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On the Stable Reduction of X_{0}(5^{4}) and X_{0}(7^{4})

By

Takahiro Tsushima *

Abstract

R. Coleman and K. McMurdy calculated the stable reduction of X_{0}(p^{3}) on the basis of the

rigid geometry in [CM]. In [T], we determine the stable model of X_{0}(p^{4}) for primes p\geq 13 on

the basis of their idea. In this paper, we compute the stable model of X_{0}(p^{4}) for the remaining
cases p=5 , 7. The stable model of X_{0}(11^{4}) is expected to be calculated in the same way as

the cases p=5 , 7.

§1. Introduction

By a model for a scheme X over a complete local field K
,

we mean a scheme \mathcal{X} over the

ring of integers \mathcal{O}_{K} of K such that X\simeq \mathcal{X}\otimes \mathrm{o}_{K}K . When a curve C over K does not

have a model with good reduction over \mathcal{O}_{K} ,
it may have the �next best thing,� i.e., a

stable model. The stable model is unique up to isomorphism if it exists, and it does over

the ring of integers in some finite extension of K
,

as long as the genus of the curve is

at least 2; which is proved by Deligne and Mumford in [DM]. Moreover, if C is a stable

model for C over \mathcal{O}_{K} ,
and K\subset L\subset \mathbb{C}_{p} ,

then C\otimes 0_{K}\mathcal{O}_{L} is a stable model for C\otimes_{K}L
over \mathcal{O}_{L} . The special fiber of any stable model for C is called the stable reduction.

In the following, we focus on the modular curve X_{0}(p^{n}) . Let n be an integer and

p a prime number. It is known that if n\geq 3 and p\geq 5 ,
or if n\geq 1 and p\geq 11

except for (n, p)=(1,13) ,
the modular curve X(p) does not have a model with good

reduction over the ring of integers of any complete subfield of \mathbb{C}_{p} . The stable models of

X(p) and X(p) were previously known, due to works of Igusa and Deligne‐Rapoport

[DR, Section 7.6], and B. Edixhoven [ \mathrm{E}
,
Theorem 2.1.2] respectively. In [CM], Coleman‐

McMurdy determine the stable reduction of X(p) for primes p\geq 13 . Furthermore, they

Received March 24, 2011. Revised April 12, 2011.

2000 Mathematics Subject Classication(s): 14\mathrm{G}22, 14\mathrm{G}35

Key Words: Stable reduction of modular curves

Supported by Japan Society for the Promotion of Science and in part by KAKENHI grants
21674001.

*

Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi‐ku, Fukuoka city, Fukuoka

8190395, Japan.
\mathrm{e}‐mail: tsushima@math.kyushu‐u.ac.jp

© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



206 Takahiro Tsushima

also compute the stable model of X(p) for p=5 , 7, 11 in [CM2]. In [T], we determine

the stable model of X(p) for p\geq 13 . The stable model of X(3) is calculated in [Mc].
See [CM, Introduction] for other prior results regarding the stable models of modular

curves at prime power levels. Using the type theory of Bushnell‐Kutzko, J. Weinstein

conjectures on the stable model of the modular curve X(p) in [W].
In order to compute the stable reduction of X(p) and X_{0}(p^{4}) ,

it is necessary to

approximate the forgetful map $\pi$_{f} : X_{0}(p)\rightarrow X_{0}(1) ,
over some supersingular locus. To

apply de Shalit�s approximation formula for $\pi$_{f} in [CM, Theorem 3.5], [\mathrm{d}\mathrm{S}\mathrm{h}] or (3.1), we

need an existence of an elliptic curve over \mathrm{F}_{p} ,
whose j‐invariant is not equal to 0 , 1728:

By a result of E. Howe in [CM, Theorem A.1], one always has such an elliptic curve

as long as p\geq 13 . In cases p=5 , 7, 11, there is no such supersingular elliptic curve.

Therefore, Coleman‐McMurdy use a direct approximation formula for $\pi$_{f} to compute the

stable reduction of X(p) for p=5 , 7, 11 in [CM2, subsections 7.2‐7.4]. In the following,
we briefly explain the reason why the approximation formulas for $\pi$_{f} mentioned above

is needed to determine the stable reduction of X(p) in [CM] and in [CM2, subsections

7.2‐7.4]. Coleman‐McMurdy define a subspace \mathrm{Z}_{1,1}^{A}\subset X_{0}(p^{3}) ,
whose reduction becomes

an irreducible component in the stable reduction of X_{0}(p^{3}) . The main part in loc. cit.

is in computing the reduction of the space \mathrm{Z}_{1,1}^{A} . To compute the reduction of this space,

they consider an embedding of it into a product of X(p) and determine its image as

in (3.2) and (3.3). Under these identifications, by the approximation formulas for $\pi$_{f}

mentioned above, we know explicit defining equations of the spaces \mathrm{Z}_{1,1}^{A} . Hence, we can

compute the reduction \overline{\mathrm{Z}}_{1,1}^{A}.
In my talk at the conference, I reported on the stable model of X(p) for p\geq 13.

In this paper, we review the shape of the stable model of X(p) with p\geq 13 ,
which is

given in [T], in section 2, and compute explicitly the stable models of X(5) and X(7)
in section 3. To compute the stable models of X_{0}(p^{4})(p=5,7) ,

we use the explicit

approximation formulas for $\pi$_{f} : X_{0}(p)\rightarrow X(1) over a supersingular locus, which are

given in [CM2, subsections 7.2 and 7.3]. The main part in an explicit computation of the

stable reduction of X(p) is in calculating the reduction of a subspace \mathrm{Y}_{2,2}^{A}\subset X_{0} (p4).
The stable reduction of X(11) is expected to be computed in the same way as the

cases p=5 , 7. However, to compute the stable reduction of X_{0}(11^{4}) ,
we need a more

precise approximation formula for $\pi$_{f} than the one given in [CM2, subsection 7.4].
Computations in this paper should serve not only to extend the result of [T], but also

to make the construction more concrete.

Notation. We fix some p‐adic notation. We let \mathbb{C}_{p} be the completion of a fixed

algebraic closure of \mathbb{Q}_{p} ,
with integer ring \mathbb{R}_{p} and with m_{\mathbb{R}_{p}} the maximal ideal of \mathbb{R}_{p} . For

any finite field \mathrm{F} contained in \overline{\mathrm{F}}:=\mathbb{R}_{p}/m_{\mathbb{R}_{p}} ,
an algebraic closure of \mathrm{F}_{p} ,

let W() \subset \mathbb{R}_{p}
denote the ring of Witt vectors of F. Let v denote the unique valuation on \mathbb{C}_{p} with
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v(p)=1, |\cdot| the absolute value given by |x|=p^{-v(x)} and \mathcal{R}=|\mathbb{C}_{p}^{*}|=p^{\mathbb{Q}} . Throughout the

paper, we let K be a complete subfield of \mathbb{C}_{p} with ring of integers R_{K} and residue field

\mathrm{F}_{K} . For r\in \mathcal{R} ,
we let B[r] and B(r) denote the closed and open disks over K of radius

r around 0 ,
i.e. the rigid spaces over K whose \mathbb{C}_{p} ‐valued points are \{x\in \mathbb{C}_{p}:|x|\leq r\}

and \{x\in \mathbb{C}_{p} : |x|<r\} respectively. If r, s\in \mathcal{R} and r\leq s ,
let A_{K}[r, s] and A_{K}(r, s)

be the rigid spaces over K whose \mathbb{C}_{p} ‐valued points are \{x\in \mathbb{C}_{p} : r\leq|x|\leq s\} and

\{x\in \mathbb{C}_{p}:r<|x|<s\} ,
which we call closed annuli and open annuli. By the width of

such an annulus, we mean \log_{p}(s/r) . A closed annuli of width 0 will be called a circle,
which we will also denote the circle, A_{K}[s, s] , by C_{K}[s].

§2. Overview of the stable model of X(p) when p\geq 13

In this section, we review a construction of the stable model of X_{0}(p^{4})(p\geq 13)
given in [T].

Over \mathbb{C}_{p} ,
we may think of points on the modular curve X(p) as corresponding

to isomorphism classes of pairs (E, C) where E/\mathbb{C}_{p} is an elliptic curve and C is a cyclic

subgroup of order p^{n}.
The approach of [T] is rigid analytic as in [CM]. Our strategy to find the stable

model is the same as the one in loc. cit. Namely, we construct a stable model of X(p) by

actually constructing a stable covering by wide opens. The concept of the stable covering
is invented by Coleman to compute the stable reduction of a curve over a local field.

Roughly speaking, the wide open subspaces in a stable covering intersect each other

in disjoint annuli and have underlying affinoids with good reduction. Each irreducible

component in the stable reduction is the reduction of one of these underlying affinoids

and the annuli of intersection reduce to the ordinary double points where components

intersect. See [CM, subsections 2.2 and 2.3] or [CW, Section 1] for the notions of wide

open space and stable covering. The groundwork in the rigid analytic setting has been

done in [CM, Section 2]. See also [C1].
The ordinary (resp. supersingular) region or locus of X(p) means a set of iso‐

morphism classes of pairs (E, C)\in X(p) with the reduction \overline{E} an ordinary (resp.
supersingular) elliptic curve. The geometry of the ordinary region of X(p) is well‐

understood. A covering of the ordinary locus of the modular curve X(p) can be

obtained by extending the ordinary affinoids \mathrm{X}_{a,b}^{\pm} with a+b=n, a\geq 0, b\geq 0 defined

in [C2] and recalled in [CM2, subsection 2.1] to wide open neighborhoods W_{a,b}^{\pm} . See

also [KM, Section 13] for the treatment of the ordinary locus. The ordinary regions of

X(p) and X(p) are covered by four wide opens W_{2,0}, W_{1,1}^{\pm}, W_{0,2} and six wide opens

W_{3,0}, W_{2,1}^{\pm}, W_{1,2}^{\pm}, W_{0,3} respectively as in [CM, subsection 3.2, Theorem 5.3 and Theo‐

rem 9.2]. Similarly as the stable coverings of X(p) and X_{0}(p^{3}) ,
the ordinary region of

X(p) is covered by eight wide opens, which are denoted by W_{4,0}, W_{3,1}^{\pm}, W_{2,2}^{\pm}, W_{1,3}^{\pm} and
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W_{0,4} . These spaces contain affinoid subdomains \mathrm{X}_{a,b}^{\pm}(a+b=4, a\geq 0, b\geq 0) ,
whose

reduction are known to be the Igusa curves \mathrm{I}\mathrm{g}(p^{\min(a,b)}) by [C2] or [CM, Proposition

3.6]. Let \overline{W}_{a,b}^{\pm} denote the reduction of the space W_{a,b}^{\pm}.
The supersingular locus essentially breaks up into the union of finitely many de‐

formation spaces of height 2 formal groups with level structure. We produce a covering
of the supersingular locus on the basis of Coleman‐McMurdy�s ideas in [CM] and [Mc].
Finally, we compute the �genus� of the covering to show that it is equal to the genus of

X_{0}(p^{4}) ,
and then conclude that the overall covering is stable.

