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A majorant problem for the periodic Schrödinger
group

By

Jonathan Bennett and Neal Bez *

§1. Introduction

For appropriate sequences a:\mathbb{Z}\rightarrow \mathbb{C} ,
let \mathcal{E} be the discrete extension operator given

by

\displaystyle \mathcal{E}a(x, t):=\sum_{n\in \mathbb{Z}}a_{n}e(nx+n^{2}t)
for (x, t)\in \mathrm{T}^{2} . Here we are writing e(x) :=e^{2 $\pi$ ix} for x\in \mathrm{T} ,

where \mathrm{T}:=[0 ,
1 ] . Of course,

u(x, t)=\mathcal{E}a(x, t) formally satisfies the free Schrödinger equation \partial_{x}^{2}u(x, t)=2 $\pi$ i\partial_{t}u(x, t)
with periodic initial data u(0) equal to the function whose nth Fourier coefficient is equal
to a_{n} . Moreover, the adjoint of \mathcal{E} is the mapping which restricts the Fourier transform

to the discrete parabola \{(n, n^{2}) : n\in \mathbb{Z}\}.
We shall write a\backslash \prec A when the sequence a is majorised by the sequence A in the

sense that |a_{n}|\leq A_{n} for each n . Our concern here is to what extent the operator \mathcal{E}

satisfies a majorant property on L^{p}(\mathrm{T}^{2}) ; that is, given a\backslash \prec A ,
in what sense is \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}

majorised by \Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})} ? It appears that this question has not been explicitly posed
before and in this note we offer some preliminary results.

The question is of course very reminiscent of the classical HardyLittlewood majo‐
rant problem for Fourier series, originating in [8], where it is conjectured that for each

p\in[2, \infty) there exists a finite constant \mathrm{B}_{p} such that

\displaystyle \Vert\sum_{n\in \mathbb{Z}}a_{n}e(nx)|\left|L^{p}(\mathrm{T}) & \leq \mathrm{B}_{p}\right||\displaystyle \sum_{n\in \mathbb{Z}}A_{n}e(nx)\Vert_{L^{p}(\mathrm{T})}
whenever a\backslash \prec A . The conjecture was left open by Hardy and Littlewood, but they
observed in [8] that one may take \mathrm{B}_{p}=1 whenever p is an even integer and that
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\mathrm{B}_{3}>1 . The former claim is straightforward by multiplying out the norm. The latter

claim may be extended to \mathrm{B}_{p}>1 for all p>2 which are not even integers (see, for

example, [3]) and using certain re‐scaled products of these examples, Bachelis [1] (see
also [13]) showed that the HardyLittlewood conjecture is in fact false.

A renewed interest stemmed from the observation (see [11]) that a certain quan‐

titative understanding of the HardyLittlewood majorant problem would imply the

euclidean restriction conjecture for the spherel. In particular, suppose N\in \mathbb{N} and

 $\Lambda$\subseteq\{1, . . . , N\} ,
and let \mathrm{B}_{p}( $\Lambda$) denote the smallest constant such that

\displaystyle \Vert\sum_{n\in $\Lambda$}a_{n}e(nx)\Vert_{L^{p}(\mathrm{T})}\leq \mathrm{B}_{p}( $\Lambda$)\Vert\sum_{n\in $\Lambda$}e(nx)\Vert_{L^{p}(\mathrm{T})}
holds for all sequences a : \mathbb{Z}\rightarrow \mathbb{C} supported in  $\Lambda$ with  a\backslash \prec 1_{ $\Lambda$} . Here, 1_{ $\Lambda$} denotes the

sequence taking the value one on  $\Lambda$ and zero elsewhere. If it were known that

\mathrm{B}_{p}( $\Lambda$)\leq C_{p, $\epsilon$}N^{ $\epsilon$}

for a subset  $\Lambda$ which arises from a certain discretisation of the unit sphere, then one

may deduce that

(1.1) \Vert\overline{g\mathrm{d} $\sigma$}\Vert_{L^{p}(\mathbb{R}^{d})\sim}<\Vert g\Vert_{L^{\infty}(\mathrm{S}^{d-1})}

for all g\in L^{\infty}(\mathrm{S}^{d-1}) ,
where d\geq 2 and p>\displaystyle \frac{2d}{d-1} . Whilst this particular quantitative

majorant problem appears to be open, it has been shown that whenever p>2 is not

even, there exists $\gamma$_{p}>0 such that

\mathrm{B}_{p}(N)\geq N^{$\gamma$_{p}},

where

\displaystyle \mathrm{B}_{p}(N)= \sup \mathrm{B}_{p}( $\Lambda$) .

