Let the stationary pulse solution P(z) = *(®(x), ¥(z)). Since
P(x) is even and the adjoint eigenfunction ¢*(z) is odd, it suffices to consider only for
x> 0. In [2] P(x) is explicitly given by

/ (] x
®(r) = {@(if(; GO SS g) i) + 0 ) (o2 0),
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where po := 3by/b/a, qo(§) = %sech%@ﬁ), ¢ := e73/%z and ®y(x) is a function satis-

fying
0= 6/ + 6261,(1 — (I)()), (130(0) = 63/4])0, (I)()(OO) =1.

In [3] the adjoint eigenfunction ¢*(z) = *(®*(z), U*(x)) normalized by ( P,,¢* ), =1

is uniquely given by

ey = [ olpi©) + o)} (0 <@ << 1),
QCw:{—;Mgﬁw*Wh+dDKx>m, V) =2l o) (>0

where 79 > 0, ¢1(§) := sech2(§£) tanh(éé),

£ ¢’
p1(§) 3:/0 {_/0 qg(fll)Q1(§//)d§//+p2}dﬁl,

po = / @ (€)q1(£)d¢ and ry := py(c0) > 0. Substituting the above into Hj(h), we

0
can calculate directly the explicit form of H;(h) as follows:
Theorem 4.1.  For (4.1), Hi(h) in (2.2) is given by
Hy(h) = —e*Ma(k*(5))sls=n + O(€%),

where ) -
My = —§roz§/ (s(sech®s)s)ssech?s tan sds > 0.
0

Theorem4.1 implies the pulse solution for (4.1) moves toward less curved point of
the center curve C(s) of Q(9).

§5. Proofs

§5.1. Proof of Theorem 2.1

Proofs are mainly based on [3] and [7].
In Section 3, we constructed approximate functions upto O(83). Quite similarly we
can construct them upto O(6%), that is, let

U(h®;6)(2,¢) =

P(C) + 82U2(h°)(2,€) + 8°Us(h°) (2, ¢) + 6*Us(h®) (2, ¢) + 8°Us (h°) (2, )

dh’
where ¢ := s — h® and h® = h¥(T) satisfies — = H;(h) + 6Hy(h) for T := §°t. Then

dr
ul(t,z,y) := U(h’(5%t); 6)(z, () satisfies

u! = DAu® + F(u®) + O(5*)
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in Q(8) because U°(h%)(z,¢) := U(h%;6)(z, () satisfies Ls(U?)+62(Hy (h)+0Ho (h))(Ug—
UJ) = O(8*) in Qq, where L5(U) is defined in Section 3. Expand

1 1
Ls(U) = D{5—2Uzz+Uss}+F(U)+D{55(5)U2+5zK1U+52z2K2U+- K U A
where Z(9) := —% and K are defined in Section 3. Since (1.4) in Q(§) and
(5.1) Us = Ls(U)

in Q are equivalent by w(t,z,y) = U(t, z,s), we consider (5.1) in o hereafter. Let
X = Cunis(Qo) with L*> norm and

1
Lo(W)U = D{5Uss +Uss} + F'(P(s — W)U
(-,+), denotes L? inner product in L*(£).

Proposition 5.1.  Suppose § > 0 is sufficiently small. Then the spectrum of
Lo(h) consists of og U oa, where og := {0} and 0o C {\ € C; Re(\) < —y}. 0is a
simple eigenvalue with the associated eigenfunction P.

1
Proof. By using ( := s — h, we see the operator La(h) becomes Lo := D{ﬁaﬁ + 8?} +
F'(P(¢)), which means it is enough to consider Ly. Expanding U € X as

and substituting into the eigenvalue problem (Ly — A\)U = g for g € X, we have
(5.2) ~TnDay + (L1 — Na, = g,

where g = >~ 7 cos %J[;Z‘))gn(g) and 7, 1= (5255)?. Since L1 = DOZ+F'(P(()), (5.2)
is written as
(DO — 1aD — N)ay, + F'(P(C))ay = g,,,

