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MULTILINEAR OPERATORS IN HARMONIC ANALYSIS AND

PARTIAL DIFFERENTIAL EQUATIONS

LOUKAS GRAFAKOS

Abstract. Grafakos� two lectures at the Research Institute for Mathematical Sciences

(RIMS), Kyoto University Workshop entitled �Harmonic Analysis and Nonlinear Partial

Differential Equations�, July 4‐ July 6, 2011, are based on these notes.

1. introduction

A multilinear operator T(f_{1}, \ldots, f_{m}) is a linear operator in every variable f_{j} . Several

examples motivate the theory of multilinear operators. We list a few of them:

(1) The m‐fold product

I(f_{1}, \ldots, f_{m})=f_{1}\cdots f_{m}

is the easiest example of an m‐linear operator. It indicates that natural inequalities
between Lebesgue spaces are of the form L^{p_{1}}\times\cdots\times L^{p_{m}}\rightarrow L^{p}

,
where 1/p_{1}+\cdots+

1/p_{m}=1/p.
(2) A kernel of m+1 variables K (x , yl, . . .

, y_{m} ) gives rise to an m‐linear operator of

the form

T(f_{1}, \displaystyle \ldots, f_{m})(x)=\int_{\mathrm{R}^{mn}}K (x , yl, . . .

, y_{m} ) f_{1}(y_{1})\cdots f(y) dyl. . . dy_{m},

where the integral may converge in the principal value sense, or even in the sense

of distributions.

(3) The special case in which the kernel K (x , yl, . . .

, y_{m} ) in the previous case has the

form K_{0}(x-y_{1}, \ldots

, x—ym ) corresponds to the so‐called m‐linear convolution

T_{0}(f_{1}, \displaystyle \ldots, f_{m})(x)=\int_{\mathrm{R}^{mn}}K_{0}(x-y_{1}, \ldots, x-y_{m})f_{1}(y_{1})\cdots f(y) dyl. . . dy_{m},

in which the integral is taken in the principal value sense. This operator can also

be expressed as an m‐linear multiplier as follows

\displaystyle \int_{\mathrm{R}^{mn}}m_{0}($\xi$_{1}, \ldots, $\xi$_{m})f_{1}($\xi$_{1})\cdots\hat{f_{m}}($\xi$_{m})e^{2 $\pi$ ix\cdot($\xi$_{1}+\cdots+$\xi$_{m})}d$\xi$_{1}\ldots d$\xi$_{m}\wedge,
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(4)

where m_{0} is the distributional Fourier transform of K_{0} on \mathrm{R}^{mn} . The Fourier

transform of a Schwartz function  $\varphi$ on \mathrm{R}^{n} is defined by

\displaystyle \hat{ $\varphi$}( $\xi$)=\int_{\mathrm{R}^{n}} $\varphi$(x)e^{-2 $\pi$ ix\cdot $\xi$}dx,
where x\displaystyle \cdot $\xi$=\sum_{j=1}^{n}x_{j}$\xi$_{j} and the distributional Fourier transform is defined analo‐

gously via pairing.
The bilinear operator on \mathrm{R}\times \mathrm{R} given by

B(f, g)(x)=\displaystyle \int_{-1/2}^{1/2}f(x+t)g(x-t)dt.

(5)

This operator is local in the sense that if f and g are supported in intervals of

length one, then B(f, g) is supported in the set of halves of the numbers in the

algebraic sum of these intervals; this is also an interval of length one.

