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Abstract

\mathrm{G}‐equations are well‐known front propagation models in turbulent combustion and de‐

scribe the front motion law in the form of local normal velocity equal to a constant (laminar
speed) plus the normal projection of fluid velocity. In level set formulation, \mathrm{G}‐equations are

Hamilton‐Jacobi equations with convex ( L^{1} type) but non‐coercive Hamiltonians. The large
time front speed is also known as the turbulent burning velocity  s $\tau$ ,

a fundamental object in

turbulent combustion research. We review recent progress on the sensitivity of the  s $\tau$ asymp‐

totics in strong spatially periodic flows. We illustrate how  s $\tau$ asymptotics may alter under

the variations of compressibility, viscosity, strain, and nonlinearities (  L^{1} vs. L^{2} type). These

variations of \mathrm{G}‐equations arise either from physical modeling, numerical approximation, or

asymptotics of reaction‐diffusion‐advection equations. Viscosity in \mathrm{G}‐equation works against
the flow. It arrests front stagnation in compressible flows and reduces front speed‐up in incom‐

pressible flows. Flow induced strain in \mathrm{G}‐equations decreases front speeds in compressible and

shear flows. Modifying the L^{1} nonlinearity to L^{2} type in the viscous \mathrm{G}‐equation makes a dra‐

matic difference in  s $\tau$ asymptotics for cellular flows. However, such nonlinearity modification

does not change the  s $\tau$ asymptotics of the inviscid \mathrm{G}‐equation for cellular flows. Future work

remains on how  s $\tau$ may vary under the variations of \mathrm{G}‐equations in more complex flows.

§1. Introduction

Turbulent combustion is a challenging, far from equilibrium, nonlinear and mul‐

tiscale dynamic phenomenon [26, 32]. A first principle physical‐chemical modeling
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requires at least a system of reaction‐diffusion‐advection equations coupled with the

Navier‐Stokes equations. However, theoretical understanding and efficient modeling of

the turbulent flame propagation often rely on simplified models such as the passive scalar

reaction‐diffusion‐advection equations (RDA) and Hamilton‐Jacobi equations (HJ), as

documented in books [31, 26, 33] and research papers [1, 3, 8, 9, 11, 18, 21, 24, 27, 29,

30, 32, 36].
The passive scalar reaction‐diffusion‐advection equation is:

(1.1) T_{t}+V(x, t)\displaystyle \cdot DT=d\triangle T+\frac{1}{$\tau$_{r}}f(T) , x\in \mathbb{R}^{n},
where T represents the reactant temperature, D is the spatial gradient operator, V(x, t)
is a prescribed fluid velocity, f is a nonlinear reaction function; d is the molecular

diffusion constant, $\tau$_{r}>0 is reaction time scale. The flow field V is known or statistically
known. For an isothermal reaction, the scalar is a reactant concentration though we shall

still denote it by T . The common form of the reaction function is f(T)=T(1-T) ,

so called Kolmogorov‐Petrovsky‐Piskunov‐Fisher (KPP‐Fisher); f(T)=T^{m}(1-T)
(m\geq 2 , higher order KPP‐Fisher); f(T)=e^{-E/T}(1-T)(E>0) ,

Arrhenius combustion

nonlinearity; F(T)=0, T\in[0,  $\theta$]\cup\{1\}, f(T)>0, T\in( $\theta$, 1) , ignition combustion

nonlinearity. KPP or generalized KPP comes from isothermal autocatalytic reaction‐

diffusion system with equal diffusion constants (or unit Lewis number), [5, 33]. Equation

(1.1) is well‐known to admit propagating front solutions [2] if the advection is absent

(V =0) . Turbulent combustion concerns with the setting of flame propagation when

the reactant (a fluid) is stirred on a broad range of scales. Though the flame front will

be wrinkled by the fluid velocity, its average location eventually moves at a steady speed

s_{T} in each specified direction, the so called �turbulent burning velocity�. The prediction
of the turbulent flame speed is a fundamental problem in turbulent combustion theory