 $\Lambda$\subseteq\{1,\ldots,N\}

This may be found in the independent works of MockenhauptSchlag [12] and Green‐

Ruzsa [7] (in the latter case, explicitly for p=3 but their argument may be modified

in general). One may view these arguments as precise versions of those of Bachelis

mentioned above.

In the positive direction, we mention the interesting result of MockenhauptSchlag,
also in [12], where it is shown that the majorant property is (essentially) true for random

lNote that the continuous majorant property

\Vert\overline{g\mathrm{d} $\sigma$}\Vert_{L^{\frac{2d}{d-1}}(B(R))}\sim<\Vert\hat{\mathrm{d} $\sigma$}\Vert_{L^{\frac{2d}{d-1}}(B(R))}
whenever \Vert g\Vert_{L^{\infty}(\mathrm{S}^{d-1})\sim}<1 is a strong form of the restriction conjecture, which holds when d=2

and is open for d\geq 3 . Here, \mathrm{d} $\sigma$ is induced Lebesgue measure on \mathrm{S}^{d-1}
,

and throughout we shall

use  X<Y\sim and  Y>X\sim for  X\leq CY where the finite constant C depends at most on d and p.
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subsets  $\Lambda$ . More precisely, for each  N\in \mathbb{N} and 1\leq j\leq N ,
let $\xi$_{j}=$\xi$_{j}( $\omega$) be independent

and identically distributed indicator random variables where, for some fixed  $\delta$\in(0,1) ,

$\xi$_{j} takes the value one with probability N^{- $\delta$} and the value zero with probability 1-N^{- $\delta$} ;

thus, \mathbb{P}[$\xi$_{j}=1]=N^{- $\delta$} and \mathbb{P}[$\xi$_{j}=0]=1-N^{- $\delta$} . Setting  $\Lambda$( $\omega$)=\{j\in\{1, . . . , N\} :

$\xi$_{j}( $\omega$)=1\} to be an associated random subset, it is shown in [12] that for each  $\epsilon$>0

and p\geq 2,

\displaystyle \mathbb{P}[\sup_{\neg}\Vert\sum_{n\in $\Lambda$( $\omega$)}a_{n}e(nx)\Vert_{L^{p}(\mathrm{T})}\geq N^{ $\epsilon$}\Vert\sum_{n\in $\Lambda$( $\omega$)}e(nx)\Vert_{L^{p}(\mathrm{T})}]\rightarrow 0
as  N\rightarrow\infty . Hence, there is a sense in which the desired majorant bound (for the

application to the restriction conjecture) holds for such random sets with probability
one as  N tends to infinity.

It is our intention in this short and somewhat speculative note to present some of

our observations concerning the majorant problem for \mathcal{E} . Firstly, whenever a\backslash \prec A,

\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\leq\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})}

is true for even integers p and follows by multiplying out the norm (as was the case for

Fourier series). Next, we are able to prove that such a perfect majorant property does

not hold away from the even integers.

Theorem 1.1. Suppose p\in(2, \infty) is not an even integer. Then there exist

sequences a and A such that a\backslash \prec A and $\delta$_{p}>0 such that

\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\geq(1+$\delta$_{p})\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})}.

We provide a proof of Theorem 1.1 in Section 3. The following complementary
result is completely elementary, but it appears to provide a point of interest because it

highlights an essential difference with the majorant problem for Fourier series.

Theorem 1.2. Suppose  p\in [2, 4]. Then \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\sim<\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})} whenever

a\backslash \prec A.

Thus, at least for p\in[2 ,
4] ,

the analogoue of the original conjecture of Hardy and

Littlewood is valid for \mathcal{E} . Theorem 1.2 is true because

\displaystyle \Vert \mathcal{E}a\Vert_{L^{4}(\mathrm{T}^{2})}^{4}=\sum_{m_{1}+m_{2}=n_{1}+n_{2}}a_{m_{1}}a_{m_{2}}\overline{a_{n_{1}}a_{n_{2}}}m_{1}^{2}+m_{2}^{2}=n_{1}^{2}+n_{2}^{2}
and the restriction on the support of the summation implies that \{m_{1}, m_{2}\}=\{n_{1}, n_{2}\}.
Consequently,

(1.2) \Vert \mathcal{E}a\Vert_{L^{4}(\mathrm{T}^{2})}=2^{1/4}\Vert a\Vert_{\ell^{2}(\mathbb{Z})}
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and, using Hölder�s inequality, the restriction on the size of p and Plancherel�s theorem,

(1.3) \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\leq\Vert \mathcal{E}a\Vert_{L^{4}(\mathrm{T}^{2})}\leq 2^{1/4}\Vert A\Vert_{\ell^{2}(\mathbb{Z})}=2^{1/4}\Vert \mathcal{E}A\Vert_{L^{2}(\mathrm{T}^{2})}\leq 2^{1/4}\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})}.