The truncated bilinear Hilbert transform

H(f, g)(x)=\displaystyle \mathrm{p}.\mathrm{v}\int_{-1/2}^{1/2}f(x+t)g(x-t)\frac{dt}{t}

(6)

in which f, g are functions on the line. The homogeneity of the kernel \displaystyle \frac{dt}{t} makes the

study of the truncated and untruncated versions of this operator equivalent. This

operator is also local in the previous sense. Its boundedness from L^{p}\times L^{q}\rightarrow L^{r}

for 1/p+1/q=1/r, 1<p, q\leq\infty,  2/3<r<\infty ,
was obtained by Lacey and

Thiele [18], [19].
The bilinear fractional integral

(7)

 I_{ $\alpha$}(f, g)(x)=\displaystyle \int_{\mathrm{R}^{n}}f(x+t)g(x-t)|t|^{ $\alpha$-n}dt,
where 0< $\alpha$<n and f, g are functions on \mathrm{R}^{n} . For this see [10] and [17].
The commutators of A. Calderón [3]: The first commutator is defined as

C_{1}(f, A)(x)=\displaystyle \mathrm{p}.\mathrm{v}.\frac{1}{ $\pi$}\int_{\mathrm{R}}f(y)\frac{A(x)-A(y)}{x-y}dy
where A(x) is a function on the line; this operator is equal to [H, M_{A}] ,

where H

is the Hilbert transform and M_{A} is multiplication with A . Using the fundamental

theorem of calculus, C_{1}(f, A) can be viewed as a bilinear operator of f and A' (the
derivative of A ) and estimates can be obtained for it in terms of products of norms

\Vert f\Vert_{L^{p_{1}}}\Vert A'\Vert_{L^{p_{2}}} . The sharpest of these estimates is of the form L^{1}(\mathrm{R})\times L^{1}(\mathrm{R}) to

L^{1/2,\infty}(\mathrm{R}) and was obtained by C. Calderón [3]. The m‐th commutator is given
by the expression

C_{m}(f, A)(x)=\displaystyle \mathrm{p}.\mathrm{v}.\frac{1}{ $\pi$}\int_{\mathrm{R}}f(y)(\frac{A(x)-A(y)}{x-y})^{m}dy.
The operator C_{m} is not linear in A nor A' but can be multilinearized by considering

\displaystyle \overline{C}_{m}(f, A_{1}, \ldots, A_{m})(x)=\mathrm{p}.\mathrm{v}.\frac{1}{ $\pi$}\int_{\mathrm{R}}f(y)\frac{A_{1}(x)-A_{1}(y)}{x-y}\cdots\frac{A_{m}(x)-A_{m}(y)}{x-y}dy
and expressing each difference A_{j}(x)-A(y) as \displaystyle \int_{y}^{x}A_{j}'(s)ds via the fundamen‐

tal theorem of calculus. The sharpest possible estimate for \overline{C}_{m} as a function of
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(f, A_{1}', \ldots, A_{m}') is the estimate L^{1}\times\cdots\times L^{1}\rightarrow L^{1/(m+1),\infty} obtained by Coifman

and Meyer ([5]) when m=2 and Grafakos, Duong, and Yan [8] for m\geq 3.

We indicate why the operator in example (4) is bounded from L^{1}\times L^{1} to L^{1/2} . For

functions f and g supported in intervals of length one, then B(f, g) is also supported in

an interval of length one. Then

\displaystyle \Vert B(f, g)\Vert_{L^{1/2}}\leq\Vert B(f, g)\Vert_{L^{1}}\leq\frac{1}{2}\Vert f\Vert_{L^{1}}\Vert g\Vert_{L^{1}},
where the last inequality follows by the change of variables u=x-t, v=x+t . For

general functions f and g write f_{k}=f$\chi$_{[k,k1]} and analogously for g_{l} . Then B(f_{k}, g_{l}) is

supported in the interval [(k+l)/2, (k+l)/2+1] and it is equal to zero unless |k-l|\leq 1.
This reduces things to the case l=k, k-1, k+1 . For simplicity we consider the case

k=l . Using the sublinearity of the quantity \Vert \Vert_{L^{1/2}}^{1/2} we obtain