[31, 27, 26]. For KPP nonlinearity, it is known [12, 32, 4, 21, 33] that s_{T} is given by a

variational principle on the large time growth rate of a viscous quadratically nonlinear

Hamilton‐Jacobi equation (QHJ). More precisely, consider compactly supported non‐

negative initial data T(x, 0) ,
then for each direction e and wave number  $\lambda$>0 ,

let H_{e}( $\lambda$)
be the principal Lyapunov exponent of the linear advection‐diffusion equation:

$\phi$_{t}=d\triangle $\phi$+(2d $\lambda$ e-V(x, t))\cdot D $\phi$+[d$\lambda$^{2}- $\lambda$ e\cdot V(x, t)+$\tau$_{r}^{-1}f'(0)] $\phi$,

with initial data  $\phi$(x, 0)=1 . Under suitable stationarity and ergodicity condition of

the flow field [21], the following limit exists almost surely and is independent of x :

\displaystyle \overline{H}_{e}( $\lambda$)=\lim_{t\rightarrow+\infty}\frac{1}{t}\ln $\phi$(x, t) .

The turbulent front speed along the e direction, a deterministic quantity, is:

(1.2) s_{T}(e)=\displaystyle \inf_{ $\lambda$>0}\frac{\overline{H}_{e}( $\lambda$)}{ $\lambda$}.
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The function  u=\ln $\phi$ satisfies the viscous QHJ:

(1.3)  u_{t}=d\triangle u+d|Du|^{2}+(2d $\lambda$ e-V(x, t))\cdot\nabla u+d$\lambda$^{2}- $\lambda$ e\cdot V(x, t)+$\tau$_{r}^{-1}f'(0) .

So \overline{H}_{e} is also the linear growth rate of QHJ solution u . When V is a periodic flow field

in (x, t) , \overline{H}_{e} reduces to a principal eigenvalue. When V is space‐time periodic and in a

scale‐separation form V=V(x, t, $\epsilon$^{- $\alpha$}x, $\epsilon$^{- $\alpha$}t) , d= $\epsilon$ k, $\tau$_{r}=$\epsilon$^{-1},  $\alpha$\in(0,1 ], the limiting
behavior of T=T^{ $\epsilon$} is [17]: \displaystyle \lim_{ $\epsilon$\rightarrow 0}T^{ $\epsilon$}=0 locally uniformly in \{(x, t) : Z<0\} and

T^{ $\epsilon$}\rightarrow 1 locally uniformly in the interior of \{(x, t) : Z=0\} ,
where Z\in C(\mathbb{R}^{n}\times[0, +\infty))

is the unique viscosity solution of the variational inequality

(1.4) \displaystyle \max(Z_{t}-\overline{H}(D_{x}Z, x, t)-f'(0), Z)=0, (x, t)\times \mathbb{R}^{n}\times(0, +\infty) ,

with initial data Z(x, 0)=0 in the support of T(x, 0) ,
and  Z(x, 0)=-\infty otherwise. The

set $\Gamma$_{t}=\partial\{x\in \mathbb{R}^{n} : Z(x, t)<0\} can be viewed as a front. The effective Hamiltonian

\overline{H}=\overline{H}(p, x, t) is defined as a solution of the following cell problem: for each (p, x, t)\in
\mathbb{R}^{n}\times \mathbb{R}^{n}\times(0, +\infty) there are a unique number \overline{H}(p, x, t) and a function  w(y,  $\tau$)\in
 C^{0,1}(\mathbb{R}^{n}\times(0, +\infty)) periodic in both y and  $\tau$ such that