For a fixed supersingular elliptic curve A/\mathrm{F}_{p^{2}} ,
let W(p) be the subspace of X(p)

consisting of pairs (E, C) where \overline{E}\simeq A . We set i(A)= | Aut(A)/2. To analyze the

supersingular locus W_{A}(p^{n}) ,
we use the theory of canonical subgroups due to Katz‐

Lubin‐Buzzard. See [Ka] and [B] for the canonical subgroup. Let E/\mathbb{C}_{p} be an elliptic
curve such that \overline{E}\simeq A . The size of the canonical subgroup of E

,
denoted by K(E) ,

is measured by the valuation of the Hasse invariant of A . We denote the valuation by

h(E) . We have the following result

|K(E)|>p^{n}\Leftrightarrow h(E)<p^{1-n}/(p+1) .

The space W(p) is known to be isomorphic to an annulus A(p^{-i(A)}, 1) . We fix an iso‐

morphism W_{A}(p)\simeq A(p^{-i(A)}, 1) satisfying v(x_{A}(E, C))=i(A)h(E) if C is a canonical

subgroup, and v(x_{A}(E, C))=i(A)(1-h(E/C)) otherwise. For a rational number  $\alpha$

such that  1< $\alpha$<p^{-i(A)} ,
let \mathrm{C}_{ $\alpha$}^{A}\subset W(p) be the subspace corresponding to the circle

C[p^{- $\alpha$}] under the identification W_{A}(p)\simeq A(p^{-i(A)}, 1) . The space W(p) is known to

be a basic wide open space by [CM, Section 5]. Unlike W_{A}(p^{2}) , however, W(p) and

W(p) must themselves be covered by smaller wide opens, because their reduction

contains multiple irreducible components as mentioned in [CM, Section 1.1].
We define several rigid analytic subspaces of W(p) on the basis of the idea of

[Mc, subsection 5.1], whose reduction plays a key role in the construction of the stable

model of the modular curves.

We focus on the circles \mathrm{T}\mathrm{S}_{A}:=C[p^{-i(A)\frac{p}{p+1}}]\subset W(p) and \mathrm{S}\mathrm{D}_{A}:=C[p^{-i(A)/2}]\subset
 W(p) under the above identification W_{A}(p)\simeq A(p^{-i(A)}, 1) . Let $\pi$_{f}, $\pi$_{v} :  X_{0}(p^{n})\rightarrow
 X(p) be level‐lowering maps given by $\pi$_{f}(E, C)=(E, pC) and $\pi$_{v}(E, C)=(E/p^{n-1}C,
C/p^{n-1}C) . Let a, b\in \mathbb{Z}_{\geq 0} . We put $\pi$_{a,b}:=$\pi$_{v}^{a}\circ$\pi$_{f}^{b}.

Assume that a, b are positive integers. We define as follows

\mathrm{Y}_{a,b}^{A}:=$\pi$_{a,b-1}^{-1}(\mathrm{T}\mathrm{S}_{A})\subset W_{A}(p^{n})
with a+b=n\geq 2 and

\mathrm{Z}_{a,b}^{A}:=$\pi$_{a,b}^{-1}(\mathrm{S}\mathrm{D}_{A})\subset W(p)
with a+b=n-1\geq 2 . As mentioned above, the reduction of these spaces plays a

fundamental role in the stable models of modular curves. Let \overline{\mathrm{Y}}_{a,b}^{A} and \overline{\mathrm{Z}}_{a,b}^{A} denote
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the reduction of the spaces \mathrm{Y}_{a,b}^{A} and \mathrm{Z}_{a,b}^{A} respectively. The main parts of the works

[E] and [CM] are in calculating the reduction of \mathrm{Y}_{1,1}^{A}\subset W(p) and \mathrm{Z}_{1,1}^{A}\subset W_{A}(p^{3})
respectively. Similarly, the main part in [T] is in calculating the reduction \overline{\mathrm{Y}}_{2,2}^{A} . In [CM,
Lemma 5.1 and Proposition 7.1], to calculate the reduction \overline{\mathrm{Y}}_{1,1}^{A} and \overline{\mathrm{Z}}_{1,1}^{A} , Coleman‐

McMurdy consider an embedding of them into a product of the subspaces of W(p) and

apply de Shalit�s approximation theorem for $\pi$_{f}.

In the following, we will explain the shape of the stable model of X(p) for  p\geq
 13 . We fix a supersingular elliptic curve A/\mathrm{F}_{p} with j(A)\neq 0 , 1728 and analyze the

locus W_{A}(p^{4}) . The existence of such elliptic curve is guaranteed by a result of Howe

in [CM, Theorem A. 1] as mentioned in the introduction. First of all, the reduction of

W(p) contains two isomorphic lifts \overline{\mathrm{Y}}_{1,3}^{A} and \overline{\mathrm{Y}}_{3,1}^{A} of a supersingular component \overline{\mathrm{Y}}_{1,1}^{A}
of X_{0}(p^{2}) ,

with each meeting exactly three of the ordinary components. For example,
the reduction \overline{\mathrm{Y}}_{3,1}^{A} meets the reduction of W_{4,0}, W_{3,1}^{\pm} . The component \overline{\mathrm{Y}}_{1,1}^{A} of X(p) is

the �horizontal component� found by Edixhoven in [ \mathrm{E}
,

Theorem 2.1.2]. The curve \overline{\mathrm{Y}}_{1,1}^{A}
is defined by the equation

xy(x-y)^{p-1}=1
and its genus is equal to (p-1)/2 . Coleman‐McMurdy give a rigid analytic interpretation
to the horizontal component of Edixhoven in [CM, Proposition 5.2]. Furthermore, the

reduction of W(p) contains two isomorphic lifts \overline{\mathrm{Z}}_{1,2}^{A} and \overline{\mathrm{Z}}_{2,1}^{A} of a supersingular

component \overline{\mathrm{Z}}_{1,1}^{A} in the stable reduction of X_{0}(p^{3}) . The component \overline{\mathrm{Z}}_{1,1}^{A} in the stable

reduction of X(p) is found by Coleman‐McMurdy in [CM, Proposition 8.2], which

they call the �bridging component�. The curve \overline{\mathrm{Z}}_{1,1}^{A} is defined by

Z^{p}+X^{p+1}+X^{-(p+1)}=0

and its genus is equal to 0 . This curve has 2(p+1) singular points at  X= $\zeta$ with

 $\zeta$^{2(p+1)}=1 . Moreover, in the stable reduction of X_{0}(p^{3}) ,
the component \overline{\mathrm{Z}}_{1,1}^{A} meets

(in distinct points) a certain number of isomorphic copies of a curve of genus (p-1)/2
defined by a^{p}-a=s^{2} . This phenomenon is first observed by Coleman‐McMurdy in

the stable reduction of X_{0}(p^{3}) . Similarly as above, in the stable reduction of X_{0}(p^{4}) ,

the components \overline{\mathrm{Z}}_{1,2}^{A} and \overline{\mathrm{Z}}_{2,1}^{A} meet (in distinct points) a certain number of isomorphic

copies of a curve of genus (p-1)/2 defined by a^{p}-a=s^{2} . In the stable reduction

of X_{0}(p^{4}) ,
these two �old� components \overline{\mathrm{Z}}_{1,2}^{A} and \overline{\mathrm{Z}}_{2,1}^{A} are connected through a central

component \overline{\mathrm{Y}}_{2,2}^{A} ,
which we call the �new bridging component� in the stable reduction

of X_{0}(p^{4}) . This curve \overline{\mathrm{Y}}_{2,2}^{A} is defined by the following equations

(2.1) xy(x-y)^{p-1}=1, Z^{p}+1+\displaystyle \frac{1}{x^{p+1}}+\frac{1}{y^{p+1}}=0,
and its genus is equal to (p-1)/2 . The component \overline{\mathrm{Y}}_{2,2}^{A} meets exactly two ordinary
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components \overline{W}_{2,2}^{\pm} . The curve (2.1) has (p+1) singular points at (x, y)= (;  $\zeta$) with

$\zeta$^{p+1}=-1 . To complete the picture, the new bridging component \overline{\mathrm{Y}}_{2,2}^{A} then meets (in
distinct points) a certain number of isomorphic copies of a curve of genus p(p-1)/2,
defined by a^{p}-a=t^{p+1} . This curve is the Deligne‐Lusztig curve for SL_{2}(\mathrm{F}_{p}) . This is

a new phenomenon that is observed in the stable reduction of X_{0}(p^{4}) .

In the table below, we give the following pairs (c, d)

\bullet  c is the genus of the component \overline{\mathrm{Y}}_{a,b}^{A}(a+b=4) or \overline{\mathrm{Z}}_{a,b}^{A}(a+b=3) .

\bullet  d is the number of copies of the curve a^{p}-a=s^{2} or a^{p}-a=t^{p+1} which intersect

the component \overline{\mathrm{Z}}_{a,b}^{A}(a+b=3) or \overline{\mathrm{Y}}_{a,b}^{A}(a+b=4) .

(0;
2( 1)

; 0)

\mathrm{j}(\mathrm{A}) = 1728 (0; \mathrm{p} + 1) ; 0)

otherwise (0; 2(\mathrm{p} + 1)) ; 0) ; \mathrm{p} + 1)

Table 1 : Genera of Supersingular Components of X(p)

Partial dual graphs of the stable reduction of X_{0}(p^{n})(2\leq n\leq 4, p\geq 13) , including
one complete supersingular region, are given below.