\displaystyle \Vert\sum B(f_{k}, g_{k})\Vert_{L^{1/2}}^{1/2}\leq\sum\Vert B(f_{k}, g_{k})\Vert_{L^{1/2}}^{1/2}\leq\sum\Vert f_{k}|\left|\begin{array}{l}
1/2\\
L^{1}
\end{array}\right||g_{k}\Vert_{L^{1}}^{1/2}\leq (\Vert f\Vert_{L^{1}}\Vert g\Vert_{L^{1}})^{1/2},
k k k

where the last inequality follows by the Cauchy‐Schwarz inequality.
We end this introduction by indicating some differences between linear and multilinear

operators, even in the simple case of positive kernels of convolution type. First we recall

the space weak L^{p}
,

or L^{p,\infty}(0<p<\infty) defined by

L^{p,\infty}=\displaystyle \{f:\mathrm{R}^{n}\rightarrow \mathrm{C}:\sup_{ $\lambda$>0} $\lambda$|\{|f|> $\lambda$\}|^{1/p}=\Vert f\Vert_{L^{p,\infty}}<\infty\}.
This space is normable for p>1 and p‐normable for p<1 . It is (1- $\epsilon$) ‐normable for

p=1.
If a linear convolution operator f\rightarrow f*K_{0} with K_{0}\geq 0 , maps L^{1}(\mathrm{R}^{n}) to L^{1} (Rn),

then it obviously maps L^{1}(\mathrm{R}^{n}) to L^{1,\infty}(\mathrm{R}^{n}) and from this it follows that K_{0} must be

an L^{1} (integrable) function. The circle of consequences trivially completes since if K_{0} is

integrable, then f\rightarrow f*K_{0} maps L^{1}(\mathrm{R}^{n}) to L^{1} (Rn).
In the bilinear case (case m=2 in Example (3)), one also has that if (f, g)\rightarrow T_{0}(f, g)

maps L^{1}(\mathrm{R}^{n})\times L^{1}(\mathrm{R}^{n}) to L^{1/2}(\mathrm{R}^{n}) ,
then T_{0} maps L^{1}(\mathrm{R}^{n})\times L^{1}(\mathrm{R}^{n}) to L^{1/2,\infty}(\mathrm{R}^{n}) ,

and

from this it also follows that the kernel K_{0} must be an integrable function. However, it

is not the case that for K_{0} nonnegative and integrable we have that the corresponding
operator T_{0} maps L^{1}(\mathrm{R}^{n})\times L^{1}(\mathrm{R}^{n}) to L^{1/2,\infty}(\mathrm{R}^{n}) ,

see Grafakos and Soria [14]. So there

are some fundamental differences between linear and bilinear operators even in the simple
case of nonnegative kernels.

2. The Kato‐Ponce rule

Let us start with the classical Leibniz rule saying that for differentiable functions f, g

on \mathrm{R}^{n} and a multiindex  $\gamma$=($\gamma$_{1}, \ldots, $\gamma$_{n}) we have

(1) \displaystyle \partial^{ $\gamma$}(fg)=\sum_{$\beta$_{j}\leq$\gamma$_{j}}\left(\begin{array}{l}
$\gamma$_{1}\\
$\beta$_{1}
\end{array}\right) . . . \left(\begin{array}{l}
$\gamma$_{n}\\
$\beta$_{n}
\end{array}\right)(\partial^{ $\beta$}f)(\partial^{ $\gamma$- $\beta$}g)
where the sum is taken over all multi‐indices  $\beta$=($\beta$_{1}, \ldots, $\beta$_{n}) with $\beta$_{j}\leq$\gamma$_{j} for all

j=1 , 2, . . .

