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Abstract

We give an overview of Iwasawa theory for elliptic curves, and what this theory can tell

us about the size of the Tate‐Shafarevich group in towers of number fields. What is new is that

we formulate this theory and derive its consequences at any odd prime of good reduction.

§1. Basic Results in Iwasawa theory

Iwasawa theory is a mysterious bridge between two mathematically faraway worlds,
the analytic realm and the algebraic realm:

(analytic) Iwasawa theory (algebraic)

For the rest of this article, let p be an odd prime. Iwasawa looked at the following
towers of number fields:
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After adjoining
successively large
p‐power roots of

unity, we obtain a

tower of extensions

whose union is

\mathbb{Q}($\mu$_{p}\infty) so that

\mathrm{G}\mathrm{a}1(\mathbb{Q}($\mu$_{p^{\infty}})/\mathbb{Q})\cong
\mathbb{Z}_{p}^{\times}\cong \mathbb{Z}_{p}\times\triangle.

\mathbb{Q}=\mathbb{Q}_{0}
Given a \mathbb{Z}‐module M

,
its p‐primary part M[p^{\infty}] is a \mathbb{Z}_{p} ‐module. For simplicity,

let�s suppose that M=M[p^{\infty}] . If the Galois group \mathrm{G}\mathrm{a}1(\mathbb{Q}_{\infty}/\mathbb{Q})\cong \mathbb{Z}_{p} acts continuously
on M

,
then M becomes a  $\Lambda$ :=\mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(\mathbb{Q}_{\infty}/\mathbb{Q})]] ‐module. This ring  $\Lambda$ is called the

Iwasawa algebra and is also a power series ring  $\Lambda$\cong \mathbb{Z}_{p}[[X]] ,
and thus is a ring of

(special) p‐adically continuous functions.

An Iwasawa Main Conjecture usually states that the ideal generated in  $\Lambda$ by an

analytic object, a  p‐adic L‐fUnction  L_{p}(X)\in $\Lambda$ ,
is equal to the characteristic ideal of

an algebraic object:
(analytic) (algebraic)

 $\Lambda$  $\Lambda$

\cup \cup

(L_{p}(X))=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(M)

The analytic object L_{p}(X) knows the (usual) L‐fUnction by p‐adically interpolating
a family of its special values, but we won�t get into any very analytic definitions, because

the title of this conference is �

Algebraic Number Theory and Related Topic \mathrm{s}^{||}
What is the characteristic ideal \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(M) ? We can only define this when M is a

finitely generated torsion  $\Lambda$‐module. Before that, let�s look at a baby example where

we replace the ring  $\Lambda$ by \mathbb{Z} : Recall that a finitely generated torsion \mathbb{Z}‐module G
,

i.e. \mathrm{a}

finite abelian group, admits an exact sequence

0\displaystyle \rightarrow\bigoplus_{i}\mathbb{Z}/p_{i}^{e_{i}}\mathbb{Z}\rightarrow G\rightarrow 0.
The most important invariant of G is its size |G| . Note that the ideal in \mathbb{Z} generated

by |G| encodes this information as well. We call it the characteristic ideal:

\displaystyle \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{\mathbb{Z}}G:=(|G|)=(\prod_{i}p_{i}^{e_{i}})\subset \mathbb{Z}.
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Now suppose M is a finitely generated torsion  $\Lambda$‐module. It turns out that  M then

admits an exact sequence

0\rightarrow\oplus_{i} $\Lambda$/f_{i} $\Lambda$\rightarrow M\rightarrow( finite) \rightarrow 0,

where we have chosen f_{i} so that f_{i}|f_{i+1} . These f_{i} are not uniquely determined, but the

ideal that their product generates in  $\Lambda$ is. This is our characteristic ideal:

\displaystyle \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(M):=(\prod_{i}f_{i})\subset $\Lambda$.
Elements of the Iwasawa algebra also have two canonical invariants:

The p‐adic Weierstrass Preparation Theorem states that for  g(X)\in $\Lambda$ ,
there

are (uniquely determined) non‐negative integers  $\mu$,  $\lambda$ so that

 g(X)=p^{ $\mu$}(X^{ $\lambda$}+a_{1}X^{ $\lambda$-1}+\cdots+a_{ $\lambda$})U(X) ,

where a_{i}\in p\mathbb{Z}_{p} ,
and U(X)\in$\Lambda$^{\times} is a unit.