(1.5)  w_{ $\tau$}-a( $\alpha$)k\triangle_{y}w-k|p+D_{y}w|^{2}+V(x, t, y,  $\tau$) (p+D_{y}w)=-\overline{H}(p, x, t) ,

where a( $\alpha$)=0 if  $\alpha$\in(0,1) , a( $\alpha$=1)=1 . One noticed that (1.5) is a periodic version of

(1.3) if  $\alpha$=1 (the fast variables (y,  $\tau$) playing the role of (x, t) in (1.3)), and an inviscid

periodic version if  $\alpha$\in(0,1) . Both viscous and inviscid QHJs are simplified asymptotic
models for characterizing s_{T} in the context of KPP. However, the KPP front speeds

require an additional minimization (1.2) on top of QHJ (1.3) or variational inequality

(1.4) on top of QHJ (1.5).
The RDAs (1.1) and in particular the KPP are first principle equations, though they

are limited to the unit Lewis number (equal diffusion rates) regime. Another approach
in turbulent flame modeling is the level set formulation [24] of interface motion laws

with the interface width ignored. The simplest motion law is that the normal velocity
of the interface (V) is equal to a constant s_{l} (the laminar speed) plus the projection of

fluid velocity along the \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}1\rightarrow_{n} . The laminar speed is the flame speed when fluid is

at rest. Let the flame front be the zero level set of a function G(x, t) ,
then the normal

direction is DG/|DG| ,
the normal velocity is -G_{t}/|DG| . The motion law becomes the

so called G‐equation, a popular model in turbulent combustion [31, 26]:

(1.6) G_{t}+V(x, t)\cdot DG+s_{l}|DG|=0.

Chemical kinetics and Lewis number effects are all included in the laminar speed s_{l}

which is provided by a user. Formally, under the \mathrm{G}‐equation model, for a specified unit

direction p,

s_{T}(p)=-\displaystyle \lim_{T\rightarrow+\infty}\frac{G(x,T)}{T}.
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Here G(x, t) is the solution of equation (1.6) with initial data G(x, 0)=p x . The

existence of s_{T} has been rigourously established in [34] and [6] independently for in‐

compressible periodic flows. When V is t independent, s_{T} is the effective Hamiltonian

of the following cell problem

s_{l}|p+DG|+V(x) (p+DG)=\overline{H}(p)=s_{T}.

Here \overline{H}(p) is the unique number such that the above equation admits periodic approxi‐
mate solutions. The formal analysis of (1.6) and s_{T} is also performed in the framework

of renormalization group methods [29, 30, 36]. See also [25] on a spectral closure ap‐

proximation, and [13] for a numerical study of \mathrm{G}‐equation in comparison with combus‐

tion system modeling thermal‐diffusive instabilities of free‐propagating premixed lean

hydrogen‐air flames. Though \mathrm{G}‐equation is a phenomenological model, it is more flexible

in that many factors influencing front motion can be incorporated into s_{l} . For example,
the strain effect of a turbulent fluid flow is modeled by extending s_{l} to s_{l}+\rightarrow_{n\cdot DV}. \rightarrow_{n}.
The \mathrm{G}‐equation with flow induced strain is [26]:

(1.7) G_{t}+s_{l}|DG|+V(x, t)\displaystyle \cdot DG+\frac{DG}{|DG|}\cdot DV\cdot DG=0.
Then formally, s_{T}(p)=-\displaystyle \lim_{T\rightarrow+\infty}\frac{G(x,T)}{T} . Here G(x, t) is the solution of equation (1.7)
with initial data G(x, 0)=p\cdot x . So far we are not able to prove the existence of s_{T} except

for some simple situations like the one‐dimensional (1d) compressible flow and the shear

flow. It is conjectured by some experts [27] in combustion theory that the strain term

will slow down flame propagation. Though theoretically it is hard to verify for general

flow, we confirm this conjecture for ld compressible flow and the unidirectional shear

flow. Besides the strain effect of the flow, a flame front is affected by its own geometry
or the curvature. One such model proposed in [26] is to replace s_{l} by  s_{l}+d $\kappa$ . Then the

\mathrm{G}‐equation becomes

(1.8) G_{t}-d $\kappa$|DG|+s_{l}|DG|+V(x, t)\cdot DG=0.