,
n.
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One defines the homogeneous fractional differentiation operator D^{s}
,

for s>0 by

D^{s}(f)(x)=\displaystyle \frac{1}{(4$\pi$^{2})^{s/2}}(-\triangle)^{s/2}(f)(x)=\int_{\mathrm{R}^{n}}| $\xi$|^{s}\hat{f}( $\xi$)e^{2 $\pi$ ix\cdot $\xi$}d $\xi$,
where \triangle=\partial_{1}^{2}+\cdots+\partial_{n}^{2} is the usual Laplacian and

\displaystyle \hat{f}( $\xi$)=\int_{\mathrm{R}^{n}}f(x)e^{-2 $\pi$ ix\cdot $\xi$}dx
is the Fourier transform of a Schwartz function f . We also introduce the inhomogeneous
fractional differentiation operator (I-\triangle)^{t/2} by

(I-\displaystyle \triangle)^{t/2}f(x)=\int_{\mathrm{R}^{n}}\hat{f}( $\xi$)(1+4$\pi$^{2}| $\xi$|^{2})^{t/2}e^{2 $\pi$ ix\cdot $\xi$}d $\xi$,
where f is a Schwartz function, or in this case, even a tempered distribution and t is a

real number. The Sobolev space norm of a tempered distribution f is defined for t real

and  1\leq p<\infty by

\Vert f\Vert_{L_{t}^{p}}=\Vert(I-\triangle)^{t/2}f\Vert_{L^{p}}.
We note that

\Vert f\Vert_{L^{p}}\leq\Vert f\Vert_{L_{t}^{p}}
for any t>0 and  1\leq p<\infty . Indeed, this amounts to knowing that the inverse Fourier

transform of the multiplier (1+| $\xi$|^{2})^{-t/2} lies in L^{1} for all t>0 . This is a well known fact

(see for instance [9]) since this function (called the Bessel potential) is integrable near

zero and is bounded by a constant multiple of e^{-|x|/2} as |x|\rightarrow\infty.
A natural question that arises is whether there is a Leibniz rule analogous to (1) for

positive numbers s . Although one may not write an easy explicit Leibniz formula in this

case, for the purposes of many applications, it suffices to control a norm of (I-\triangle)^{s/2} (fg)
in terms of norms of f and g and their derivatives. This was achieved by Kato and Ponce

[16] who proved the following fractional differentiation rule:

(2) \Vert fg\Vert_{L_{s}^{p}}\leq C[\Vert f\Vert_{L_{s}^{p}}\Vert g\Vert_{L^{\infty}}+\Vert f\Vert_{L^{p}}\Vert(I-\triangle)^{\frac{s}{2}}g\Vert_{L^{\infty}}+\Vert\nabla f\Vert_{L^{\infty}}\Vert g\Vert_{L_{s-1}^{p}}]
where s>0,  1<p<\infty . Kato and Ponce used this estimate to obtain commutator

estimates for the Bessel operator which in turn they applied to obtain estimates for the

Euler and Navier‐Stokes equations.
The homogeneous version of this differentiation rule was obtained by Christ and We‐

instein [4] who obtained the following inequality for  0<s<1

(3) \Vert D^{s}(fg)\Vert_{L^{r}}\leq C[\Vert D^{s}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}]
\displaystyle \frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}} ;

this rule arose in connection with dispersion of solutions of the generalized Korteweg‐De
Vries equation. We will refer to both homogeneous and inhomogeneous versions of such

inequalities as the Kato‐Ponce diffe rentiation rule. For related references on this rule see

the works of Semmes [22], Bényi, Nahmod, and Torres [1] and Gulisashvili and Kon [15].
We will prove the Kato‐Ponce differentiation rule in some cases and we will provide

some extensions. Our approach is based on the theory of bilinear singular integrals.
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Theorem 1. Let s be a nonnegative even integer. Suppose that 1\leq p_{1}, p_{2}, q_{1},  q_{2}<\infty be

such that

\underline{1}1111=-+-=-+-.
r p_{1} q_{1} p_{2} q_{2}

When  1/2<r<\infty and  1<p_{1}, p_{2}, q_{1},  q_{2}<\infty ,
there is a constant  C such that for all f, g