or equivalently
(5.3) {Id + (D& — 7,D — \)'F'(P(())}an = (D& — 7D — )" 'g,

for A € p(D@?—TnD), where Id is the identity. Let dy := min{dy,ds, - ,dy} for D =
diag{dy,ds,--- ,dn}. Then the spectral set of (D@? — 7, D) satisfies U(D@? — D) C
(—00, —Tndmin] and ||(D8§ — 7D = N7 < ﬁm holds for A outside of a sector
and Cy > 0. Hence if |\ + 7, dimin| is sufficiently large, say |\ + 7, dpin| > Cy for C7 > 0,
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the operator {Id—l—(Dag—TnD—)\)_lF’(P(C))} is invertible and ||a@,, || <
holds for Cy > 0 in (5.3).
Since 19 = 0 for n = 0, (5.2) is solvable for A € p(L;), the resolvent set of L;.
Forn>1, 7, > %} holds for C3 > 0. Hence |\ + 7, dpin| > C holds for any n > 1
if Re(\) > —% for C4y > 0. Thus, p(L1) N {A € C; Re(\) > —%} is included in the
resolvent set p(Ls). I

et A

Let the sector Sp, := {A € C; |arg(A + )| < 0}. Then we may assume by
Proposition 5.1 that the resolvent set p(L2(h)) includes Sg, ~,\oo for 7/2 < §y < 7 and

that ||(L2(h) — N) 7Y < = Cs holds, specially

[Al
5.4 Lo(h) =Nt _— _ < Cgb?
54) ) = N7l < el < ol < Cot®lg]
1 %0
holds for A € Sy, , and C5 >0, Cg > 0if g =0, where U := oy Udz for U € X.
0

—2z0

We also define the operator SU := U — U and the notation (U ) := U. Then (5.4)

implies

_ 1 _
(55) I(E2(0) = 2)g] < Co{xrlial + 51}
for g € X and A € S, ~, \00.
The adjoint operator L5(h) of La(h) has also the same properties as La(h). Spe-
cially, 0 is a simple eigenvalue of L3(h) with the associated eigenfunction ¢*(s — h) =
©*(¢). Let Ea(h) := span{P:(- — h)}, E5(h) := {U € X; (U,p*(- — h) ), = 0} and

projections Qa(h) : X — E3(h), Re(h) : X — E5-(h). We note

(5.6) I(L2(h) = M) "'gll < Co{ g1l + 6%/ Sgll}

1
AL+ 0
holds for g € E5 (h) and A € Sp, ~, \o-

Let X := Cunif(R"), Ei(h) := span{P:(- — h)} in X; and Ei(h) := {U €
X1; (U ¢*(- = h) ). = 0}. We also define the projections in X1, Q1(h) : X1 — E1(h),
R1 (h) : X1 — E{(h). Then the followings are ea,sﬂy checked by the facts Q2(h)V =
on (V.o*(- = h) )o Pe(- = h), Ro(h)V =V — 5~ <Vg0 (+—h) )y P:(- — h) and so on.

Proposition 5.2. ForV € X, Q2(h)S = SQ2(h), R2(h)S = SRa(h), Q1(h)V =
Q2(h)V and Ry (h)V = Ry(h)V hold.

Let My := {P(- — h); h € R}. Since any U € X in the neighborhood of M is
uniquely expressed as U(z,s) = P(s — h) + V(z,s) with V € E5(h), we express the
equation U(t, z,() of (5.1) by

Ult,z,8) = U(h(t)) (2,5 — h) + V(t,z,5)
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with V € E3-(h). Substituting the representation into (5.1), we have
Vi = LU (W)V + {h — 6°(Hy + 6Ha) HUL (h) — UR ()} + G(V) + O(8*)

with |G(V)| < O(|V]?) for sufficiently small § > 0 and V € E3 (h).
Fix hyg € R arbitrarily and define the map II(h) from E; (hg) to E5-(h) as the
solution V' = II(h)W of

O = o (V.i(s = h) )y Pols— ),
V(ho) =W € E3 (ho).