Here d is the so called Markstein diffusivity and  $\kappa$ is the mean curvature of the flame

front, i.e,  $\kappa$=\displaystyle \mathrm{d}\mathrm{i}\mathrm{v}(\frac{DG}{|DG|}) . The curvature \mathrm{G}‐equation (1.8) is very difficult to analyze. To

obtain some ideas of the diffusion effect, a natural simplification is to change the mean

curvature term  $\kappa$ to \triangle G (a linearization of the curvature in some sense). This leads to

the viscous \mathrm{G}‐equation

(1.9) G_{t}-d\triangle G+s_{l}|DG|+V(x, t)\cdot DG=0.

The above viscous \mathrm{G}‐equation also serves as a basic model to understand the diffusion

effect introduced in the numerical computation of equation (1.6). For the viscous case,
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s_{T}(p, d)=-\displaystyle \lim_{T\rightarrow+\infty}\frac{G(x,T)}{T} . Here G(x, t) is the solution of equation (1.9) with initial

data G(x, 0)=p\cdot x . It is also the effective Hamiltonian of the following cell problem

-d\triangle G+s_{l}|p+DG|+V(x) (p+DG)=s_{T}(p, d)=\overline{H}(p, d) .

Here \overline{H}(p, d) is the unique number such that the above equation admits periodic so‐

lutions. The most general \mathrm{G}‐equation is to combine both the strain effect and the

curvature effect.

Motivated by KPP asymptotics and \mathrm{G}‐equation, we are interested in the QHJ of

the form:

(1.10) F_{t}-d\triangle_{x}F+s_{l}|D_{x}F|^{2}+V(x, t)\cdot D_{x}F=0,

where d\geq 0 ,
and s_{l} is a positive constant. Hereafter, we shall refer to (1.10) as F‐

equation if d=0 ,
and viscous \mathrm{F}‐equation if d>0 . Note if V is t independent and

F=F(x, t) is the solution of (1.10) with initial data F(x, 0)=p\cdot x ,
the large time limit

\displaystyle \lim_{T\rightarrow+\infty}\frac{F(x,T)}{T}=-\overline{H}(p, d) ,
where \overline{H}(p, d) is the effective Hamiltonian of the following

cell problem

-d\triangle F+s_{l}|p+DF|^{2}+V(x) (p+DF)=s_{T}(p, d)=\overline{H}(p, d)

which is the same as (1.5) when V is t independent and we change V to −V.

Though various passive scalar models as shown above have been proposed to study
s_{T} ,

their predictions may be potentially different or sometimes asymptotically equiv‐
alent. It requires delicate analysis to understand these subtleties. In this paper, we

report on recent progress in analyzing these turbulent combustion models, and compare

the properties of s_{T} in the \mathrm{G}‐equations (1.6)-(1.7) ,
the \mathrm{F}‐equation (1.10) and RDAs for

steady (time‐independent) periodic flows (V =V(x)) with mean equal to zero. The

s_{T} �s are compared in terms of different nonlinearities and the flow induced strains, as

well as presence or absence of viscosity. In [11], the comparison of KPP with the G‐

equation (1.6) for periodic shear flows of non‐zero mean showed under‐estimation of the

\mathrm{G}‐equation in terms of the transverse magnitude of the mean flow. Our comparison
results will be presented for ld compressible flows, mean zero periodic shear flows as

well as for cellular and cats� eye flows. The latter two flows appeared as canonical flow

examples in dynamo and convection‐enhanced diffusion problems [7, 10].
The paper is organized as follows. While comparing \mathrm{G}(\mathrm{F}) ‐equations, we shall take

affine initial data p x
,

for a unit direction p ,
and normalize s_{l}=1 . We shall also

write the flow field V as a function v(x) in the one space dimensional case. In section