. . . -\overline{\circ}W_{2,0} \overline{W}_{0,2 ,\circ-} . . .

. . . -\mathrm{O}^{/}\overline{W}_{1,1}^{-} \backslash _{\mathrm{o}-}\overline{W}_{1,1}^{+} . . .

Figure 1 : A partial dual graph of X_{0}(p^{2}) .
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. . . -\circ\overline{W}_{3,0}

. . . -\circ\overline{W}_{2^{/}}^{+_{1}},

\overline{W}_{0,\circ,-}\ldots

\backslash _{\mathrm{o}-}\overline{W}_{1,2}^{+} . . .

Figure 2 : A partial dual graph of X(p)

. . . -\circ\overline{W}_{4,0} \circ\vdash_{W_{2,2}^{+}} \overline{W}_{0,4 ,\circ-} . . .

. . .

-\circ\overline{W}_{3,1}^{+} \overline{W}_{2,21}^{-}\circ \overline{W}_{1,3}^{+}\circ-
\cdots

Figure 3 : A partial dual graph of  X(p)

§3. Stable model of X(p) for p=5 , 7

In this section, we recall briefly how to compute the irreducible components in the

stable reduction of X(p) and X(p) when p\geq 13 . We then use explicit equations for

X(p) when p=5 , 7, to derive formulas analogous to the case p\geq 13 ,
and subsequently

construct the analogous stable reduction components.

§3.1. Explicit analysis of a good supersingular region

In 3.1, suppose that p\geq 13 ,
and hence by the result of Howe there is a supersingular

elliptic curve A/\mathrm{F}_{p} with j(A)\neq 0 , 1728: All computations of irreducible components in

the stable reduction of X(p) in [T] can be summarized as follows. First of all, let w_{1} :

X_{0}(p)\rightarrow X(p) be the Atkin‐Lehner involution given by w_{1}(E, C)=(E/C, E[p]/C) .

Then, we have $\pi$_{v}=$\pi$_{f}\circ w_{1} . We have parameters, T and S ,
on W(p) and W_{A}(1) ,

which identify these regions with the annulus, 0<v(T)<1 ,
and the disk v(S)>0.
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Namely, we fix identifications W_{A}(p)\simeq A(p^{-1},1)\ni T and W_{A}(1)\simeq B(1)\ni S . Under

these identifications, the maps $\pi$_{f} and w_{1} satisfy

(3.1) w_{1}(T)=\displaystyle \frac{ $\kappa$}{T}, S=$\pi$_{f}(T)\equiv T+(\frac{ $\kappa$}{T})^{p}(\mathrm{m}\mathrm{o}\mathrm{d} p) .

for some  $\kappa$\in W(\mathrm{F}_{p^{2}}) with v( $\kappa$)=1 . These results follow from the de Shalit theorem in

[CM, Theorem 3.5]. Finally, the two circles inside W_{A}(p) , namely \mathrm{T}\mathrm{S}_{A} and \mathrm{S}\mathrm{D}_{A} are

defined by v(t)=\displaystyle \frac{p}{p+1} and v(t)=1/2 respectively. Using the above information, we now

recall briefly how to explicitly compute the reduction of the affinoids \mathrm{Z}_{1,1}^{A}\subset W_{A}(p^{3})
and \mathrm{Y}_{2,2}^{A}\subset W_{A}(p^{4}) . We consider the following embeddings

($\pi$_{0,2}, $\pi$_{1,1}, $\pi$_{2,0}) : W_{A}(p^{3})\mapsto W_{A}(p)^{\times 3}\simeq A(p^{-1},1)^{\times 3}\ni(X, U, V)

and

($\pi$_{0,3}, $\pi$_{1,2}, $\pi$_{2,1}, $\pi$_{3,0}) : W_{A}(p^{4})\mapsto W_{A}(p)^{\times 4}\simeq A(p^{-1},1)^{\times 4}\ni(X, U, V, Y)

where all isomorphisms are induced by W_{A}(p)\simeq A(p^{-1},1)\ni T fixed above. These

embeddings induce the following descriptions of \mathrm{Z}_{1,1}^{A} and \mathrm{Y}_{2,2}^{A} in [T]

\mathrm{Z}_{1,1}^{A}\simeq\{(X, U, Y)\in \mathrm{C}_{1/2p}^{A}\times \mathrm{C}_{1/2}^{A}\times \mathrm{C}_{1-(1/2p)}^{A}|$\pi$_{v}(X)=$\pi$_{f}(U), $\pi$_{v}(U)=$\pi$_{f}(Y)\}.
and

\mathrm{Y}_{2,2}^{A}\simeq\{(X, U, V, Y)\in \mathrm{C}_{1/p(p+1)}^{A}\times \mathrm{C}_{1/(p+1)}^{A}\times \mathrm{C}_{p/(p+1)}^{A}\times \mathrm{C}_{1-(1/p(p+1))}^{A}|

(3.2) $\pi$_{v}(X)=$\pi$_{f}(U) , $\pi$_{v}(U)=$\pi$_{f}(V) , $\pi$_{v}(V)=$\pi$_{f}(Y) , w_{1}(X)\neq Y\}.

We apply the above approximations (3.1) of $\pi$_{f} and w_{1} to deduce the defining equations
of \overline{\mathrm{Z}}_{1,1}^{A} and \overline{\mathrm{Y}}_{2,2}^{A} in [T]. See the previous section for the defining equations of them.

When p=5 , 7, the ideas described above are not able to be applied, because there

is no such A . However, without the assumption j(A)\neq 0 , 1728; the spaces \mathrm{Y}_{2,2}^{A} and

\mathrm{Z}_{1,1}^{A} have the following descriptions, analogous to the above identifications,

(3.3)

\mathrm{Z}_{1,1}^{A}\simeq\{(X, U, Y)\in \mathrm{C}_{i(A)/2p}^{A}\times \mathrm{C}_{i(A)/2}^{A}\times \mathrm{C}_{i(A)\{1-(1/2p)\}}^{A}|$\pi$_{v}(X)=$\pi$_{f}(U), $\pi$_{v}(U)=$\pi$_{f}(Y)\}
and

\mathrm{Y}_{2,2}^{A}\simeq\{(X, U, V, Y)\in \mathrm{C}_{i(A)/p(p+1)}^{A}\times \mathrm{C}_{i(A)/(p+1)}^{A}\times \mathrm{C}_{pi(A)/(p+1)}^{A}\times \mathrm{C}_{i(A)\{1-(1/p(p+1))\}}^{A}|

(3.4) $\pi$_{v}(X)=$\pi$_{f}(U) , $\pi$_{v}(U)=$\pi$_{f}(V) , $\pi$_{v}(V)=$\pi$_{f}(Y) , w_{1}(X)\neq Y\}.
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In following subsections, to compute the stable reduction of X(p) for p=5 , 7, we use

direct approximation formulas for w_{1} and $\pi$_{f} given in [CM2, subsections 7.2 and 7.3]
with the identifications (3.3) and (3.4).

§3.2. X(5)

We recall a parametrization on the genus 0 curve, X_{0}(5) ,
considered in [CM2,

subsection 7.2] and [Mc2, Section 4]. We put T:=$\eta$_{1}^{6}/$\eta$_{5}^{6} . See [Mc2] for  $\eta$‐function. The

only supersingular  j‐invariant is j=0 . We denote by A the unique supersingular elliptic
curve with j‐invariant 0 . Then, the unique supersingular annulus W(p) is described

by 0<v(T)<3 ,
because of i(A)=3 . Namely, we fix an identification  W_{A}(p)\simeq

 A(p^{-3},1)\ni T . Furthermore, from [Mc2, Table 3], the formulas for the forgetful map

$\pi$_{f} : W_{A}(p)\rightarrow W_{A}(1)\simeq B(1)\ni j and the Atkin‐Lehner involution w_{1} :  W_{A}(p)\rightarrow
 W(p) are given by

$\pi$_{f}^{*}(j)=\displaystyle \frac{(T^{2}+2\cdot 5^{3}T+5^{5})^{3}}{T^{5}}, w_{1}^{*}(T)=\frac{5^{3}}{T}.
Therefore, we obtain the following by $\pi$_{v}=w_{1}\circ$\pi$_{f}

$\pi$_{v}^{*}(j)=T^{5}(1+\displaystyle \frac{2\cdot 5}{T}+\frac{5}{T^{2}})^{3}
The circles \mathrm{S}\mathrm{D}_{A} and \mathrm{T}\mathrm{S}_{A} are described by v(T)=3/2 and v(T)=5/2 respectively.

We briefly recall the computation of the reduction of the space \mathrm{Z}_{1,1}^{A}:=$\pi$_{1,1}^{-1}(\mathrm{S}\mathrm{D})
from [CM2, subsection 7.2]. In the following, we show that the reduction \overline{\mathrm{Z}}_{1,1}^{A} is defined

by
Z^{p}+x^{2}+x^{-2}=0

in Proposition 3.3. This affine curve with genus 0 has singularities at x\in$\mu$_{4}=\mathrm{F}_{5}^{\times} . After

calculating the reduction \overline{\mathrm{Z}}_{1,1}^{A} ,
we find 4 irreducible components defined by a^{5}-a=s^{2},

which attach to the component \overline{\mathrm{Z}}_{1,1}^{A} at each singular point x\in \mathrm{F}_{5}^{\times} . Finally, by the

genus computation, we conclude that, in the stable reduction of X_{0}(5^{3}) ,
no non‐trivial

component appears except for these components mentioned above. Hence, we obtain

the stable reduction of X_{0}(5^{3}) .

To compute the reduction of \mathrm{Z}_{1,1}^{A} ,
we use the identification (3.3)

\mathrm{Z}_{1,1}^{A}\simeq\{(X, U, Y)\in \mathrm{C}_{3/10}^{A}\times \mathrm{C}_{3/2}^{A}\times \mathrm{C}_{27/10}^{A}|$\pi$_{v}(X)=$\pi$_{f}(U), $\pi$_{v}(U)=$\pi$_{f}(Y)\}.
We choose an element  $\beta$ such that  $\beta$^{10}=5^{3} . We have v( $\beta$)=3/10.

For a rational number r\geq 0 ,
if we have v(f-g)>r ,

we write f\equiv g(\mathrm{m}\mathrm{o}\mathrm{d} r+) .