For a finitely generated torsion  $\Lambda$‐module  M
,
the integers  $\mu$ and  $\lambda$ of the generator

of \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(M) as above are called the Iwasawa invariants of M.

For proofs of all the above, we refer the reader to Washington�s book on cyclotomic
fields [26].

§2. Iwasawa Theory for Elliptic Curves

The idea of formulating an Iwasawa theory for elliptic curves by looking at their

\mathbb{Q}_{n} ‐rational points goes back to Mazur. We will use freely a few basic results and

terminology from elliptic curve theory and refer the reader to Silverman�s book [20]
when stumbling across an unfamiliar term.

We fix an elliptic curve over \mathbb{Q} :

E : y^{2}=x^{3}+ax+b, a, b\in \mathbb{Q}.

Suppose that p is a good prime.

Definition 2.1. Let a_{p} :=p+1-\# E(\mathbb{F}_{p}) . A prime p that does not divide a_{p}

we call ordinary If p does divide a_{p} ,
we call it supersingular.

We thus have two stories, the ordinary and the supersingular one:

§2.1. The Ordinary Case

On the analytic side, Mazur and Swinnerton‐Dyer defined in [12] ap‐adic L‐fUnction

L_{p}(E, X)\in $\Lambda$\otimes \mathbb{Q} in the early 1970\mathrm{s} which conjecturally lives in the Iwasawa algebra,
i.e. we should have L_{p}(E, X)\in $\Lambda$.
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On the algebraic side, we have the following exact sequence (see e.g. [20]):

0\rightarrow E(\mathbb{Q}_{n})\otimes \mathbb{Q}/\mathbb{Z}\rightarrow \mathrm{S}\mathrm{e}1(E/\mathbb{Q}_{n})\rightarrow \mathrm{m}(E/\mathbb{Q}_{n})\rightarrow 0.

E(\mathbb{Q}_{n}) is the Mordell‐Weil group of \mathbb{Q}_{n} ‐rational points of E
,

which is in general hard

to understand. Galois cohomology provides us with a tool that lets us define a simpler

object, the Selmer group \mathrm{S}\mathrm{e}1(E/\mathbb{Q}_{n}) into which E(\mathbb{Q}_{n}) injects ‐ after tensoring away

the torsion points. A folklore conjecture says that the cokernel Ill of this injection, the

Tate‐Shafarevich group, has finite size.

Looking at the p‐part (i.e. p‐primary part) of the above exact sequence gives us a

slightly simpler one:

0\rightarrow E(\mathbb{Q}_{n})\otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}\rightarrow \mathrm{S}\mathrm{e}1_{p}(E/\mathbb{Q}_{n})\rightarrow \mathrm{m}(E/\mathbb{Q}_{n})[p^{\infty}]\rightarrow 0.

Going up the cyclotomic tower, the rank of E(\mathbb{Q}_{n}) is known to stabilize via work

of Rohrlich [17] and Kato [5]. We denote it by r_{\infty} . An amenable algebraic object for

Iwasawa theory which contains information about E(\mathbb{Q}_{\infty}) is then the Pontryagin dual

of the p‐Selmer group

\displaystyle \mathcal{X}:=\lim \mathrm{H}\mathrm{o}\mathrm{m}(\mathrm{S}\mathrm{e}1_{p}(E/\mathbb{Q}_{n}), \mathbb{Q}_{p}/\mathbb{Z}_{p})\leftarrow n,
which has the structure of a  $\Lambda$‐module as it is a \mathbb{Z}_{p} ‐module which admits a continuous

action of \mathrm{G}\mathrm{a}1(\mathbb{Q}_{\infty}/\mathbb{Q})- but what makes this object truly nice is that when p is ordinary,
\mathcal{X} is a finitely generated torsion  $\Lambda$‐module. (This does not hold when  p is supersingular,
in which case \mathcal{X} is still finitely generated, but not  $\Lambda$‐torsion.) Mazur conjectured this

nice property in the  1970\mathrm{s} ,
which is now a result by Rubin [18] (in the CM case) and

Kato [5] (in the non‐CM case). It is this fact that allows us to define \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(\mathcal{X}) and

extract its Iwasawa invariants  $\mu$ and  $\lambda$ . The following is a classical theorem that goes

back to Mazurl [11]:

Theorem 2.2. (see  e.g . [3, Theorem 1.10] Let p be ordinary. Assume that

\#\mathrm{m}(E/\mathbb{Q}_{n})[p^{\infty}]=p^{e_{n}}<\infty . Then for  n\gg 0 ,
we have

e_{n}-e_{n-1}= $\mu$(p^{n}-p^{n-1})+ $\lambda$-r_{\infty}.