Schwartz functions on \mathrm{R}^{n} we have

(4) \Vert D^{s}(fg)\Vert_{L^{r}}\leq C[\Vert D^{s}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}]
Moreover, when  1/2\leq r<\infty and  1\leq p_{1}, p_{2}, q_{1},  q_{2}<\infty ,

then

(5) \Vert D^{s}(fg)\Vert_{L^{r,\infty}}\leq C[\Vert D^{s}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}]
is valid for all f, g Schwartz functions on \mathrm{R}^{n} . By density these estimates can be extended

to all functions for which the right hand side of the inequalities are finite.

Proof. We previously introduced the notion of a bilinear multiplier operator by setting

 T_{ $\sigma$}(f, g)(x)=\displaystyle \int_{\mathrm{R}^{n}}\int_{\mathrm{R}^{n}}\hat{f}( $\xi$)\hat{g}( $\eta$) $\sigma$( $\xi$,  $\eta$)e^{2 $\pi$ ix\cdot( $\xi$+ $\eta$)}d $\xi$ d $\eta$
where  $\sigma$( $\xi$,  $\eta$) is some function, called the symbol of T_{ $\sigma$} . We now note that D^{s}(fg) is a

bilinear multiplier operator with symbol

 $\sigma$( $\xi$,  $\eta$)=| $\xi$+ $\eta$|^{s}
It will suffice to express this symbol in terms of | $\xi$|^{s} and | $\eta$|^{s}.

We consider a smooth function  $\phi$ that is equal to 1 on the interval [0 ,
1 ] and vanishing

on the interval [2, \infty ). Then we partition | $\xi$+ $\eta$|^{s} as follows:

| $\xi$+ $\eta$|^{s}=\displaystyle \{\frac{| $\xi$+ $\eta$|^{s}}{| $\xi$|^{s}}(1- $\phi$)(\frac{| $\xi$|}{| $\eta$|})\}| $\xi$|^{s}+\{\frac{| $\xi$+ $\eta$|^{s}}{| $\eta$|^{s}} $\phi$(\frac{| $\xi$|}{| $\eta$|})\}| $\eta$|^{s}
and we note that the functions inside the curly brackets are homogeneous of degree 0 and

smooth away from the origin ( $\xi$,  $\eta$)=(0,0) (obviously they are singular at the origin).
Setting

$\sigma$_{1}( $\xi$,  $\eta$)=\displaystyle \frac{| $\xi$+ $\eta$|^{s}}{| $\xi$|^{s}}(1- $\phi$)(\frac{| $\xi$|}{| $\eta$|})
and

$\sigma$_{2}( $\xi$,  $\eta$)=\displaystyle \frac{| $\xi$+ $\eta$|^{s}}{| $\eta$|^{s}} $\phi$(\frac{| $\xi$|}{| $\eta$|})
we write

(6) D^{s}(fg)=T_{$\sigma$_{1}}(D^{s}f, g)+T_{$\sigma$_{2}}(f, D^{s}g)
and matters reduce to the boundedness of the operators T_{$\sigma$_{1}} and T_{$\sigma$_{2}}.

We recall a bilinear multiplier theorem due to Coifman and Meyer [6], [7] (with the

extension to indices p<1 by Kenig‐Stein [17] and Grafakos‐Torres [12]):

Proposition 1. Suppose that  $\sigma$( $\xi$)\rightarrow is a smooth function on \mathrm{R}^{mn}\backslash \{0\} that satisfies