2, we show in \mathrm{G}‐equation that compressible flows slow down and even quench front

speeds while viscosity helps to stop front quenching. On the other hand, incompressible
flows (e.g. cellular flows) enhance front speeds yet viscosity reduces such speedup to
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sublinear growth (so called speed bending in combustion). For cellular flow, the s_{T} of

any viscous \mathrm{G}‐equation is uniformly bounded [16] in the limit of large flow amplitude
A

,
while it grows like O(A/\log A) in the inviscid \mathrm{G}‐equation. In section 3, we compare

the s_{T} �s in G‐equations (1.6) with and without the strain effect. We show that the

strain term slows down the propagation speed s_{T} in one‐dimensional compressible flows

and in shear flows. In section 4, we compare the asymptotic behavior of s_{T} �s from

the inviscid \mathrm{G}‐equation (1.6) and the inviscid \mathrm{F}‐equation (1.10) when V(x) is scaled to

A V(x) , A\gg 1 . The asymptotic growth rate \displaystyle \lim_{A\rightarrow+\infty}\frac{s_{T}}{A} is the same for these two

equations. The limit is characterized by the rotation number of the dynamical system

\dot{x}=V(x) . In section 5, we discuss the front speed of the viscous \mathrm{F}‐equation which also

shares the same growth rate. As an example, the cat�s eye flow is shown to have only
one direction for speed bending. For cellular flows, the \displaystyle \frac{A}{\log(A)} growth pattern of s_{T} in

\mathrm{G}‐equation (1.6) also holds for the \mathrm{F}‐equation (1.10). In section 6, we conclude with

some open problems for future research.

§2. \mathrm{G}‐equations and Compressibility

For ld inviscid \mathrm{G}‐equation without strain, if V(x)=v(x) is a continuous one‐

periodic function, the turbulent flame speed s_{T} is the unique number such that the

following equation (p=1)

|1+G'|+v(x)(1+G')=s_{T}

admits approximate periodic solutions. For simplicity, let us assume that \displaystyle \max v(x)>0.
Then s_{T} has an explicit formula [15]:

s_{ $\tau$=}\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} \{x|v(x)=-1\}\neq\emptyset\\
(\int_{0}^{1}\frac{1}{1+v(x)}dx)^{-1}>0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
However for the viscous \mathrm{G}‐equation with viscosity d>0,

(2.1) s_{T}(d)=0 iff \displaystyle \int_{0}^{1}v(x)dx+1=0.
In particular if v(x) is mean zero, then s_{T}(d)\neq 0 , quenching is arrested no matter how

small d is and how large the maximum of v is! In fact by a continuity argument [15],
s_{T}(d)>0.

Now let us consider a front moving along direction p=(1,0) and in the two‐

dimensional (incompressible) cellular flow with amplitude A :

(2.2) V(x_{1}, x_{2})=A(\sin(2 $\pi$ x_{1})\cos(2 $\pi$ x_{2}), -\sin(2 $\pi$ x_{1})\cos(2 $\pi$ x_{2})) .
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corresponding to Hamiltonian \mathcal{H}(x_{1}, x_{2})=(A/2 $\pi$)\sin(2 $\pi$ x_{1})\sin(2 $\pi$ x_{2}) . The s_{T}=

s_{T}(A, d) is a function of two variables (A, d) . It is known [23, 1, 20] that

(2.3) s_{T}(A, 0)\sim O(A/\log A) , A\gg 1.

However, with any fixed small viscosity d>0 ,
the amazing result [16] is that for a

constant C(d)

(2.4) s_{T}(A, d)\leq C(d) , \forall d>0, A\geq 2.