This theorem is an analogue of a result by Iwasawa concerning the p‐part of class

numbers in \mathbb{Z}_{p} ‐extensions, which one may say started Iwasawa theory in the first place.
The Main Conjecture links the two objects:

Main Conjecture 2.1. The following ideals are equal:

(L_{p}(E, X))=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(\mathcal{X})\subset $\Lambda$.
lMazur�s version of Theorem 2.2 is that as a function of n, e_{n}= $\mu$ p^{n}+n( $\lambda$-r_{\infty})+O(1) .
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That L_{p}(E, X)\in \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(\mathcal{X}) is a result by Kato (see [5]) when the p‐adic repre‐

sentation \mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}/\mathbb{Q})\rightarrow \mathrm{G}\mathrm{L}_{\mathbb{Z}_{p}}(T_{p}(E)) on the automorphism group of the p‐adic Tate

module T_{p}(E) is surjective. Skinner and Urban have announced a proof for the other

inclusion under certain assumptions, cf. [21].

Remark 2.2. Greenberg and Vatsal show in [4] that  L_{p}(E, X)\in A in some

cases. In the supersingular case, the main conjecture can be formulated using (two
copies of) the Iwasawa algebra  $\Lambda$.

Sketch of Kato \ovalbox{\tt\small REJECT}_{\mathrm{S}} Method. Denote by T_{p}(E) :=\displaystyle \lim_{\leftarrow}E[p^{n}] the p‐adic Tate‐
n

module, i.e. the inverse limit of the p‐power torsion points of E
,

and by \mathbb{Q}_{n,p} the

completion of \mathbb{Q}_{n} in the p‐adic topology. The main part of Kato�s method is to construct

an Euler system called Kato�s zeta element which lives in global cohomology. It is this

Euler system that brings the two mathematically faraway worlds mentioned at the very

beginning of this article together! See for example [19] for details. One of the important

properties of Kato�s Euler system is that it induces the special element \mathrm{z} in the (local)
cohomology group below, whose image under a certain map Col becomes the p‐adic

L‐fUnction of Mazur and Swinnerton‐Dyer2:

\displaystyle \mathbb{Q}\otimes\lim H^{1}(\mathbb{Q}_{n},{}_{p}T_{p}(E))\leftarrow n'\rightarrow^{\mathrm{C}_{0}1} \mathbb{Q}\otimes $\Lambda$
(V (V

\mathrm{z} \mapsto L_{p}(E, X)

§2.2. The Supersingular Case

In the supersingular case, the two roots  $\alpha$ and \overline{ $\alpha$} of the Hecke polynomial Y^{2}-

a_{p}Y+p have positive p‐adic valuation. This causes problems on both the analytic and

the algebraic sides:

2.2.1. The Analytic Side. On the analytic side, Amice and Vélu [1] and Višik

[25] constructed two p‐adic L‐fUnctions L_{p, $\alpha$}(E, X) and L_{p,\overline{ $\alpha$}}(E, X) generalizing Mazur�s

and Swinnerton‐Dyer�s L_{p}(E, X) . The problem in this case is that the ring in which

their functions live is too big:

L_{p, $\alpha$}(E, X) , L_{p,\overline{ $\alpha$}}(E, X)\not\in $\Lambda$,

since they have infinitely many zeros in the unit disk, which would for example contradict

the p‐adic Weierstrass Preparation Theorem.

2
(Kato, ICM 2006) 7\mathrm{J}\lceil\rfloor f\mathrm{j}^{\ovalbox{\tt\small REJECT}\not\in}\infty*\mathrm{f}\mathrm{f}\mathrm{l}\{fifffliのたとえ \#_{\llcorner}^{\rightarrow} よ6と､ * p_{\overline{ $\pi$}\mathrm{z}} $\delta$\grave{\grave{1}}7\mathrm{E}_{\backslash } Lp (E, X) es \mathrm{L}^{\backslash }\backslash \grave{1}\underline{@} しの \mathrm{k}_{ $\epsilon \Phi$}^{i^{5^{\mathrm{A}}}}\ovalbox{\tt\small REJECT} の -\mathrm{a}_{\mathrm{r}\mathrm{J}\backslash }
thfi7JtJfErc  $\varpi$\backslash \ovalbox{\tt\small REJECT} であ6 Hasse‐Weil L5\ovalbox{\tt\small REJECT} \mathscr{X}L(E, s)\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} \mathrm{g}\ovalbox{\tt\small REJECT} であ 6_{0}[6]_{0}
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A hint on what to do was a guess by Greenberg [2], namely that

(^{*}) L_{p, $\alpha$}(E, X) and L_{p,\overline{ $\alpha$}}(E, X) have finitely many common zeros.