(7) |\partial^{ $\beta$} $\sigma$( $\xi$)|\rightarrow\leq C_{ $\beta$}| $\xi$|^{-| $\beta$|}\rightarrow
for all multiindices | $\beta$|\leq mn+1 and for all  $\xi$\neq\rightarrow 0 . Then the m ‐linear operator T_{ $\sigma$} acting
on functions on \mathrm{R}^{n}\times\cdots\times \mathrm{R}^{n} with symbol  $\sigma$ is bounded fr om  L^{p_{1}}(\mathrm{R}^{n})\times\cdots\times L^{p_{m}}(\mathrm{R}^{n})
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to L^{p}(\mathrm{R}^{n}) when 1<p_{j}\leq\infty, 1/p=1/p_{1}+\cdots+1/p_{m},  1/m<p<\infty and is bounded

fr om  L^{p_{1}}(\mathrm{R}^{n})\times\cdots\times \mathrm{L}(\mathrm{R}) to L^{p,\infty}(\mathrm{R}^{n}) when 1\leq p_{j}\leq\infty, 1/p=1/p_{1}+\cdots+1/p_{m},
1/m\leq p<\infty.

This result was improved by Tomita [23] by weaking assumption (7) to hold only for

indices | $\alpha$|\leq[mn/2]+1 when p>1 ; see also the related work of Grafakos, Miyachi,
Tomita [11], Grafakos and Si [13], and Miyachi and Tomita [20].

Now we notice that the functions $\sigma$_{1} and $\sigma$_{2} are homogeneous of degree zero and there‐

fore they satisfy (7). Using Proposition 1 (with m=2 ) and (6), we obtain the Leibniz

fractional differentiation rule for the product fg.
\square 

Corollary 1. Under the hypotheses of Theorem 1 have the following estimate

(8) \Vert D^{s}(fg)\Vert_{L^{1/2,\infty}}\leq C(\Vert f\Vert_{L^{1}}+\Vert D^{s}(f)\Vert_{L^{1}})(\Vert g\Vert_{L^{1}}+\Vert D^{s}(g)\Vert_{L^{1}})
whenever s is a nonnegative even integer.

We now discuss the inhomogeneous version of the preceding theorem.

Theorem 2. Suppose that 1\leq p_{1}, p_{2}, q_{1},  q_{2}<\infty and  1/2\leq r<\infty be such that

\displaystyle \frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}.
Suppose that s>2n+1 . Then for f, g Schwartz functions the inequality

(9) \Vert(I-\triangle)^{s/2}(fg)\Vert_{L^{r}}\leq C[\Vert(I-\triangle)^{s/2}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert(I-\triangle)^{s/2}(g)\Vert_{L^{q_{2}}}]
is valid when 1<p_{1}, p_{2}, q_{1},  q_{2}<\infty . Also the inequality

(10) \Vert(I-\triangle)^{s/2}(fg)\Vert_{L^{r,\infty}}\leq C[\Vert(I-\triangle)^{s/2}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert(I-\triangle)^{s/2}(g)\Vert_{L^{q_{2}}}]
is valid when at least one of p_{1}, p_{2}, q_{1}, q_{2} is equal to 1.

Proof. The proof proceeds as that one in the previous theorem with the only difference

being that the functions $\sigma$_{1} and $\sigma$_{2} are defined by

$\sigma$_{1}( $\xi$,  $\eta$)=(\displaystyle \frac{1+| $\xi$+ $\eta$|^{2}}{1+| $\xi$|^{2}})^{s/2}(1- $\phi$)(\frac{| $\xi$|}{| $\eta$|})
and

$\sigma$_{2}( $\xi$,  $\eta$)=(\displaystyle \frac{1+| $\xi$+ $\eta$|^{2}}{1+| $\eta$|^{2}})^{s/2} $\phi$(\frac{| $\xi$|}{| $\eta$|})
and the key observation is that, although these functions are not homogeneous of degree
zero, they still satisfy (7) for all | $\alpha$|\leq 2n+1 (since s>2n+1 ) and thus Proposition 1

applies. \square 

We denote by L_{s}^{r,\infty} the weak Sobolev space with norm:

\Vert f\Vert_{L_{s}^{r,\infty}}=\Vert(I-\triangle)^{s/2}f\Vert_{L^{r,\infty}}
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Corollary 2. Let s>0 . Then forfunctions f, g in the Schwartz class we have