Operating Ro(h) and taking inner product with ¢*(- — h) in X by transforming V' =
II(h)W, we see

W, = A(WW + J(h, W),
57) { he = H(h, W),

where

A(R)W = TI(=h) Ry () L5 (U )IL(R)W,

J(h, W) := —H (h,V)II(—h) Ry (h)I1,W
+{H(h,V) — 8*(Hy + SH)MI(—h)R (){Ug—U;f}+H(—h)R2(h)G+O(54)
= {H(h,V) = 6*(Hy + 0 Hy) YII(—h) Ra(h){U¢ — Up} + TI(—h)Ra(h)G + O(5*),
—(L5U)V +G(V) + O(6%),¢* )y + 6*(Hy(h) + 6Ha(h) ( UL, % ),
(U2 —TLW, 0% ),

and V = II(h)W. Here we note that Ro(h)II,W = 0 holds. Let A(h) := II(—h)La(h)II(h).
Since

H(h, W) :=

LUV = Ly(h)V + 8*F"(P)(Uy + 6Uz + O(6?))V + O(5Y)V
+D{%E(5)Vz + 62K,V + 6222 KoV + O(5°) V1,

we write

A(h) = A(h) + 62B(5) + K(6),

where §2B(8) := Ry (h){F'(U%) — F'(P)}Rx(h) and
K(8)V := Ry(h)D{=E(0)0. + 62K, + 6°2* Ky + O(5*)}V

= Ra(h)D{

(1]

| = | =

1 1
(O)V= + 1—9dzk (1 — (S,Z/fV<>C — Veeh

for V€ Ey (h).
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Lemma 5.3.  The set Sg, ~,\D(Cr9) is in the resolvent set of A(h) for a suffi-
ciently large constant C7 > 0, where D(r) := {X € C; |A| < r}. For A € Sy, ~,\D(C76),

I(A(R) — M) 7Y < |)\|C—E70 holds in E5-(h) for Cg > 0

Proof. In this proof, we fix h arbitrarily and omit to write h explicitly. That is, Ro
denotes Ry (h) and so on. For A € Sy, ~,\D(C70), we consider (A — )V = f for V and
fFEES: Let V=V+W =RV+RWand f=Ff+g=Ryf+Rog with W =g = 0.
That is, we may assume V, W, f, g € E5-. Then it follows that

(L1 = ANV + (Lo = NW + (8°BO) + K()(V+W) = f +g.
On the other hand, integrating with respect to z, we also have
(L1 = NV + {((*BO)+ K@®)(V+W))=Ff
because RoS = SRy holds. Subtracting each other, we see

53) (Ly = MW + S(8*B@) + K@) (V+ W) =g,
' (L1 = NV +{ (62B(8) + K@)V +W) ) = F.

Proposition 5.4.  |[(Ly — X\)"'SK(8)|| < O(8) holds for A € Sp, ~,\00-

Proof. First, we shall show |(Lz — A\)"!SR2DZ()0,| < O(6%). Put v := (Lg —
A)"1SRyD=E(8)w, € Ey for w € Ey-. Then (Ly — A\)v = SRy DE(§)w, holds. Since

SRsDE(8)w. = S{DE(8)w- — QaDZ(d)w-} = SDE(@E)w. = DE(@E)w- — ( DE(B)ws )
hold, we define v; by
(Ly — Nvy = S{DE(0)w — /Z DE,(0)wdz} — z ( DE(O)w, ).
Then (5.6) implies [|v1|, [|0zvl, [0Zv1]| < O(62)]jw]| because
( S{DE(0)w — /z D=, (0)wdz} — z( DE(0)w, ) ) = 0.
Since (Row), = (Sw), = w, holds, 0,v; satisfies
(L2 = A)d.01 = DE(S)w. — { DE(S)w: ) -

Defining vo := v — 9,v1, we see

(59) { (L2 - )‘)'02 = 07

0,v9 = —0%v; (2 = £20),
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which means [[va]| < O([|vr]| + |0.v1]| + |0Zv1]]) < O(0?)||w||. Hence [[v]| < ||l +
10.v1]| < O(62)||w|. Thus

(5.10) I(Lz — X)~'SRyDE(6)0.]| < O(5?)

is shown.
Other terms such as 6zK; and 6222K, are estimated as

||(L2 — A)_lng(anKj)” S 0952

for Cy > 0, which is shown by quite a similar manner to Proposition 4.1 in [6] and we
omit the details. I

The first equation (5.8) is written as
(5.11)
W+ (Ly — X)"'S{6>B(6) + K(O)}W = (Ly — \)'g — (L2 — \)'S{6°B(8) + K())V.

Since ||(La—A)"1S{62B(8)+K (6)}|| < O(J) by Proposition 5.4, Id+(La—\)"1S{62B(5)+
K (9)) is invertible for A € Sy, ~,\D(C70), where C7 > 0 is sufficiently large constant
independent of § and W is solvable in (5.11) for given V.