The following theorems resolve this problem.

Theorem 2.3. (Pollack [15], 2003) Let a_{p}= O. Then there are two p‐adic

L ‐functions  L_{p}\#(E, X)\in $\Lambda$ and  L_{p}^{\mathrm{b}}(E, X)\in $\Lambda$ so that

 L_{p, $\alpha$}(E, X)=L_{p}\#(E, X)\log_{p}^{+}(1+X)+L_{p}^{\mathrm{b}}(E, X)\log_{p}^{-}(1+X) $\alpha$

 L_{p,\overline{ $\alpha$}}(E, X)=L_{p}\#(E, X)\log_{p}^{+}(1+X)+L_{p}^{\mathrm{b}}(E, X)\log_{p}^{-}(1+X)\overline{ $\alpha$},
where \displaystyle \log_{p}^{+}(1+X)=\frac{1}{p}\prod_{n\geq 1}\frac{$\Phi$_{2n}}{p} and \displaystyle \log_{p}^{-}(1+X)=\frac{1}{p}\prod_{n\geq 1}\frac{$\Phi$_{2n-1}}{p} ,

and

$\Phi$_{m} :=\displaystyle \sum_{i=0}^{p-1}(1+X)^{p^{m-1}i} is the pm‐th cyclotomic polynomial for the variable 1+X.

We point out that Pollack�s theorem covers almost all supersingular primes, since

p|a_{p} and p\geq 5 imply a_{p}=0 by the Hasse‐Weil bound |a_{p}|<2\sqrt{p}.

Theorem 2.4. (S. [22], 2011) Let p|a_{p} . Then there are two p‐adic L ‐functions

 L_{p}\#(E, X)\in $\Lambda$ and  L_{p}^{\mathrm{b}}(E, X)\in $\Lambda$ so that:

(L_{p, $\alpha$}(E, X), L_{p,\overline{ $\alpha$}}(E, X))=(L_{p}\#(E, X), L_{p}^{\mathrm{b}}(E, X))\mathcal{L}og_{a_{p}}(X) ,

where we define the following limit of products of matrices:

\displaystyle \mathcal{L}og_{a_{p}}(X):=\lim_{n\rightarrow\infty}\left(\begin{array}{ll}
a_{p} & -1\\
$\Phi$_{1} & 0
\end{array}\right)\displaystyle \cdots \left(\begin{array}{ll}
a_{p} & -1\\
$\Phi$_{n} & 0
\end{array}\right)\displaystyle \left(\begin{array}{ll}
a_{p} & -1\\
p & 0
\end{array}\right)\left(\begin{array}{ll}
-1 & -1\\
\overline{ $\alpha$} $\alpha$ & 
\end{array}\right)
The two pairs of p‐adic L‐fUnctions L_{p}\#(E, X) , L_{p}^{\mathrm{b}}(E, X) agree in both theorems

(since we are assuming that p is odd).

Corollary 2.5. Greenberg�s guess (^{*}) above is right.

Proof. This follows from using the p‐adic Weierstrass Preparation Theorem. See

[24]. QED

2.2.2. The Algebraic Side. On the algebraic side, we can still define the exact

sequences and objects as in the ordinary case, but the problem is that the dual of the

p‐Selmer group of \mathbb{Q}_{\infty} is not  $\Lambda$‐torsion (although it is finitely generated):

\mathcal{X} is not a torsion  $\Lambda$‐module!!

A hint in this case is a growth formula for the Tate‐Shafarevich group conjectured

by Kurihara and first presented at this conference ten years ago:
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Conjecture 2.3. (Kurihara [9], 2000) Let p\geq 5 be supersingular. Assume that

\#\mathrm{m}(E/\mathbb{Q}_{n})[p^{\infty}]=p^{e_{n}}<\infty . Then there are integers  $\lambda$,  $\tau$\#
,

and $\tau$^{\mathrm{b}} so that for n\gg 0,

e_{n}-e_{n-1}= $\lambda$+\left\{\begin{array}{l}
q_{n}\#+ $\tau$\# for odd n, and\\
q_{n}^{\mathrm{b}}+$\tau$^{\mathrm{b}} for even n,
\end{array}\right.
where  q_{n}\# :=p^{n-1}-p^{n-2}+p^{n-3}-p^{n-4}+\cdots+p^{2}-p and q_{n}^{\mathrm{b}} :=p^{n-1}-p^{n-2}+\cdots+p-1.