We change variables as follows X= $\beta$/x, U=$\beta$^{5}u, Y=(5^{3}/ $\beta$)y . By $\pi$_{v}(X)=
$\pi$_{f}(U) ,

we acquire the following congruence

(3.5) u\displaystyle \equiv\frac{(1+3\frac{5}{$\beta$^{2}}x^{2})}{x^{5}}(\mathrm{m}\mathrm{o}\mathrm{d} (1/2)+) .
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In the same way as above, we obtain the following congruence by $\pi$_{v}(U)=$\pi$_{f}(Y)

(3.6) u^{-1}\displaystyle \equiv\frac{(1+3\frac{5}{$\beta$^{2}}y^{2})}{y^{5}}(\mathrm{m}\mathrm{o}\mathrm{d} (1/2)+) .

By (3.5) and (3.6), the following congruence holds

(3.7) (xy)^{5}\displaystyle \equiv 1+3\frac{5}{$\beta$^{2}}(x^{2}+y^{2})(\mathrm{m}\mathrm{o}\mathrm{d} (1/2)+) .

We choose an element  $\gamma$ such that  $\gamma$^{5}=3\cdot 5/$\beta$^{2} . We have v( $\gamma$)=2/25 . We introduce a

new parameter Z as follows

(3.8) xy=1+ $\gamma$ Z.

Substituting (3.8) to (3.7) and dividing it by 3\cdot 5/$\beta$^{2} ,
we acquire the following congruence

(3.9) Z^{5}\displaystyle \equiv x^{2}+(\frac{1+ $\gamma$ Z}{x})^{2}(\mathrm{m}\mathrm{o}\mathrm{d} (1/10)+) .

We put F(Z, x) :=x^{2}+(\displaystyle \frac{1+ $\gamma$ Z}{x})^{2}
Proposition 3.1 ( [CM2, subsection 7.2 (4)] ) . Let the notation be as above. Then,

the reduction of the space \mathrm{Z}_{1,1}^{A} is defined by the following equation

Z^{5}=x^{2}+x^{-2}

This affine curve has genus 0.

Proof. By considering (3.9) modulo 0+ ,
the required assertion follows. \square 

Remark 3.2. The reduction \overline{\mathrm{Z}}_{1,1}^{A} has singularities at x\in \mathrm{F}_{5}^{\times}

In the following, we prove that there exist four irreducible components defined

by a^{5}-a=t^{2} in the stable reduction of X_{0}(5^{3}) . These components are called �new

components� in [CM]. These components attach to the curve \overline{\mathrm{Z}}_{1,1}^{A} at each singular point

x=\overline{ $\zeta$} with \overline{ $\zeta$}\in \mathrm{F}_{5}^{\times}
Let  $\zeta$\in$\mu$_{4}(\mathbb{Z}_{5}) . We choose an element $\gamma$_{0} such that $\gamma$_{0}^{5}=($\zeta$^{2}+$\zeta$^{-2})(1+ $\gamma \gamma$_{0}) . We

set x_{0}:= $\zeta$(1+ $\gamma \gamma$_{0})^{1/2} . By the definitions of $\gamma$_{0} and x_{0} ,
we acquire $\gamma$_{0}^{5}=F($\gamma$_{0}, x_{0}) .

Then, we can easily check that

\bullet\partial_{x}F($\gamma$_{0}, x_{0})=0.

\bullet v(\partial_{Z}F($\gamma$_{0}, x_{0}))=v( $\gamma$)=2/25.
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\bullet \partial_{x}^{2}F($\gamma$_{0}, x_{0}) is a unit.

We choose elements $\alpha$_{1} and $\beta$_{1} such that $\alpha$_{1}^{4}=\partial_{Z}F($\gamma$_{0}, x_{0}) and $\alpha$_{1}^{5}=(1/2)\partial_{x}^{2}F($\gamma$_{0}, x_{0})$\beta$_{1}^{2}
respectively. Then, we have v($\alpha$_{1})=1/50, v($\beta$_{1})=1/20.

We change variables as follows

(3.10) x=x_{0}+$\beta$_{1}t, Z=$\gamma$_{0}+$\alpha$_{1}a.

Substituting (3.10) to (3.9), we obtain the following congruence by the choices of $\alpha$_{1}

and $\beta$_{1}

$\alpha$_{1}^{5}(a^{5}-a-t^{2})\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} (1/10)+) .

By dividing this by $\alpha$_{1}^{5} ,
we acquire a^{5}-a=t^{2}(\mathrm{m}\mathrm{o}\mathrm{d} 0+) . Hence, we have proved the

following proposition.

Proposition 3.3. Let the notation be as above. Then, in the stable reduction of

X_{0}(5^{3}) ,
there exist four irreducible components defined by a^{5}-a=t^{2}.

Let g(p) denote the genus of the modular curve X_{0}(p^{n}) . We have g_{0}(5^{3})=8
by [Sh, Propositions 1.40 and 1.43]. Let \mathcal{X}_{0}(p) denote the stable model of X_{0}(p^{n}) . In

\overline{\mathcal{X}_{0}(5^{3})} , we find the component \overline{\mathrm{Z}}_{1,1}^{A} defined by Z^{5}=x^{2}+x^{-2} with genus 0 and the four

curves \{\overline{\mathrm{X}}_{ $\zeta$}\}_{ $\zeta$\in$\mu$_{4}} defined by a^{5}-a=t^{2} with genus 2, which attach to the component

\mathrm{Z}_{1,1}^{A} . On the other hand, the graph of \overline{\mathcal{X}_{0}(5^{3})} is a tree by [CM, Theorem 9.4]. Hence,
the sum of genera of all irreducible components and the Betti number of the dual graph
is equal to 8: Therefore, no non‐trivial component except for these components appears

in \overline{\mathcal{X}_{0}(5^{3})} . Hence, we conclude that \overline{\mathcal{X}_{0}(5^{3})} consists of \overline{\mathrm{Z}}_{1,1}^{A} and \{\overline{\mathrm{X}}_{ $\zeta$}\}_{ $\zeta$\in$\mu$_{4}}.

§3.3. X(5)

In this subsection, we will compute the reduction of \mathrm{Y}_{2,2}^{A} :=$\pi$_{2,1}^{-1} (TS): Recall the

following identification given in (3.4)

\mathrm{Y}_{2,2}^{A}\simeq\{(X, U, V, Y)\in \mathrm{C}_{1/10}^{A}\times \mathrm{C}_{1/2}^{A}\times \mathrm{C}_{5/2}^{A}\times \mathrm{C}_{29/10}^{A}|

$\pi$_{v}(X)=$\pi$_{f}(U) , $\pi$_{v}(U)=$\pi$_{f}(V) , $\pi$_{v}(V)=$\pi$_{f}(Y) , w_{1}(X)\neq Y\}.

In the following, under the above description, by using the approximation formula for

$\pi$_{f} given in the previous subsection, we compute the reduction of the space \mathrm{Y}_{2,2}^{A} as in

Proposition 3.4. The component \overline{\mathrm{Y}}_{2,2}^{A} has genus 0 ,
and has singularities at two points

(r, s)=(0,  $\zeta$) with $\zeta$^{2}=-1 . Then, we find two components defined by a^{5}-a=t^{6}

with genus 10 in Proposition 3.6, which attach to \overline{\mathrm{Y}}_{2,2}^{A} at each singular point. By the

genus computation, we conclude that we have computed all irreducible components in

the stable reduction of X_{0}(5^{4}) .



216 Takahiro Tsushima

We choose an element  $\beta$ such that  $\beta$^{10}=5 . We have v( $\beta$)=1/10 . Note that this  $\beta$
is not equal to  $\beta$ in the previous subsection. We change variables as follows  X= $\beta$/x,
U=$\beta$^{5}/u, V=5^{2}$\beta$^{2}v, Y=(5^{3}/ $\beta$)y . By $\pi$_{v}(U)=$\pi$_{f}(V) ,

we acquire the following

equality

(3.11) \displaystyle \frac{(u^{2}+1+2$\beta$^{5}u)^{3}}{u^{5}}=\frac{(v^{2}+1+2$\beta$^{5}v)^{3}}{v^{5}}.
By $\pi$_{v}(X)=$\pi$_{f}(U) ,

we obtain the following congruence

(3.12) u=x^{5}(1+2\displaystyle \frac{5}{ $\beta$}x+\frac{5}{$\beta$^{2}}x^{2})^{-3}=x^{5}(1-\frac{5}{ $\beta$}x-3\frac{5}{$\beta$^{2}}x^{2})(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+) .

By (3.12), the following congruence holds on the left hand side of the equality (3.11)
(3.13)

\displaystyle \frac{(u^{2}+1+2$\beta$^{5}u)^{3}}{u^{5}}\equiv\frac{(1+x^{10}+2$\beta$^{5}x^{5})^{3}}{x^{25}}-3\frac{5}{$\beta$^{2}} (1+x^{2}+2 $\beta$ x)^{10}\displaystyle \times(\frac{x^{2}+2 $\beta$ x}{x^{15}}-\frac{$\beta$^{5}}{x^{18}})
modulo (4/3)+ . By exchanging (u, x) for (v, y) ,

we acquire the same congruence (3.13)
for (v, y) . Hence, we acquire the following congruence by (3.11) and (3.13)

\displaystyle \frac{(1+x^{10}+2$\beta$^{5}x^{5})^{3}}{x^{25}}-\frac{(1+y^{10}+2$\beta$^{5}y^{5})^{3}}{y^{25}}-3\frac{5}{$\beta$^{2}}\cdot(1+x^{2}+2 $\beta$ x)^{10}\times(\frac{x^{2}+2 $\beta$ x}{x^{15}}-\frac{$\beta$^{5}}{x^{18}})

(3.14) +3\displaystyle \frac{5}{$\beta$^{2}}\cdot(1+y^{2}+2 $\beta$ y)^{10}\times(\frac{y^{2}+2 $\beta$ y}{y^{15}}-\frac{$\beta$^{5}}{y^{18}})\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+) .

We define g(x, y) by the following equality

\displaystyle \frac{(1+x^{10}+2$\beta$^{5}x^{5})^{3}}{x^{25}}-\frac{(1+y^{10}+2$\beta$^{5}y^{5})^{3}}{y^{25}}=(\frac{(x^{2}+1+2 $\beta$ x)^{3}}{x^{5}}-\frac{(y^{2}+1+2 $\beta$ y)^{3}}{y^{5}})^{5}-5g(x, y) .