Front speed is drastically reduced. The microscopic explanation is that the viscosity

corresponds to the addition of Brownian noise in the generalized characteristics of the

inviscid \mathrm{G}‐equation, making it difficult for a Lagrangian particle to travel through vor‐

tices (or hop from a saddle point to another without getting trapped in a vortex). Here

in the incompressible flow, the viscosity term of the \mathrm{G}‐equation is biased towards slow‐

ing down the transport (or s_{T} ), just the opposite of its effect in compressible flows. The

analytical explanation is that solution G is smoother due to viscosity, hence its spatial

gradient is smaller, and the front speed in periodic incompressible flow  s_{T}=s_{l}\langle p+\nabla G\rangle
is reduced, is average on a periodic cell. The reaction‐diffusion front speeds in cellular

flows obey the asymptotics of  O(A^{1/4}) at large A
, [3, 19, 28, 37, 38].

§3. \mathrm{G}‐equations with and without Strain

§3.1. One‐dimensional \mathrm{G}‐equation and Compressible Flow

Now let us consider the one space dimensional \mathrm{G}‐equation with the strain term.

Using the same method as in [16], we can show that there exists a unique number \hat{s}_{T}

such that the following equation

(1+v')|1+G'|+v(x)(1+G')=\hat{s}_{T}

admits approximate periodic solutions. The \hat{s}_{T} is the flame speed of \mathrm{G}‐equation under

strain, and is given by

\hat{s}_{ $\tau$=}\left\{\begin{array}{l}
0\\
(\int_{0}^{1}\frac{1}{1+v'(x)+v(x)}dx)^{-1}>0
\end{array}\right.
In [35], we have:

if \{x|v'(x)+v(x)=-1\}\neq\emptyset
otherwise.

Theorem 3.1. The flame speed in the  G‐equation with strain is no faster than

that of the G‐equation without strain:

s_{T}\geq\hat{s}_{T}.

If s_{T}>0 ,
then holds if and only if v\equiv 0.
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§3.2. Strain Effects in Shear Flows

Suppose that V(x, y)=(v(y), 0) . For (m, n)\in \mathbb{R}^{2} ,
denote  $\lambda$(m, n) as the unique

number such that the \mathrm{G}‐equation for the shear flow

\sqrt{m^{2}+(n+u')^{2}}+mv(x)= $\lambda$= $\lambda$(m, n)

has a periodic viscosity solution. We also write \hat{ $\lambda$}(m, n) as the unique number such that

the \mathrm{G}‐equation for the shear flow with strain term

\displaystyle \sqrt{m^{2}+(n+u')^{2}}+\frac{m(n+u')v'}{\sqrt{m^{2}+(n+u')^{2}}}+mv(x)=\hat{ $\lambda$}=\hat{ $\lambda$}(m, n) .

It is clear that

(3.1)  $\lambda$, \hat{ $\lambda$}\geq|m|+\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{T}^{1} mv

To ensure that both of them are non negative, we further assume that

\displaystyle \int_{0}^{1}v(x)dx=0.
Then we have [35]:

Theorem 3.2. The flame speed under the strain of shear flows is no faster than

that in shear flows without the strain.

 $\lambda$(m, n)\geq\hat{ $\lambda$}(m, n) .

If m\neq 0 and  $\lambda$(m, n)>|m|+\displaystyle \max_{\mathrm{T}^{1}} mv, then holds if and only if v\equiv 0.

§4. Inviscid \mathrm{G}‐equation and \mathrm{F}‐equation

Let $\alpha$_{A} be the effective Hamiltonian (front speed) from the inviscid \mathrm{G}‐equation
without strain term

|p+DG|+AV(x) (p+DG)=$\alpha$_{A}

and $\beta$_{A} the effective Hamiltonian (front speed) from the invicid \mathrm{F}‐equation

|p+DF|^{2}+AV(x) (p+DF)=$\beta$_{A}.