(This conjecture is a slightly stronger modification of the original one in [9]. Kuri‐

hara�s  $\lambda$\ovalbox{\tt\small REJECT} satisfies  $\lambda$\displaystyle \ovalbox{\tt\small REJECT}+\frac{1}{2}= $\lambda$ ,
which is assumed to be a rational number. Only after

making the slightly stronger assumption that  $\lambda$ is integral can we state his conjecture as

above, where we distinguish between even and odd  n
, by introducing the two adjustment

constants  $\tau$\# and $\tau$^{\mathrm{b}} )
Kurihara proved his conjecture [8] under assumptions that were strong enough to

force  $\lambda$= $\tau$\#=$\tau$^{\mathrm{b}}=0 . This theorem was generalized by Kurihara and Otsuki [10] who

worked with the prime 2, and a very big hint on what to do was given by Perrin‐Riou in

[14], who generalized Kurihara�s work and gave a formula for e_{n} (that covered almost

all cases3) with unspecified pairs of invariants, which she suggestively called  $\mu$\pm \mathrm{a}\mathrm{n}\mathrm{d}

 $\lambda$\pm\cdot
This hint and the results on the analytic side suggest that there should be two

algebraic objects as well, which work in tandem to make the Tate‐Shafarevich group

grow4
This is the content of the following theorem:

Theorem 2.6. (Kobayashi [7] for  a_{p}=0 2003, S. [22] for p|a_{p} 2011) Let p|a_{p}.
Then there are maps Col#, Colb that send Kato�s zeta element to the p‐adic L ‐functions

L_{p}\#(E, X) and L_{p}^{\mathrm{b}}(E, X) :

\displaystyle \lim H^{1}\leftarrow(\mathbb{Q}_{n},{}_{p}T_{p}(E))\rightarrow^{(\mathrm{C}_{0}1\#,,\mathrm{C}_{0}1^{\mathrm{b}})} $\Lambda$^{\oplus 2}
n

(V (V

\mathrm{z} \mapsto (L_{p}\#(E, X), L_{p}^{\mathrm{b}}(E, X))
The kernels \mathrm{k}\mathrm{e}\mathrm{r}\mathrm{C}\mathrm{o}1^{\#/\mathrm{b}} give rise to Selmer groups \mathcal{X}\#/\mathrm{b} that are finitely generated

torsion as  $\Lambda$‐modules. The (tandem) main conjecture then becomes

Main Conjecture 2.4. ([7],[22]) The following ideals are equal:

(L_{p}\#(E, X))=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(\mathcal{X}\#)\subset $\Lambda$ , and

3See Section 5 in [23] for a detailed discussion. We also have two historical remarks. Firstly, similar

formulas had been announced by Anas Nasybullin in [13], but without any proofs. Secondly, the

reason that the title of [8] is numbered as part I was that similar results had also been obtained by
Kurihara‐ to be published in a part II.

4ですので \ovalbox{\tt\small REJECT} $\eta$\doteqdot,\ovalbox{\tt\small REJECT}_{\backslash } な \not\equiv*\text{の}+_{i^{\mathrm{B}\bigwedge_{\text{ロ_{}\backslash }}}}7\mathrm{E}$\delta$^{\mathrm{i}} の \mathrm{k}_{ $\epsilon \Phi$}^{i^{5^{\mathrm{A}}}}\ovalbox{\tt\small REJECT} を \ovalbox{\tt\small REJECT} つてく  $\gamma$ \text{し}6 es ずです \circ
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(L_{p}^{\mathrm{b}}(E, X))=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(\mathcal{X}^{\mathrm{b}})\subset $\Lambda$.