Let $\gamma$_{1} be an element which satisfies $\gamma$_{1}^{5}=5/$\beta$^{2} . We have v($\gamma$_{1})=4/25 . Furthermore,
we set

(3.15) \displaystyle \frac{(x^{2}+1+2 $\beta$ x)^{3}}{x^{5}}-\frac{(y^{2}+1+2 $\beta$ y)^{3}}{y^{5}}=$\gamma$_{1}Z.
By substituting (3.15) to (3.14) and dividing it by (5/$\beta$^{2}) ,

the following congruence

holds

Z^{5}\displaystyle \equiv 3(1+x^{2}+2 $\beta$ x)^{10}\times(\frac{x^{2}+2 $\beta$ x}{x^{15}}-\frac{$\beta$^{5}}{x^{18}})
(3.16) -3(1+y^{2}+2 $\beta$ y)^{10}\displaystyle \times(\frac{y^{2}+2 $\beta$ y}{y^{15}}-\frac{$\beta$^{5}}{y^{18}})+$\beta$^{2}g(x, y)(\mathrm{m}\mathrm{o}\mathrm{d} (8/15)+) .
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We set

x_{1}:=x(1+\displaystyle \frac{2 $\beta$}{x})^{1/2}, y_{1}:=y(1+\frac{2 $\beta$}{y})^{1/2}
Then, we have

(3.17) x_{1}^{2}=x^{2}+2 $\beta$ x, y_{1}^{2}=y^{2}+2 $\beta$ y.

Then, the following congruence holds by (3.15)

(3.18) \displaystyle \frac{(x_{1}^{2}+1)^{3}}{x_{1}^{5}}-\frac{(y_{1}^{2}+1)^{3}}{y_{1}^{5}}=$\gamma$_{1}Z(\mathrm{m}\mathrm{o}\mathrm{d} (1/5)+) .

We put as in [CM2, subsection 7.2]

(3.19) x_{1}:=\displaystyle \frac{s}{(r-1)^{3}}, y_{1}=\frac{s}{(r+1)^{3}}.
Proposition 3.4. Let the notation be as above. The reduction of the space \mathrm{Y}_{2,2}^{A}

is defined by the following equations

\displaystyle \mathrm{Y}_{2,2}^{A}:s^{2}=r^{2}-1, Z^{5}=\frac{r^{10}(r^{4}+1)^{10}}{s^{15}(r^{2}-1)^{10}}(1+2r^{6}+r^{10}) .

Proof. By (3.15), we acqure the following

(3.20) \displaystyle \frac{(x_{1}^{2}+1)^{3}}{x_{1}^{5}}\equiv\frac{(y_{1}^{2}+1)^{3}}{y_{1}^{5}}(\mathrm{m}\mathrm{o}\mathrm{d} 0+)
with x\neq y by w_{1}(X)\neq Y. Under the transformation (3.19), the curve (3.20) is isomor‐

phic to an affine curve s^{2}=r^{2}-1 as proved in loc. cit. The required assertion follows

by considering the congruence (3.16) modulo 0+ and rewriting it under the variables

(r, s) . \square 

Remark 3.5. In the proof above, the curve (3.20) with x\neq y is isomorphic to the

curve s^{2}=r^{2}-1 . We set

f=f(x_{1}, y_{1}):=\displaystyle \frac{x_{1}^{2}(y_{1}^{2}+1)}{y_{1}^{2}(x_{1}^{2}+1)}.
The inverse of the transformation (3.19) is described as follows

r=\displaystyle \frac{f+1}{f-1}, s=\frac{3x_{1}}{(f-1)^{3}}.
Note f^{3}=x_{1}/y_{1}.
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In the following, we will prove that there exist two irreducible components defined

by a^{5}-a=t^{6} which attach to the reduction \overline{\mathrm{Y}}_{2,2}^{A} at (r, s)=(0,  $\zeta$) , $\zeta$^{2}=-1 . We focus

on a locus v(r)=1/30 . By (3.18), we define g by the equality s^{2}=r^{2}-1+$\gamma$_{1}g . Then,

g satisfies the following congruence

(3.21) $\gamma$_{1}g\displaystyle \equiv\frac{(r^{2}-1)}{r^{2}(r^{4}+1)^{2}}$\gamma$_{1}Z(\mathrm{m}\mathrm{o}\mathrm{d} (1/5)+) .

Hence, we acquire the following congruence

(3.22) s^{2}\displaystyle \equiv(r^{2}-1)\{1+$\gamma$_{1}\frac{Z_{1}}{r^{2}(r^{4}+1)^{2}}\}(\mathrm{m}\mathrm{o}\mathrm{d} (1/5)+) .

In the following, we compute the term $\beta$^{2}g(x, y) in the right hand side of the

congruence (3.16) modulo (8/15)+\mathrm{a}\mathrm{s} in (3.29). We obtain the following equality by the

definition of x_{1}

(3.23) x^{2}+1+2 $\beta$ x=x_{1}^{2}+1=\displaystyle \frac{r(r^{4}+1)}{(r-1)^{5}}+\frac{$\gamma$_{1}g}{(r-1)^{6}}+5\triangle_{0}
with some function \triangle_{0} . Hence, we have v(x^{2}+1+2 $\beta$ x)=v(r) . By (3.17), we define \triangle

by the following equality

(3.24)  x^{10}+1+2$\beta$^{5}x^{5}=x_{1}^{10}+1+5\triangle.

By (3.24), the following congruence holds

x^{10}+1+2$\beta$^{5}x^{5}\displaystyle \equiv\frac{r^{5}(r^{4}+1)^{5}}{(r-1)^{25}}+\frac{($\gamma$_{1}g)^{5}}{(r-1)^{30}}+5\triangle_{1}(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+)
with some function \triangle_{1} . Therefore, we acquire

\displaystyle \frac{(x^{10}+1+2$\beta$^{5}x^{5})^{3}}{x^{25}}\equiv\frac{r^{15}(r^{4}+1)^{15}}{s^{25}}+3\frac{($\gamma$_{1}g)^{5}r^{10}(r^{4}+1)^{10}}{(r-1)^{5}s^{25}}+5r^{10}\triangle_{2}(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+)
with some function \triangle_{2} . We set

H:=3\displaystyle \frac{($\gamma$_{1}g)^{5}r^{10}(r^{4}+1)^{10}}{(r^{2}-1)^{5}s^{25}}\times\{(r+1)^{5}-(r-1)^{5}\}.
Hence, we obtain

(3.25) \displaystyle \frac{(x^{10}+1+2$\beta$^{5}x^{5})^{3}}{x^{25}}-\frac{(y^{10}+1+2$\beta$^{5}y^{5})^{3}}{y^{25}}\equiv H+5r^{10}\triangle_{2}'
modulo (4/3)+ with some function \triangle_{2}' . Since we have v(x^{2}+1+2 $\beta$ x)=v(r) ,

we acquire
the following congruence

(3.26)

(\displaystyle \frac{(x^{2}+1+2 $\beta$ x)^{3}}{x^{5}}-\frac{(y^{2}+1+2 $\beta$ y)^{3}}{y^{5}})^{5}\equiv\frac{(x^{2}+1+2 $\beta$ x)^{15}}{x^{25}}-\frac{(y^{2}+1+2 $\beta$ y)^{15}}{y^{25}}(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+) .
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We easily verify the following congruence using the equality (3.23)

(3.27) \displaystyle \frac{(x^{2}+1+2 $\beta$ x)^{15}}{x^{25}}\equiv\frac{r^{15}(r^{4}+1)^{15}}{s^{25}}+3\frac{($\gamma$_{1}g)^{5}}{(r-1)^{5}}\times\frac{r^{10}(r^{4}+1)^{10}}{s^{25}}(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+) .

By exchanging x for y ,
we obtain the same congruence (3.27) for (y, r, s) . Hence, by

(3.27) and (3.26), we acquire the following congruence by the definition of g(x, y)

(3.28) (\displaystyle \frac{(x^{2}+1+2 $\beta$ x)^{3}}{x^{5}}-\frac{(y^{2}+1+2 $\beta$ y)^{3}}{y^{5}})^{5}\equiv H(\mathrm{m}\mathrm{o}\mathrm{d} (4/3)+) .

By (3.25) and (3.28), we obtain the following

(3.29) $\beta$^{2}g(x, y)\equiv-$\beta$^{2}r^{10}\triangle_{2}'\equiv$\beta$^{2}r^{10}d(\mathrm{m}\mathrm{o}\mathrm{d} (8/15)+)

where -d is the constant term of \triangle_{2}'(r, s) .

Since we have v($\gamma$_{1}^{5})=4/5>8/15 and v($\beta$^{5}r^{10})=5/6>8/15 ,
we rewrite the

congruence (3. 16) by (3.29)

(3.30) Z^{5}\displaystyle \equiv$\beta$^{2}r^{10}d+3\frac{(1+x_{1}^{2})^{10}}{x_{1}^{13}}-3\frac{(1+y_{1}^{2})^{10}}{y_{1}^{13}}(\mathrm{m}\mathrm{o}\mathrm{d} (8/15)+) .

Then, on the term in the right hand side of the congruence (3.30), we acquire the

following congruence by (3.19) and s^{2}=r^{2}-1+$\gamma$_{1}g

(3.31) \displaystyle \frac{(1+x_{1}^{2})^{10}}{x_{1}^{13}}\equiv\frac{r^{10}(r^{4}+1)^{10}}{s^{15}}(\frac{r+1}{(r-1)^{10}})(1+\frac{$\gamma$_{1}g}{r^{2}-1})(\mathrm{m}\mathrm{o}\mathrm{d} (8/15)+) .

By exchanging x_{1} for y_{1} ,
we acquire the same congruence (3.31) for (y_{1}, r, s) by (3.19).

Hence, substituting (3.31) to the right hand side of (3.30), we acquire the following

congruence

(3.32) Z^{5}\displaystyle \equiv$\beta$^{2}r^{10}d+3\frac{r^{10}(r^{4}+1)^{10}}{s^{15}(r^{2}-1)^{10}}(1+\frac{$\gamma$_{1}g}{r^{2}-1})\{(r+1)^{11}-(r-1)^{11}\}
modulo (8/15)+ . Note the we have v(Z)=v(r^{2}) .