Both $\alpha$_{A} and $\beta$_{A} can be characterized by variational (inf‐max) formulas. Precisely

speaking,

$\alpha$_{A}= \displaystyle \inf \{|p+D $\phi$|+AV(x) (p+D $\phi$)\}
 $\phi$\in C^{1}(\mathrm{T}^{n})
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and

$\beta$_{A}= \displaystyle \inf \{|p+D $\phi$|^{2}+AV(x) (p+D $\phi$)\}
 $\phi$\in C^{1}(\mathrm{T}^{n})

Hence $\alpha$_{A}, $\beta$_{A}\leq O(A) . Since t^{2}\geq t-1, $\beta$_{A}\geq$\alpha$_{A}-1 . The following theorem says that

$\alpha$_{A}/A and $\beta$_{A}/A have the same asymptotic limit.

Theorem 4.1.

\displaystyle \lim_{A\rightarrow+\infty}\frac{$\alpha$_{A}}{A}=\lim_{A\rightarrow+\infty}\frac{$\beta$_{A}}{A}= $\phi$\in C^{1}(\mathrm{T}^{n})\mathrm{T}^{n}\mathrm{i}\mathrm{n}\mathrm{f}\max\{V(x) (p+ $\phi$)\}\equiv c_{0}.
In particular, if the G‐equation shows speed bending effect, so does the F‐equation.

A dynamical system characterization of the growth rate c_{0} in Theorem 4.1 is in

terms of �rotation number�

Definition 4.1. The function  $\xi$= $\xi$(t) is called an orbit if\dot{ $\xi$}(t)=V( $\xi$(t)) . More‐

over, the function  $\xi$ : [0, T]\rightarrow \mathbb{R}^{n} is called periodic orbit and T is called a period if  $\xi$ is

an orbit satisfy ing  $\xi$(0)- $\xi$(T) is an integer vector.

Theorem 4.2. There exists an orbit  $\xi$ such that

\displaystyle \lim_{T\rightarrow+\infty}\frac{p\cdot $\xi$(T)}{T}=\lim_{T\rightarrow+\infty}\frac{1}{T}\int_{0}^{T}p\cdot V( $\xi$(t))dt=c_{0}.
In particular, when n=2, c_{0}>0 if and only if there exists a periodic orbit  $\xi$ : [0, T]\rightarrow
\mathbb{R}^{2} such that

\displaystyle \frac{p\cdot( $\xi$(T)- $\xi$(0))}{T}>0.
where T is the period.

Example 4.1 (cat�s eye flow). For the cat�s eye flow, the stream function is

H=\sin 2 $\pi$ x_{1}\sin 2 $\pi$ x_{2}+ $\delta$\cos 2 $\pi$ x_{1}\cos 2 $\pi$ x_{2} for  $\delta$\in[0 ,
1 ] . When  $\delta$=0 ,

it becomes

the cellular flow. When  $\delta$>0 ,
the zero level curve \{H=0\} is a periodic orbit and has

a rotation vector parallel to (1,1). Also, since H is an even function, we have:

\displaystyle \mathrm{i}\mathrm{n}\mathrm{f}\max\{(p+D $\phi$)\cdot V(x)\}=\{
>0 if p does not parallel with (-1,1)

 $\phi$\in C^{1}(\mathrm{T}^{n})\mathrm{T}^{n} =0 if p parallels with (-1,1) .

Hence for  $\delta$\neq 0 ,
the bending effect only occurs along the direction in parallel with (-1,1) .

If V is the celluar flow, $\alpha$_{A} grows like O(\displaystyle \frac{A}{\log(A)}) . The following theorem [35] says

that the same growth law holds for the \mathrm{F}‐equation.
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Theorem 4.3. If V is the cellular flow, then at large A

$\beta$_{A}=O(\displaystyle \frac{A}{\log(A)})
Hence the quadratic nonlinearity does not make a difference on the front speed

asymptotics of the inviscid Hamilton‐Jacobi equations in cellular flows.