Thus, implicit constant in the statement of Theorem 1.2 may be taken to be 2^{1/4} for

each p\in[2 ,
4 ] . An interpolation argument using (1.2) and \Vert \mathcal{E}a\Vert_{L^{2}(\mathrm{T}^{2})}=\Vert a\Vert_{\ell^{2}(\mathbb{Z})} allows

one to improve this to 2^{1/2-1/p}
,

however even this bound does not recover the optimal
constant equal to one when p=4 . It might be interesting to find the optimal dependence
on p of this constant.

The identity (1.2) may be found in the work of Bourgain [5] and one may view this

as a statement about the finiteness of the so‐called  $\Lambda$(4) ‐constant of the set of parabolic
lattice points in the plane, or as a Strichartz‐type estimate for periodic solutions of the

Schrödinger equation. We elaborate on this connection in the subsequent section.

§2. Quantitative formulation

Throughout this section we shall use N to denote a positive integer considered

large. For fixed d\geq 1 ,
let S_{d,N} be the subset of \mathbb{Z}^{d} given by

S_{d,N}=\{n\in \mathbb{Z}^{d}:|n_{j}|\leq N, 1\leq j\leq N\}

and for p>2 let \mathrm{K}_{d,p}(N) denote the smallest constant such that

\displaystyle \Vert\sum_{n\in S_{dN}},a_{n}e(n\cdot x+|n|^{2}t)\Vert_{L^{p}(\mathrm{T}^{d+1})}\leq \mathrm{K}_{d,p}(N)\Vert a\Vert_{\ell^{2}(S_{d,N})}
holds for all sequences a:\mathbb{Z}\rightarrow \mathbb{C} supported in S_{d,N} . In [5] it was conjectured that

(2.1) \mathrm{K}_{d,p}(N)<N^{$\gamma$_{d,p}}\sim

for  p\displaystyle \in(2, \infty]\backslash \{\frac{2(d+2)}{d}\} ,
where

$\gamma$_{d,p}=\displaystyle \max\{0, \frac{d}{2}-\frac{d+2}{p}\}
and that for all  $\epsilon$>0,

(2.2) \mathrm{K}_{d,\frac{2(d+2)}{d}}(N)\leq C_{ $\epsilon$}N^{ $\epsilon$}
at the critical exponent.

This conjecture is still open in any dimension. For instance, when d=1
,

we know

from (1.2) that (2.1) holds for p\leq 4 . At the critical exponent p=6 , Bourgain proved
in [5] that

(2.3) (\log N)^{1/6}\sim<\mathrm{K}_{1,6}(N)\sim<\exp(c\log N/\log\log N)
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and consequently (2.2) is true when d=1
,

and the  $\epsilon$‐loss is truly present2. For  p>6

by a further argument it is also shown in [5] that (2.1) holds and therefore, when d=1,
it remains open whether \mathrm{K}_{1,p}(N)<\sim 1 or not for p\in(4,6) .

In higher dimensions, the best known results are also due to Bourgain. For certain

(d,p) these also go back to [5]. It is interesting to note that Bourgain has very recently
used the multilinear euclidean restriction theory in [2] and ideas from [6] to improve
some of the results in [5]. See also the very recent work of Hu‐Li [9] where some of

Bourgain�s estimates in [5] are recovered using new methods. However, for the rest of

this note, we remain in the case d=1.

In order to pose a quantitative version of the majorant problem for \mathcal{E} ,
for each

positive integer N
,

we restrict our attention to subsets  $\Lambda$\subseteq\{1, . . . , N\} and sequences

supported in  $\Lambda$ . Thus, for  p\in[2, \infty ), let \mathrm{C}_{p}( $\Lambda$) denote the smallest constant such that

\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\leq \mathrm{C}_{p}( $\Lambda$)\Vert \mathcal{E}1_{ $\Lambda$}\Vert_{L^{p}(\mathrm{T}^{2})}

holds for all sequences a:\mathbb{Z}\rightarrow \mathbb{C} supported in  $\Lambda$ with  a\backslash \prec 1_{ $\Lambda$} ,
and

\displaystyle \mathrm{C}_{p}(N)= \sup \mathrm{C}_{p}( $\Lambda$) .