We set

Z_{1}:=\displaystyle \frac{1}{r^{2}(r^{4}+1)^{2}}Z.
Therefore, we obtain the following congruence by (3.21), (3.22) and (3.32) \times\{r(r^{4}+
1)\}^{-10}

(3.33) Z_{1}^{5}\displaystyle \equiv 3\frac{1}{s^{25}}(1+$\gamma$_{1}Z_{1})\{(r+1)^{11}-(r-1)^{11}\}+$\beta$^{2}d(\mathrm{m}\mathrm{o}\mathrm{d} (1/5)+) .

Since we have (r+1)^{11}-(r-1)^{11}\equiv 2(1+2r^{6}+r^{10})(\mathrm{m}\mathrm{o}\mathrm{d} 1+) ,
the congruence (3.33)

has the following form

(3.34) Z_{1}^{5}\displaystyle \equiv\frac{1}{s^{25}}(1+$\gamma$_{1}Z_{1})(1+2r^{6})+$\beta$^{2}d(\mathrm{m}\mathrm{o}\mathrm{d} (1/5)+) .
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We put s_{0}:=\pm 2 . We choose elements $\beta$_{1} and $\alpha$_{1} such that $\beta$_{1}^{4}=$\gamma$_{1}/s_{0}^{15} and

$\beta$_{1}^{5}=2$\alpha$_{1}^{6}/s_{0}^{15} respectively. We have v($\beta$_{1})=1/25, v($\alpha$_{1})=1/30 . We choose an element

$\gamma$_{0} such that $\gamma$_{0}^{5}=(1+$\gamma$_{1}$\gamma$_{0})/s_{0}^{15}-d.
We change variables as follows

(3.35) Z_{1}=$\gamma$_{0}+$\beta$_{1}a, r=$\alpha$_{1}t, s=s_{0}+\displaystyle \frac{$\alpha$_{1}^{2}}{2s_{0}}s_{1}.
Then, we have s_{1}=t^{2}(\mathrm{m}\mathrm{o}\mathrm{d} 0+) . Substituting (3.35) to the congruence (3.34) and

dividing it by $\beta$^{2} ,
we acquire the following

a^{5}-a=t^{6}(\mathrm{m}\mathrm{o}\mathrm{d} 0+) .

Hence, we have proved the following proposition.

Proposition 3.6. Let the notation be as above. Then, in the stable reduction of

X_{0}(5^{4}) ,
there exist two irreducible components defined by

a^{5}-a=t^{6}

The genus of this affine curve is equal to 10: These two curves attach to the reduction

\mathrm{Y}_{2,2}^{A} at two points (r, s)=(0, \pm 2) .

Let g(p) be the genus of the modular curve X_{0}(p^{n}) . Let g_{p,e} be the genus of the

Igusa curve Ig(p): We have g_{5,1}=0 and g_{5,2}=6 by [Ig, Section 0]. Furthermore,
we have g_{0}(5^{4})=48 by [Sh, Propositions 1.40 and 1.43]. In \overline{\mathcal{X}_{0}(5^{4})} , we find the two

components \overline{\mathrm{Z}}_{2,1}^{A}, \mathrm{Z}_{1,2}^{A} : Z^{5}=x^{2}+x^{-2} with genus 0 ,
the eight components defined by

a^{5}-a=s^{2} with genus 2, \overline{\mathrm{Y}}_{2,2}^{A} with genus 0 ,
the 2 components \overline{\mathrm{x}}_{\pm} with genus 10 and

the two Igusa curves \mathrm{I}\mathrm{g}(5) with genus 6. On the other hand, the graph of the stable

model of X(5) is a tree by [CM, Theorem 9.4]. Hence, the sum of the genera of all

irreducible components and the Betti number of the dual graph is 48: Therefore, we

conclude that the stable reduction \overline{\mathcal{X}_{0}(5^{4})} consists of the above components.

§3.4. X(7)

We recall a parametrization on the modular curve X(7) from [CM2, subsection

7.3]. The genus 0 curve X(7) has a unique supersingular annulus corresponding to

j=1728 . Let A denote this unique supersingular elliptic curve with j‐invariant 1728:

If we take T=$\eta$_{1}^{4}/$\eta$_{7}^{4} as a parameter as in [Mc2, Section 2], the supersingular annulus

W(p) is the region described by 0<v(T)<2 ,
because of i(A)=2 . Namely, we fix

an identification W_{A}(p)\simeq A(p^{-2},1)\ni T . Then, the formulas for the forgetful map

$\pi$_{f} : W_{A}(p)\rightarrow W_{A}(1)\ni j-1728 and the Atkin‐Lehner involution w_{1} : W_{A}(p)\rightarrow W(p)
are given as follows

$\pi$_{f}^{*}(j-1728)=\displaystyle \frac{(T^{4}-10\cdot 7^{2}T^{3}-9\cdot 7^{4}T^{2}-2\cdot 7^{6}T-7^{7})^{2}}{T^{7}}, w_{1}^{*}(T)=\frac{7^{2}}{T}.
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Hence, we obtain the following by $\pi$_{v}=w_{1}\circ$\pi$_{f}

$\pi$_{v}^{*}(j-1728)=T^{7}(1+\displaystyle \frac{2\cdot 7}{T}+\frac{9\cdot 7}{T^{2}}+\frac{10\cdot 7}{T^{3}}-\frac{7}{T^{4}})^{2}
The circles \mathrm{T}\mathrm{S}_{A} and \mathrm{S}\mathrm{D}_{A} are given by v(T)=7/4 and v(T)=1 respectively.

We compute the reduction of the space \mathrm{Z}_{1,1}^{A}=$\pi$_{1,1}^{-1}(\mathrm{S}\mathrm{D}) in the same way as

X_{0}(5^{3}) . We use the following identification (3.3)

\mathrm{Z}_{1,1}^{A}\simeq\{(X, U, Y)\in \mathrm{C}_{1/7}^{A}\times \mathrm{C}_{1}^{A}\times \mathrm{C}_{13/7}^{A}|$\pi$_{v}(X)=$\pi$_{f}(U), $\pi$_{v}(U)=$\pi$_{f}(Y)\}.
Compare this identification with the one given in [CM, subsection 7.3]. In the follow‐

ing, we calculate the reduction of the space \mathrm{Z}_{1,1}^{A} in Proposition 3.7. Furthermore, in

Proposition 3.8, we find 8 components defined by a^{7}-a=s^{2} with genus 3, which attach

to \overline{\mathrm{Z}}_{1,1}^{A} at each singular point x\in$\mu$_{8} . Finally, by the genus computation, we conclude

that we have obtained all irreducible components which appear in the stable reduction

of X_{0}(7^{3}) .

We choose an element  $\beta$ such that  $\beta$^{7}=7 . We have v( $\beta$)=1/7.
We change variables as follows X= $\beta$/x, U=$\beta$^{7}u, Y=(7^{2}/ $\beta$)y . Then, by $\pi$_{v}(X)=

$\pi$_{f}(U) ,
we acquire the following congruence

(3.36) u\displaystyle \equiv\frac{(1-2\frac{7}{$\beta$^{4}}x^{4})}{x^{7}}(\mathrm{m}\mathrm{o}\mathrm{d} (1/2)+) .

In the same way as above, we obtain the following congruence by $\pi$_{v}(U)=$\pi$_{f}(Y)

(3.37) u^{-1}\displaystyle \equiv\frac{(1-2\frac{7}{$\beta$^{4}}y^{4})}{y^{7}}(\mathrm{m}\mathrm{o}\mathrm{d} (1/2)+) .

By (3.36) and (3.37), the following congruence holds

(3.38) (xy)^{7}\displaystyle \equiv 1-2\frac{7}{$\beta$^{4}}(x^{4}+y^{4})(\mathrm{m}\mathrm{o}\mathrm{d} (1/2)+) .

We choose an element  $\gamma$ such that  $\gamma$^{7}=-2\cdot 7/$\beta$^{4} . We have v( $\gamma$)=3/49 . We introduce

a new parameter Z as follows

(3.39) xy=1+ $\gamma$ Z.

Substituting (3.39) to (3.38) and dividing it by -2 7/$\beta$^{4} ,
we acquire the following

congruence

(3.40) Z^{7}\displaystyle \equiv x^{4}+(\frac{1+ $\gamma$ Z}{x})^{4}(\mathrm{m}\mathrm{o}\mathrm{d} (1/14)+) .

We put F(Z, x) :=x^{4}+(\displaystyle \frac{1+ $\gamma$ Z}{x})^{4} . We have proved the following proposition.
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Proposition 3.7. Let the notation be as above. The reduction of the space \mathrm{Z}_{1,1}^{A}
is defined by the following equation

(3.41) Z^{7}=x^{4}+x^{-4}

This affine curve has genus 0.

Proof. As in loc. cit., by considering (3.40) modulo 0+ ,
the required assertion

follows. \square 

Note that the curve (3.41) has singularities at x\in$\mu$_{8}(\mathrm{F}_{49}) . In the following, we

prove that there exist eight irreducible components defined by a^{7}-a=t^{2} in the stable

reduction of X_{0}(7^{3}) . These components are called �new components� in [CM]. These

components attach to the reduction (3.41) at each singular point x=\overline{ $\zeta$} with \overline{ $\zeta$}\in$\mu$_{8}
Let  $\zeta$\in$\mu$_{8}() : We choose an element $\gamma$_{0} such that  $\gamma$Ó =($\zeta$^{4}+$\zeta$^{-4})(1+ $\gamma \gamma$_{0})^{2} . We

set x_{0}:= $\zeta$(1+ $\gamma \gamma$_{0})^{1/2} . By the definitions of $\gamma$_{0}, x_{0} ,
we acquire  $\gamma$Ó =F($\gamma$_{0}, x_{0}) .

Then, we can easily check that

\bullet\partial_{x}F($\gamma$_{0}, x_{0})=0.

\bullet v(\partial_{Z}F($\gamma$_{0}, x_{0}))=v( $\gamma$)=3/49.

\bullet \partial_{x}^{2}F($\gamma$_{0}, x_{0}) is a unit.