The inclusions (L_{p}^{\#/\mathrm{b}}(E, X))\subset \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(\mathcal{X}\#/\mathrm{b}) follow from Kato�s methods in [5] when

the p‐adic representation \mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}/\mathbb{Q})\rightarrow \mathrm{G}\mathrm{L}_{\mathbb{Z}_{p}}(T_{p}(E)) on the automorphism group of the

p‐adic Tate module T_{p}(E) is surjective. The other inclusion is known when E has

complex multiplication (see [16]), but unknown in general.
Now denote the Iwasawa invariants of \mathcal{X}\#/\mathrm{b} by $\mu$_{\#/\mathrm{b}} and $\lambda$_{\#/\mathrm{b}} ,

and the rank of E(\mathbb{Q}_{\infty})
(which is finite even in the supersingular case, cf. Rohrlich [17] and Kato [5]) by r_{\infty}.

Theorem 2.7. (Kobayashi [7], 2003) Let a_{p}=0 . Assume that \#\mathrm{m}(E/\mathbb{Q}_{n})[p^{\infty}]=
 p^{e_{n}}<\infty . Then for  n\gg 0 ,

we have

e_{n}-e_{n-1}=\left\{\begin{array}{l}
$\mu$_{\#}(p^{n}-p^{n-1})+$\lambda$_{\#}-r_{\infty}+q_{n}\# when n is odd,\\
$\mu$_{\mathrm{b}}(p^{n}-p^{n-1})+$\lambda$_{\mathrm{b}}-r_{\infty}+q_{n}^{\mathrm{b}} when n is even.
\end{array}\right.
Here, the integers  q_{n}\# and  q_{n}^{\mathrm{b}} come from values of Pollack�s half‐logarithms \log_{p}^{+}

and \log_{p}^{-} at p‐power roots of unity. But when one includes the case a_{p}\neq 0 ,
it is not

these half‐logarithms, but four entries appearing in the definition of \mathcal{L}og_{a_{p}} that play a

role. The valuation of a_{p} can then be so small that there are cases when the growth of

\mathrm{m}(E/\mathbb{Q}_{n})[p^{\infty}] is only controlled by one of the two pairs of Iwasawa invariants:

Theorem 2.8. (S. [23]) Let p|a_{p} . Assume that \#\mathrm{m}(E/\mathbb{Q}_{n})[p^{\infty}]=p^{e_{n}}<\infty.
Then for n\gg 0 ,

we have e_{n}-e_{n-1}=

\left\{\begin{array}{l}
(the above formula of Kobayashi) when a_{p}=0 or $\mu$_{\#}=$\mu$_{\mathrm{b}},\\
$\mu$_{\mathrm{b}}(p^{n}-p^{n-1})+$\lambda$_{\mathrm{b}}-r_{\infty}+$\mu$_{\#}(p^{n}-p^{n-1})+$\lambda$_{\#}-r_{\infty}+\}_{q_{n}^{\mathrm{b}}}^{q_{n}}q_{n+1}^{\mathrm{b}}q_{n+1}^{\#}\# forevennforoddnforevennforoddn[Case]
\end{array}\right.
Perrin‐Riou�s invariants  $\mu$\pm and  $\lambda$\pm can be explained in terms of the pairs of Iwa‐

sawa invariants $\mu$_{\#/\mathrm{b}} and $\lambda$_{\#/\mathrm{b}} . For a precise discussion, see [23, Section 5].
We end this article with two open questions.
It is natural to ask how the l‐part behaves, i.e. how fast l^{e_{n}'} :=\#\mathrm{m}(E/\mathbb{Q}_{n})[l^{\infty}]

grows for a prime l\neq p . That the l‐part should stay constant is a folklore conjecture,
but seems to not have been written up yet:

Conjecture 2.5. Let l\neq p be a prime of good reduction and assume that

\#\mathrm{m}(E/\mathbb{Q}_{n})[l^{\infty}] is finite. Choose e_{n}^{\ovalbox{\tt\small REJECT}} so that l\mathrm{e}\mathrm{n}=\#\mathrm{m}(E/\mathbb{Q}_{n})[l^{\infty}] . Then for n\gg 0,
we have

e_{n}^{\ovalbox{\tt\small REJECT}}-e_{n-1}^{\ovalbox{\tt\small REJECT}}=0.
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Another general philosophy is that Ill is as small as possible, which gives an in‐

tuitive explanation of Theorem 2.8: When presented with two  $\mu$‐invariants, \mathrm{m} chooses

the smaller one: Ill is modest! In view of Kurihara�s Conjecture 2.3 above, we make

the following conjecture:

Conjecture 2.6. Let E be an elliptic curve over \mathbb{Q} with good supersingular re‐

duction at an odd prime p with Iwasawa invariants as above. Then

\displaystyle \min($\mu$_{\#}, $\mu$_{\mathrm{b}})=0.
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