 $\Lambda$\subseteq\{1,\cdots,N\}

In the rest of this section, we offer some elementary observations concerning these

quantities.
Of course, the argument in (1.3) tells us that \mathrm{C}_{p}(N)<\sim 1 for each p\in[2 ,

4] . By
the same argument, we would be able to extend this to all  p\in [2, 6] if Bourgain�s

conjecture were shown to be true, that is, if we knew that \mathrm{K}_{1,p}(N)<\sim 1 for all p\in(2,6) .

The uniform estimates in N for \mathrm{K}_{1,p}(N) cease to be true for p\geq 6 and for such

p the argument (1.3) as it stands no longer provides uniform estimates for \mathrm{C}_{p}(N) .

Somewhat amusingly, the critical exponent is an even integer and here we know \mathrm{C}_{6}(N)=
1 by a different (and trivial) argument. Of course, for p\in(4,6) we at least know

by interpolation that \mathrm{K}_{1,p}(N)\leq C_{ $\epsilon$}N^{ $\epsilon$} and therefore, using (1.3), we get the almost

uniform majorant property that \mathrm{C}_{p}(N)\leq C_{ $\epsilon$}N^{ $\epsilon$}.
Now suppose p\in(6, \infty) . Using Bourgain�s estimate

\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\sim<N^{1/2-3/p}| $\Lambda$|^{1/2}

whenever a\backslash \prec 1_{ $\Lambda$} ,
and the trivial lower bound

(2.4) \Vert \mathcal{E}1_{ $\Lambda$}\Vert_{L^{p}(\mathrm{T}^{2})}\geq\Vert \mathcal{E}1_{ $\Lambda$}\Vert_{L^{p}}(|x|_{\sim^{N-1}}<,|t|_{\sim^{N-2}}<)\sim>| $\Lambda$|N^{-3/p}
it follows that \mathrm{C}_{p}( $\Lambda$)<\sim 1 whenever | $\Lambda$|\sim N . Thus, it is natural to consider frequency
sets  $\Lambda$ with cardinality  N^{ $\tau$} where  $\tau$\in(0,1) . We remark that the majorant property for

2it is suggested in [14] that the lower bound in (2.3) should be modied to (\log N/\log\log N)^{1/6}
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\mathcal{E} is (essentially) true for random subsets  $\Lambda$ for  $\tau$\leq 2/p thanks to work of Bourgain [4]
on  $\Lambda$(p) sets, and this could extend to all  $\tau$ in the spirit of [12].

We also note that the HausdorffYoung inequality may be applied to give the upper

bound

\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}<\sim| $\Lambda$|^{1-1/p}
whenever a\backslash \prec 1_{ $\Lambda$} ,

which may be combined with either the lower bound \Vert \mathcal{E}1_{ $\Lambda$}\Vert_{L^{p}(\mathrm{T}^{2})}\geq
| $\Lambda$|^{1/2} or (2.4) to obtain certain estimates for \mathrm{C}_{p}( $\Lambda$) . We remark that, in terms of

\mathrm{C}_{p}(N) ,
such naive considerations lead to the bound \displaystyle \mathrm{C}_{p}(N)\sim<\min\{N^{1/2-3/p}, N^{3/p}\}

which we observe does not improve on \mathrm{C}_{p}(N)\sim<N^{$\eta$_{p}} ,
where $\eta$_{p}=6k(k+1)(\displaystyle \frac{1}{2k}-

\displaystyle \frac{1}{p})(\frac{1}{p}-\frac{1}{2(k+1)}) and p\in[2k, 2(k+1) ). The latter bound is obtained by interpolating

\mathrm{C}_{2k}(N)=\mathrm{C}_{2(k+1)}(N)=1.

§3. Proof of Theorem 1.1

The argument in this section is based on ideas of HardyLittlewood [8]. The sin‐

gular nature of the frequencies on the parabolic lattice makes our argument somewhat

more involved.

Let k be the unique natural number satisfying

k-2<p/2<k-1.