We choose elements $\alpha$_{1} and $\beta$_{1} such that $\alpha$_{1}^{6}=\partial_{Z}F($\gamma$_{0}, x_{0}) and  $\alpha$ í =(1/2)\partial_{x}^{2}F($\gamma$_{0}, x_{0})$\beta$_{1}^{2}
respectively. Then, we have v($\alpha$_{1})=1/98, v($\beta$_{1})=1/28.

We change variables as follows

x=x_{0}+$\beta$_{1}t, Z=$\gamma$_{0}+$\alpha$_{1}a.

Substituting them to (3.40), we acquire the following congruence by the choices of $\alpha$_{1}

and $\beta$_{1}

$\alpha$_{1}^{7}(a^{7}-a-t^{2})\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} (1/14)+) .

By dividing this by  $\alpha$ í; we acquire  a^{7}-a=t^{2}(\mathrm{m}\mathrm{o}\mathrm{d} 0+) . Hence, we have proved the

following proposition.

Proposition 3.8. Let the notation be as above. Then, there exist eight irre‐

ducible components defined by a^{7}-a=t^{2} in the stable reduction of X_{0}(7^{3}) . These eight

components attach to the curve (3.41) at each singular point.
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By the same computations as the ones in [CM2, subsection 7.3], we can compute

the reduction of the spaces \mathrm{Y}_{2,1}^{A} and \mathrm{Y}_{1,2}^{A} as follows

\displaystyle \mathrm{Y}_{2,1}^{A}, \mathrm{Y}_{2,1}^{A}:z^{7}=\frac{s}{(r-1)^{2}}, s^{4}=r^{2}-1.
This curve has genus 1:

Let g(p) denote the genus of the modular curve X_{0}(p^{n}) . We have g_{0}(7^{3})=26 by

[Sh, Propositions 1.40 and 1.43]. We find the two irreducible curves \overline{\mathrm{Y}}_{2,1}^{A} and \overline{\mathrm{Y}}_{1,2}^{A} of

genus 1, the component \overline{\mathrm{Z}}_{11}^{A} with genus 0 and the eight curves \{\overline{\mathrm{X}}_{ $\zeta$}\}_{ $\zeta$\in$\mu$_{4}} defined by a^{7}-

a=t^{2} with genus 3 in \overline{\mathcal{X}_{0}(7^{3})} . On the other hand, the dual graph of the stable reduction

of X(7) is a tree by [CM, Theorem 9.4]. Hence, the sum of genera of all irreducible

components and the Betti number of the dual graph is equal to g_{0}(7^{3})=26 . Therefore,
we conclude that the stable reduction \overline{\mathcal{X}_{0}(7^{3})} consists of the above components.

§3.5. X(7)

In this subsection, we will compute the reduction of the space \mathrm{Y}_{2,2}^{A}\subset X_{0}(7^{4}) . We

consider the following identification (3.4)

\mathrm{Y}_{2,2}^{A}\simeq\{(X, U, V, Y)\in \mathrm{C}_{1/28}^{A}\times \mathrm{C}_{1/4}^{A}\times \mathrm{C}_{7/4}^{A}\times \mathrm{C}_{55/28}^{A}|

$\pi$_{v}(X)=$\pi$_{f}(U) , $\pi$_{v}(U)=$\pi$_{f}(V) , $\pi$_{v}(V)=$\pi$_{f}(Y) , w_{1}(X)\neq Y\}.

In Proposition 3.9, we compute the reduction \overline{\mathrm{Y}}_{2,2}^{A} . After that, in Proposition 3.11,
we find four components defined by a^{7}-a=t^{8} with genus 21, which attach to the

component \overline{\mathrm{Y}}_{2,2}^{A} at each singular point (r, s)=(0,  $\zeta$) , $\zeta$^{4}=-1 . Finally, by the genus

computation, we determine the stable reduction of X_{0}(7^{4}) .

We choose an element $\beta$^{28}=-7 . We have v( $\beta$)=1/28 . We change variables

as follows X= $\beta$/x, U=$\beta$^{7}/u, V=(7^{2}/$\beta$^{7})v, Y=(7^{2}/ $\beta$)y . Let h(T) :=10$\beta$^{7}T^{3}+
9$\beta$^{14}T^{2}+2$\beta$^{21}T\in \mathbb{Z}_{7}[ $\beta$][T] . By $\pi$_{v}(U)=$\pi$_{f}(V) ,

we acquire the following equality

(3.42) \displaystyle \frac{(u^{4}+1-h(u))^{2}}{u^{7}}=\frac{(v^{4}+1-h(v))^{2}}{v^{7}}.
We put h_{1}(T) :=10 $\beta$ T^{3}+9$\beta$^{2}T^{2}+2$\beta$^{3}T . By $\pi$_{v}(X)=$\pi$_{f}(U) ,

we obtain the following

congruence

(3.43) u=x^{7}(1+2\displaystyle \frac{7}{$\beta$^{4}}(x^{4}-h_{1}(x)))(\mathrm{m}\mathrm{o}\mathrm{d} (9/8)+) .

By (3.43), the following congruence holds

(3.44)

\displaystyle \frac{(u^{4}+1-h(u))^{2}}{u^{7}}\equiv\frac{(1+x^{28}+h(x^{7}))^{2}}{x^{49}}+2\frac{7}{$\beta$^{4}}\cdot(1+x^{4}-h_{1}(x))^{7}\times(x^{4}-h_{1}(x))(\frac{x^{7}+10$\beta$^{7}}{x^{28}})
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modulo (9/8)+ . By exchanging (u, x) for (v, y) ,
the same congruence (3.44) for (v, y)

holds. By substituting (3.44) to (3.42), we acquire the following congruence

\displaystyle \frac{(1+x^{28}-h(x^{7}))^{2}}{x^{49}}-\frac{(1+y^{28}-h(y^{7}))^{2}}{y^{49}}+2\frac{7}{$\beta$^{4}}\cdot(1+x^{4}-h_{1}(x))^{7}\times(x^{4}-h_{1}(x))(\frac{x^{7}+10$\beta$^{7}}{x^{28}})
(3.45) -2\displaystyle \frac{7}{$\beta$^{4}} (1+y^{4}-h_{1}(y))^{7}\times(y^{4}-h_{1}(y))(\frac{y^{7}+10$\beta$^{7}}{y^{28}})\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} (9/8)+) .

We define g(x, y) by the following equality

\displaystyle \frac{(1+x^{28}-h(x^{7}))^{2}}{x^{49}}-\frac{(1+y^{28}-h(y^{7}))^{2}}{y^{49}}=(\frac{(x^{4}+1-h_{1}(x))^{2}}{x^{7}}-\frac{(y^{4}+1-h_{1}(y))^{2}}{y^{7}})^{7}-7g(x, y) .

Let $\gamma$_{1} be an element which satisfies  $\gamma$í =7/$\beta$^{4} . We have v($\gamma$_{1})=6/49 . Furthermore,
we set

(3.46) \displaystyle \frac{(x^{4}+1-h_{1}(x))^{2}}{x^{7}}-\frac{(y^{4}+1-h(y))^{2}}{y^{7}}=$\gamma$_{1}Z.
By substituting (3.46) to (3.45) and dividing it by (7/$\beta$^{4}) ,

the following congruence

holds

Z^{7}\displaystyle \equiv$\beta$^{4}g(x, y)-2(\frac{x^{7}+10$\beta$^{7}}{x^{28}})(x^{4}-h_{1}(x))(1+x^{4}-h_{1}(x))^{7}
(3.47) +2(\displaystyle \frac{y^{7}+10$\beta$^{7}}{y^{28}})(y^{4}-h_{1}(y))(1+y^{4}-h_{1}(y))^{7}(\mathrm{m}\mathrm{o}\mathrm{d} (15/56)+) .

We set

x_{1}:=x(1-\displaystyle \frac{h_{1}(x)}{x^{4}})^{1/4}, y_{1}:=y(1-\frac{h_{1}(y)}{y^{4}})^{1/4}
We put as in [CM2, subsection 7.3]

(3.48) x_{1}:=\displaystyle \frac{s}{(r-1)^{2}}, y_{1}=\frac{s}{(r+1)^{2}}.
Proposition 3.9. Let the notation be as above. Then, the reduction of the space

\mathrm{Y}_{2,2}^{A} is defined by the following equations

s^{4}=r^{2}-1, Z^{7}=3\displaystyle \frac{r^{7}(r^{6}+1)^{7}}{s^{21}(r^{2}-1)^{14}}(1+2r^{8}+r^{14}) .

Proof. By considering the congruence (3.46) modulo 0+ ,
we acquire the following

congruence

(3.49) \displaystyle \frac{(x_{1}^{4}+1)^{2}}{x_{1}^{7}}\equiv\frac{(y_{1}^{2}+1)^{2}}{y_{1}^{7}}(\mathrm{m}\mathrm{o}\mathrm{d} 0+)
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with x_{1}\neq y_{1} by w_{1}(X)\neq Y. As proved in [CM2, subsection 7.3], by the map (3.48), the

curve (3.49) is isomorphic to a curve s^{4}=r^{2}-1 . Hence, the required assertion follows

by rewriting the congruence (3.47) under the variables (r, s) . \square 

Remark 3.10. We write down the inverse map of (3.48). By setting

f:=\displaystyle \frac{y_{1}^{3}(x_{1}^{4}+1)}{x_{1}^{3}(y_{1}^{4}+1)},
we have f^{2}=x_{1}/y_{1} . Then, the inverse of the transformation (3.48) has the following
form

r=\displaystyle \frac{f+1}{f-1}, s=\frac{4x_{1}}{(f-1)^{2}}.
In the following, we will prove that there exist four irreducible components defined

by a^{7}-a=t^{8} which attach to the reduction \overline{\mathrm{Y}}_{2,2}^{A} at r=0.

We focus on a locus v(r)=1/56 . We set s^{4}=r^{2}-1+$\gamma$_{1}g by (3.46). By using

(3.46), we can easily check the following congruence

(3.50) $\gamma$_{1}g\displaystyle \equiv\frac{r^{2}-1}{4r(r^{6}+1)^{2}}$\gamma$_{1}Z(\mathrm{m}\mathrm{o}\mathrm{d} (1/7)+) .