On the other hand, the second eqution of (5.8) is written as

(L1 = NV + ((8°B(3) + K(8))V ) = f — ( (8°B(8) + K(8))W )
and hence
V(L =N ((6?B(6) + K(6))V ) = (L1 =\ H{F = ((0*B(0) + K(3))W )}.

The left hand side of the equation is invertible with respect to V because K(§)V does
not include the term $Z(6)9. and other terms of K(0) are estimated by quite a similar
manner to Proposition 4.1 in [6]. Then V is given by

Vo= {Id+ (L = N) 7 ((82B(8) + K(8)) - )} (L1 = NTHF — ( (6°B(9) + K(5))W )}
= V*f+ VW

and therefore

Doy < G0
o VS s

hold. Substituting V into (5.11), we see that the right hand side of (5.11) is estimated
as

V=l <

I(L2 = M) "tg — (L2 = X)'S{6B(9) + K(9)) V] < ~{llgll+ S| FIl+ oW}

Al +
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because 20,V = 0 holds and therefore K (5)V does not include terms of O(1/4), which
implies

I(L2 = M) 71 S{6*B(6) + K (8))V| < O(3*)[[V]].
Thus W is solvable as

(5.12)
W = [[d+(La=2) "' ${0° B(O)+ K () }Id+V )] (La=X) " {g—S(8* B()+K (6))V*"F},

which means [|W|| < &2 {g|| + 82 Fl|} . Hence [[V]] < &2 {|lg]|+||F]} also holds.

Thus this lemma is proved. 1

Definining W(D;) = {W € E3(ho); |[W| < D16*} and W(Dy, Ds) := {V €
C(R; Ey (ho)); Wl < D16, [[W(C) = W(C)II < D26%C — ¢'I}, we see H(h,W) =
§2Hy(h) + O(6%) and J(h, W) = O(§*) hold together with

1
[H(h, W) — H(l',W")| < C13{6”|h — | + sIW =Wk

17k, W) = T W) < Cra{6%h — '] + 8| W — W[}

for W, W' € W(D;). Here we used the facts Rg(h)UéS = 0(6?) and so on. Then,
quite a similar way to [3], we can take appropriate D; and Dy such that there exists an
exponentially attractive invariant manifold M := {(X(h),h) € E*(hy) x R; h € R} of
(5.7) with ¥ € W (D1, D). This means the solution U (t, z, s) of (5.1) is given by

Ult,z,s) = U (h(t))(z,s — h(t)) + TI(h(t))S(h(t))

in the neighborhood of Mg and h(t) is the solution of h = H(h,X(h)) = 6*{H,(h) +
0(0)}. Thus the proof of the theorem is completed.

8§5.2. Proof of Thorem 2.2

The invariant manifold M is Lipschitz continuous with O(§*) small Lipschitz con-
stant. Hence H(h, X (h)) can be written as H(h,X(h)) = 62{Hy(h) + §H*(h;§)} satis-
fying [H*(h;6) — H*(I';6)| < Cralh — 1]

Let h* be an equilibrium of (2.2) satifying H{(h*) < 0 and let I(h) := Hy(h) +
dH*(h;d). We shall show that I(h) has an equibrium h = h(J) satisfying h(d) =
h* 4+ O(9) and I(h) is monotone decreasing in the neighborhood of h = h(d), which
means h(J) is a stable equilibrium of the ODE

(5.13) h=H(h,%2(h)) = 6%1(h).
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Defining v; := —H|(h*) > 0 and substituting h = h* + [ into I(h* + 1) = 0, we have
0= —yl+O(1) + 6H*(h* +1) and

= 5%H*(h* +1) + O(1?).

Then it is easy to show the right hand side of the above equation is a contraction in
the set Ds := {|l| < Ci56} for an appropriate C15 > 0. Thus the fixed value, say
[ =1*(6) = O(9) gives the equilibrium h(5) = h* +1*(d) of I(h). In the neighborhood
of h(d), I(h) is written as

I(h(8) + h) = —y1h + O(R* + 62) + 6 H*(h* + 1" + h) — 1l*(9).

Hence
I(h(0) + h) — I(h(0) + ') = {=m1 + O(|h| + |M'| + 6)}(h — 1),

which means I(h(d) + h) is monotone decreasing for sufficiently small h and h’.
Other cases are similarly shown.
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