We take a and A to be the sequences given by

a_{n}:=\left\{\begin{array}{ll}
r^{n^{2}} & \mathrm{i}\mathrm{f} n=0, n_{1}, n_{2}\\
-r^{n^{2}} & \mathrm{i}\mathrm{f} n=n_{3}\\
0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right.
and

A_{n}:=\left\{\begin{array}{ll}
r^{n^{2}} & \mathrm{i}\mathrm{f} n=0, n_{1}, n_{2}, n_{3}\\
0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right.
where (n_{1}, n_{2}, n_{3})=(2-k, 2, k) and r\in(0,1) is a parameter (considered small) to

be chosen later in the proof. The reason for this particular choice for (n_{1}, n_{2}, n_{3}) will

become clear in a moment.

Thus, \mathcal{E}a(x, t)=1+b(x, t) where

b(x, t) :=r^{(2-k)^{2}}e((2-k)x)e((2-k)^{2}t)+r^{4}e(2x)e(4t)-r^{k^{2}}e(kx)e(k^{2}t) .

For r>0 sufficiently small it is clear that

\displaystyle \mathcal{E}a(x, t)^{p/2}=\sum_{j=0}^{\infty}\left(\begin{array}{l}
p/2\\
j
\end{array}\right)b(x, t)^{j},
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and similarly for \mathcal{E}A . To be clear, (^{p/2}0 ) =1 and for j\in \mathbb{N} the generalised binomial

coefficient \left(\begin{array}{l}
p/2\\
j
\end{array}\right) is given by

\displaystyle \left(\begin{array}{l}
p/2\\
j
\end{array}\right)=\frac{1}{2^{j}j!}\prod_{\ell=0}^{j-1}(p-2\ell) ,

which is positive for j=0 , 1, . . .

,
k-1

, negative for j=k and alternating in sign
thereafter.

The idea is to expand the powers of b to obtain expansions of the form

\displaystyle \mathcal{E}a(x, t)^{p/2}=\sum_{\ell=0}^{\infty}Q_{\ell}[a](x)e(\ell t)r^{\ell}
and

\displaystyle \mathcal{E}A(x, t)^{p/2}=\sum_{\ell=0}^{\infty}Q_{\ell}[A](x)e(\ell t)r^{\ell}
for certain sequences of trigonometric polynomials (Q_{\ell}[a])_{\ell\geq 0} and (Q_{\ell}[A])_{\ell\geq 0} ,

and apply
Plancherel�s theorem in the t‐variable. This will generate expressions for the L^{p}(\mathrm{T}^{2}) ‐

norms of \mathcal{E}a and \mathcal{E}A which we then view as expansions in the parameter r . Using our

choice of (n_{1}, n_{2}, n_{3}) ,
we will see that Q[a] and Q[A] coincide for \ell=0 ,

. . .

,
k^{2}-1.

Furthermore, our choice will also yield \Vert Q_{k^{2}}[a]\Vert_{L^{2}(\mathrm{T})}>\Vert Q_{k^{2}}[A]\Vert_{L^{2}(\mathrm{T})} ,
and here we

capitalise on the fact that (^{p/2}k ) <0 . This means the coefficient of the leading term in r

of \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}^{p}-\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})}^{p} is negative, which gives the desired conclusion by choosing
r>0 sufficiently small.

Since

|\displaystyle \mathcal{E}a(x, t)^{p/2}-\sum_{j=0}^{2k^{2}+1}\left(\begin{array}{l}
p/2\\
j
\end{array}\right)b(x, t)^{j}|<r^{2k^{2}+2}\sim
and

 b(x, t)^{j}=0\displaystyle \leq $\lambda,\ \mu,\ \nu$\leq j\sum_{ $\lambda$+ $\mu$+l $\nu$=j}(-1)^{l $\nu$}\frac{j!}{ $\lambda$! $\mu$!v!}r^{(2-k)^{2} $\lambda$+4 $\mu$+k_{l}^{2} $\nu$}
e(((2-k) $\lambda$+2 $\mu$+kv)x)e(((2-k)^{2} $\lambda$+4 $\mu$+k^{2}v)t)

it follows that

\displaystyle \mathcal{E}a(x, t)^{p/2}=\sum_{\ell=0}^{k^{2}}Q_{\ell}[a](x)e(\ell t)r^{\ell}+R[a](x, t) .

Here

Q_{\ell}[a](x)=\displaystyle \sum_{j=0}^{2k^{2}+1} \displaystyle \sum_{0\leq $\lambda,\ \mu,\ \nu$\leq j} \displaystyle \left(\begin{array}{l}
p/2\\
j
\end{array}\right)(-1)^{l $\nu$}\frac{j!}{ $\lambda$! $\mu$!v!}e(((2-k) $\lambda$+2 $\mu$+kv)x)
 $\lambda$ n_{1}^{2}+ $\mu$ n_{2}^{2}+l $\nu$ n_{3}^{2}=\ell $\lambda \mu \nu$=j
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and R[a] is the remainder term satisfying |R[a](x, t)|<r^{k^{2}+1}\sim and

|\langle R[a](x, \cdot) , e(\ell\cdot)\rangle_{L^{2}(\mathrm{T})}|<r^{2k^{2}+2}\sim
for each  x\in \mathrm{T}, \ell=0 ,

. . .