§5. Viscous \mathrm{G}‐equation and \mathrm{F}‐equation

Fix d>0 ,
for A>0 ,

we denote $\chi$_{A} as the effective Hamiltonian (front speed) of

the cell problem associated with the viscous \mathrm{G}‐equation

-d\triangle G+|p+DG|+AV(x) (p+DG)=$\chi$_{A},

and $\kappa$_{A} as the effective Hamiltonian (front speed) of the following cell problem

-d\triangle F+|p+DF|^{2}+AV(x) (p+DF)=$\kappa$_{A}.

Similar to the inviscid case, both $\chi$_{A} and $\kappa$_{A} can be given by inf‐max formulas.

 $\chi$_{A}= \displaystyle \mathrm{i}\mathrm{n}\mathrm{f}\max\{-d\triangle $\phi$+|p+D $\phi$|+AV(x) (p+D $\phi$
 $\phi$\in C^{2}(\mathrm{T}^{n})\mathrm{T}^{n}

and

 $\kappa$_{A}= \displaystyle \mathrm{i}\mathrm{n}\mathrm{f}\max\{-d\triangle $\phi$+|p+D $\phi$|^{2}+AV(x) (p+D $\phi$
 $\phi$\in C^{2}(\mathrm{T}^{n})\mathrm{T}^{n}

Clearly, $\chi$_{A}, $\kappa$_{A}\leq O(A) and $\chi$_{A}\leq$\kappa$_{A}+1 . The following theorem says that $\kappa$_{A}/A has

the same asymptotic limit as $\alpha$_{A}/A and $\beta$_{A}/A in two space dimensions [35].

Theorem 5.1. For n=2,

\displaystyle \lim_{A\rightarrow+\infty}\frac{$\kappa$_{A}}{A}=\inf\{\max V(x) $\phi$\in C^{1}(\mathrm{T}^{2})\mathrm{T}^{2} (p+D $\phi$)\}=c_{0}.
Theorem 5.1 implies that in cat�s eye flows, $\kappa$_{A} has linear growth in in all but

(-1,1) direction, and sublinear growth (bending) in (-1,1) direction. In cellular flows,
the theorem implies that $\kappa$_{A} grows sublinearly. The $\kappa$_{A} satisfies a lower bound O(A^{1/3})
in cellular flows, see [19, 35]; while $\chi$_{A} is uniformly bounded in A . The quadratic

nonlinearity makes a difference on the front speed asymptotics of the viscous Hamilton‐

Jacobi equations. The exact growth asymptotics of $\kappa$_{A} in cellular flows remain to be

found.

§6. Concluding Remarks

We compared the turbulent flame speeds (s_{T}) of \mathrm{G}‐equation and the analogous

quadratically nonlinear Hamilton‐Jacobi equation (the \mathrm{F}‐equation) in the presence of
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steady and periodic compressible flows, shear flows, and incompressible flows (cellular
and cat�s eye flows). The viscosity term is seen to have an opposing effect on flows.

The strain effect is shown to decrease s_{T} for compressible and shear flows. The s_{T} of

the viscous \mathrm{F}‐equation has the same growth rate as the inviscid \mathrm{F} and \mathrm{G}‐equations.

Nonlinearity is seen to play a larger role on front speeds in viscous \mathrm{G} and \mathrm{F}‐equations
than in their inviscid counterparts.

Comparisons of s_{T} in the viscous \mathrm{F} and \mathrm{G}‐equations remain to be explored for

more complex flows, including three dimensional steady flows. Likewise, the effects of

strain, nonlinearity, and interface curvature remain to be studied in this more general

setting. The curvature regularization is a degenerate diffusion, and presents additional

mathematical difficulties. A result on curvature dependent \mathrm{G}‐equation in shear flows is

given in [16]. The front speed grows at the same rate as that of the inviscid \mathrm{G}‐equation.

Though some experts in combustion believe that the curvature effect on s_{T} is minor,
mathematical analysis in case of non‐shear flows remains to be developed.
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