Hence, we acquire the following by (3.50)

(3.51) s^{4}\displaystyle \equiv r^{2}-1+\frac{r^{2}-1}{4r(r^{6}+1)^{2}}$\gamma$_{1}Z(\mathrm{m}\mathrm{o}\mathrm{d} (1/7)+) .

In the following, we calculate the term $\beta$^{4}g(x, y) in the right hand side of the congruence

(3.47) modulo (15/56)+\mathrm{a}\mathrm{s} in (3.59). We obtain the following equality by the definition

of x_{1}

(3.52) x^{4}+1-h_{1}(x)=x_{1}^{4}+1=\displaystyle \frac{r(r^{6}+1)}{(r-1)^{7}}+\frac{$\gamma$_{1}g}{(r-1)^{8}}+7\triangle_{0}.
Hence, we have v(x^{4}+1-h_{1}(x))=v(r) . By the definition of x_{1} ,

we obtain an equality

(3.53)  1+x^{28}-h(x^{7})=1+x_{1}^{28}+7\triangle

with some function \triangle . By (3.53), the following congruence holds

 x^{28}+1-h(x^{7})\displaystyle \equiv\frac{r^{7}(r^{6}+1)^{7}}{(r-1)^{49}}+\frac{($\gamma$_{1}g)^{7}}{(r-1)^{56}}+7\triangle_{0}'(\mathrm{m}\mathrm{o}\mathrm{d} (9/8)+)
with some \triangle Ó: Therefore, we acquire

(3.54) \displaystyle \frac{(x^{28}+1-h(x^{7}))^{2}}{x^{49}}\equiv\frac{r^{14}(r^{4}+1)^{14}}{s^{49}}+2\frac{($\gamma$_{1}g)^{7}r^{7}(r^{6}+1)^{7}}{(r-1)^{7}s^{49}}+7r^{7}\triangle_{1}(\mathrm{m}\mathrm{o}\mathrm{d} (9/8)+)
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with some function \triangle_{1} . By exchanging x for y ,
we obtain the same congruence (3.54)

for (y, r, s) . We set as follows

G:=2\displaystyle \frac{($\gamma$_{1}g)^{7}r^{7}(r^{6}+1)^{7}}{(r^{2}-1)^{7}s^{49}}\times\{(r+1)^{7}-(r-1)^{7}\}
Hence, by (3.54), we obtain

(3.55) \displaystyle \frac{(x^{28}+1-h(x^{7}))^{2}}{x^{49}}-\frac{(y^{28}+1-h(y^{7}))^{2}}{y^{49}}\equiv G+7r^{7}\triangle_{2}'
modulo (9/8)+ with some function \triangle_{2}' . Since we have v(x^{4}+1-h_{1}(x))=v(r) ,

we

acquire the following congruence

(3.56)

(\displaystyle \frac{(x^{4}+1-h_{1}(x))^{2}}{x^{7}}-\frac{(y^{4}+1-h_{1}(y))^{2}}{y^{7}})^{7}\equiv\frac{(x^{4}+1-h_{1}(x))^{14}}{x^{49}}-\frac{(y^{4}+1-h_{1}(y))^{14}}{y^{49}}
modulo (9/8)+ . We easily verify the following congruence using the equality (3.52)

(3.57) \displaystyle \frac{(x^{4}+1-h_{1}(x))^{14}}{x^{49}}\equiv\frac{r^{14}(r^{6}+1)^{14}}{s^{49}}+2\frac{($\gamma$_{1}g)^{7}}{(r-1)^{6}}\times\frac{r^{7}(r^{6}+1)^{7}}{s^{49}}(\mathrm{m}\mathrm{o}\mathrm{d} (9/8)+) .

By exchanging x for y ,
we obtain the same congruence (3.57) for (y, r, s) . Hence, by

(3.57) and (3.56), we acquire the following congruence

(3.58) (\displaystyle \frac{(x^{4}+1-h_{1}(x))^{2}}{x^{7}}-\frac{(y^{4}+1-h_{1}(y))^{2}}{y^{7}})^{7}\equiv G(\mathrm{m}\mathrm{o}\mathrm{d} (9/8)+) .

By (3.55) and (3.58), we obtain the following

(3.59) $\beta$^{4}g(x, y)\equiv-$\beta$^{4}r^{7}\triangle_{2}'\equiv$\beta$^{4}r^{7}d(\mathrm{m}\mathrm{o}\mathrm{d} (15/56)+)

where -d is the constant term of \triangle_{2}'(r, s) .

Since we have v($\beta$^{7}r^{7})> 15/56, we rewrite the congruence (3.47) by (3.59)

Z^{7}\displaystyle \equiv$\beta$^{4}r^{7}d-2\frac{(1+x_{1}^{4})^{7}}{x_{1}^{17}}+2\frac{(1+y_{1}^{4})^{7}}{y_{1}^{17}}
(3.60) \displaystyle \equiv$\beta$^{4}r^{7}d-2\frac{r^{7}(r^{6}+1)^{7}}{s^{21}(r^{2}-1)^{14}}(1+\frac{$\gamma$_{1}g}{r^{2}-1})\{(r+1)^{15}-(r-1)^{15}\}(\mathrm{m}\mathrm{o}\mathrm{d} (15/56)+) .

We set

Z_{1}:=\displaystyle \frac{1}{4r(r^{6}+1)}Z.
Then, we obtain the following congruence by (3.60) \times\{4r(r^{6}+1)\}^{-7} and s^{4}=(r^{2}-
1)(1+$\gamma$_{1}Z_{1})(\mathrm{m}\mathrm{o}\mathrm{d} (1/7)+) by (3.51)

(3.61) Z_{1}^{7}\displaystyle \equiv-2\frac{1}{s^{21}}(1+$\gamma$_{1}Z_{1})\{(r+1)^{15}-(r-1)^{15}\}+$\beta$^{4}d(\mathrm{m}\mathrm{o}\mathrm{d} (1/7)+) .
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Since we have (r+1)^{15}-(r-1)^{15}\equiv 2(1+2r^{8}+r^{14})(\mathrm{m}\mathrm{o}\mathrm{d} 1+) ,
we acquire the following

congruence by (3.61)

(3.62) Z_{1}^{7}\displaystyle \equiv 3\frac{1}{s^{21}}(1+$\gamma$_{1}Z_{1})(1+2r^{8})+$\beta$^{4}d(\mathrm{m}\mathrm{o}\mathrm{d} (1/7)+) .

We fix a root z=s_{0} of the following equation z^{4}=-1 . We choose elements $\beta$_{1}
and $\alpha$_{1} such that $\beta$_{1}^{6}=3$\gamma$_{1}/s_{0}^{21} and  $\beta$í =-$\alpha$_{1}^{8}/s_{0}^{21} respectively. We have v($\beta$_{1})=
1/49, v($\alpha$_{1})=1/56 . We choose an element $\gamma$_{0} such that  $\gamma$Ó =-(1+$\gamma$_{1}$\gamma$_{0})/s_{0}^{21}-d.

We change variables as follows

(3.63) Z_{1}=$\gamma$_{0}+$\beta$_{1}a, r=$\alpha$_{1}t, s=s_{0}+\displaystyle \frac{$\alpha$_{1}^{2}}{4s_{0}}s_{1}.
Then, we have s_{1}=t^{2}(\mathrm{m}\mathrm{o}\mathrm{d} 0+) . Substituting (3.63) to the congruence (3.62) and

dividing it by $\beta$^{4} ,
we acquire the following

a^{7}-a=t^{8}(\mathrm{m}\mathrm{o}\mathrm{d} 0+) .

Hence, we have proved the following proposition.

Proposition 3.11. Let the notation be as above. Then, in the stable reduction

of X_{0}(7^{4}) ,
there exist four irreducible components defined by a^{7}-a=t^{8} . The genus of

the curve a^{7}-a=t^{8} is equal to 21: Furthermore, these four components attach to the

curve \overline{\mathrm{Y}}_{2,2}^{A} at (r, s)=(0,  $\zeta$) with $\zeta$^{4}=-1.

By the same computations as the ones in [CM2, subsection 7.3], we can compute

the reduction of the spaces \mathrm{Y}_{3,1}^{A} and \mathrm{Y}_{1,3}^{A} as follows

\mathrm{Y}_{3,1}^{A}, \mathrm{Y}_{1,3}^{A} : z^{49}=\underline{s} s^{4}=r^{2}-1.
(r-1)^{2}

�

This curve has genus 1: As in the previous subsection, we can also compute the reduction

of the spaces \mathrm{Z}_{2,1}^{A} and \mathrm{Z}_{1,2}^{A} as follows

\mathrm{Z}_{2,1}^{A}, \mathrm{Z}_{1,2}^{A}:Z^{7}=x^{4}+x^{-4}
There exist eight curves defined by a^{7}-a=s^{2} with genus 3, which attach to the

component \overline{\mathrm{Z}}_{2,1}^{A} at each singular point x\in$\mu$_{8} . The same things happen for \overline{\mathrm{Z}}_{1,2}^{A}.
Let g(p) be the genus of the modular curve X_{0}(p^{n}) . Let g_{p,e} be the genus of the

Igusa curve Ig(p): We have g_{7,1}=0 and g_{7,2}=33 by [Ig, Section 0]. Furthermore,
we have g_{0}(7^{4})=201 by [Sh, Propositions 1.40 and 1.43]. In \overline{\mathcal{X}_{0}(7^{4})} , we find the two

Igusa curves \mathrm{I}\mathrm{g}(7) with genus 33, the components \overline{\mathrm{Y}}_{3,1}^{A} and \overline{\mathrm{Y}}_{1,3}^{A} with genus 1, the two

components \overline{\mathrm{Z}}_{3,1}^{A}, \mathrm{Z}_{1,3}^{A} with genus 0 ,
the component \overline{\mathrm{Y}}_{2,2}^{A} with genus 1, four irreducible
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components defined by a^{7}-a=t^{8} with genus 21 and 16 irreducible components defined

by a^{7}-a=s^{2} with genus 3. On the other hand, the graph of the stable model of X(7) is

a tree by [CM, Theorem 9.4]. Hence, the sum of the genera of all irreducible components

and the Betti number of the dual graph is equal to 1\times 3+16\times 3+21\times 4+2\times 33=

201=g_{0}(7^{4}) . Hence, the stable reduction of \overline{\mathcal{X}_{0}(7^{4})} consists of these components which

we found.
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