,
k^{2} . Writing

\displaystyle \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}^{p}=\int_{\mathrm{T}^{2}}\mathcal{E}a(x, t)^{p/2}\overline{\mathcal{E}a(x,t)}^{p/2}dtdx
and using orthogonality and the above features of R[a] we obtain

(3.1) |\displaystyle \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}^{p}-\sum_{\ell=0}^{k^{2}}\Vert Q_{\ell}[a]\Vert_{L^{2}(\mathrm{T})}^{2}r^{2\ell}|<r^{2k^{2}+2}\sim
A similar argument shows that (3.1) is true with  A replacing a

,
where

Q_{\ell}[A](x)=\displaystyle \sum_{j=0}^{2k^{2}+1} \sum_{0\leq $\lambda,\ \mu,\ \nu$\leq j} \left(\begin{array}{l}
p/2\\
j
\end{array}\right)\frac{j!}{ $\lambda$! $\mu$!v!}e(((2-k) $\lambda$+2 $\mu$+kv)x) .

 $\lambda$ n_{1}^{2}+ $\mu$ n_{2}^{2}+l $\nu$ n_{3}^{2}=\ell $\lambda \mu \nu$=j
Notice that if 0\leq\ell\leq k^{2}-1 and  $\lambda$ n_{1}^{2}+ $\mu$ n_{2}^{2}+vn_{3}^{2}=\ell then necessarily  v=0.

Therefore Q_{\ell}[a]=Q[A] for such \ell . To determine  Q_{k^{2}}[a] and Q_{k^{2}}[A] ,
we need to find

all solutions (j,  $\lambda$,  $\mu$, v)\in(\mathbb{N}_{0})^{4} satisfying

 $\lambda$+ $\mu$+v=j

and

(2-k)^{2} $\lambda$+4 $\mu$+k^{2}v=k^{2}

Obviously v\in\{0 ,
1 \} from the latter equation and consequently the only solutions are

(j,  $\lambda$,  $\mu$, v)\in {(1,0,0,1), (k, 1, k-1,0

Hence, we have

Q_{k^{2}}[a](x)=(-\displaystyle \frac{p}{2}+k\left(\begin{array}{l}
p/2\\
k
\end{array}\right))e(kx)
and

Q_{k^{2}}[A](x)=(\displaystyle \frac{p}{2}+k\left(\begin{array}{l}
p/2\\
k
\end{array}\right))e(kx) .

Note that by choosing (n_{1}, n_{2}, n_{3})=((2-k)^{2},2, k) we have obtained a solution with

j=k which allows us to use (^{p/2}k ) <0 . In particular, using (3.1),

|\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}^{p}-\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})}^{p}+2kp\left(\begin{array}{l}
p/2\\
k
\end{array}\right)r^{2k^{2}}|<r^{2k^{2}+2}\sim



A majorant problem FoR the periodic SchröDINGER group 9

and by choosing  r>0 sufficiently small, it is clear that there exists $\delta$_{p}>0 such that

\Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}\geq(1+$\delta$_{p})\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})}.

This completes the proof of Theorem 1.1.

We remark that, as it stands, the above example cannot be used to deduce that

\mathrm{C}_{p}(N)>1 for any p>2 which is not an even integer since our argument relies on

choosing r<1 . For such p ,
it would be appealing to find a\backslash \prec A with a_{n}\in\{-1, 0, 1\} and

A_{n}\in\{0 ,
1 \} for each n such that \Vert \mathcal{E}a\Vert_{L^{p}(\mathrm{T}^{2})}>\Vert \mathcal{E}A\Vert_{L^{p}(\mathrm{T}^{2})} . It would also be interesting

to establish the minimal size of frequency sets for which such a property may hold.

In the problem for Fourier series, a constructive argument of MockenhauptSchlag [12]
shows that, for any such p ,

four term idempotents are sufficient, and it is shown in [10]
using numerical integration and error estimates that certain three‐term idempotents
are sufficient for p<6 (this is optimal in the sense that two‐term idempotents will not

provide examples).
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