\Vert fg\Vert_{L_{s}^{r}}\leq\Vert f\Vert_{L_{s}^{p}}\Vert g\Vert_{L_{s}^{q}}
whenever 1<p,  q<\infty and  1/r=1/p+1/q . We also have

\Vert fg\Vert_{L_{s}^{r,\infty}}\leq\Vert f\Vert_{L_{s}^{p}}\Vert g\Vert_{L_{s}^{q}}
whenever 1\leq p,  q<\infty and  1/r=1/p+1/q . These estimates extend by density to all

functions in the corresponding Sobolev spaces.

Proof. The important observation is for s>2n+1 and for s=0
,

the claimed estimate is

valid. The case where 0<s\leq 2n+1 follows by complex interpolation. For purposes of

interpolation, one has to reprove the endpoint cases with s replaced by  s+i $\theta$ and observe

that the estimates obtained are mild in  $\theta$ . The details are omitted. \square 

The methods hereby discussed also extend to the case of m‐linear operators for m\geq 3.

Precisely, we have the following estimates:

Theorem 3. Let  1\leq p_{j,k}<\infty  for1\leq j, k\leq m be such that 1/p=1/p_{1,i}+\cdots+1/p_{m,i}
for all i . Let f_{j} be functions in the Schwartz class.

Suppose that s is an even integer. When p_{j,k}>1 we have

(11) \displaystyle \Vert D^{s}(f_{1}\cdots f_{m})\Vert_{L^{p}}\leq C\sum_{j=1}^{m}[\Vert D^{s}(f_{j})\Vert_{L^{p_{j,j}}}\prod_{i\neq j}\Vert f_{i}\Vert_{L^{p_{i,j}}}]
and when p_{j,k}\geq 1 the following estimates are valid:

\displaystyle \Vert D^{s}(f_{1}\cdots f_{m})\Vert_{L^{p,\infty}}\leq C\sum_{j=1}^{m}[\Vert D^{s}(f_{j})\Vert_{L^{p_{j,j}}}\prod_{i\neq j}\Vert f_{i}\Vert_{L^{p_{i,j}}}] .

Now suppose that s>0 . Then the following estimates are valid for any i :

\Vert f_{1}\cdots f_{m}\Vert_{L_{s}^{p}}\leq C\Vert f_{1}\Vert_{L_{s}^{p_{1,i}}}\cdots\Vert f_{m}\Vert_{L_{s}^{p_{m,i}}}
whenever and p_{j,k}>1 ,

and

\Vert f_{1}\cdots f_{m}\Vert_{L_{s}^{p,\infty}}\leq C\Vert f_{1}\Vert_{L_{s}^{p_{1,i}}}\cdots\Vert f_{m}\Vert_{L_{s}^{p_{m,i}}}
whenever p_{j,k}\geq 1.

The proof of this theorem is obtained via a decomposition analogous to that in Theo‐

rem 2.

3. Paraproducts

For continuously differentiable functions on the real line we recall the product rule of

differentiation:

(fg)'=f'g+fg'
from which we obtain the following expression for the product:

f(x)g(x)+c=\displaystyle \int_{-\infty}^{x}f'(t)g(t)dt+\int_{-\infty}^{x}f(t)g'(t)dt.
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But the constant c must be zero since both functions on the left and right vanish at

infinity. The expressions on the right above can be identified with �half� the product of

f and g and for this reason we call them paraproducts.
The first paraproduct $\Pi$_{1} of f and g is a bilinear operator defined as follows:

$\Pi$_{1}(f, g)(x)=\displaystyle \int_{-\infty}^{x}f'(t)g(t)dt.
Obviously, the perfect reconstruction of the product from the two paraproducts is as

follows:

fg=$\Pi$_{1}(f, g)+$\Pi$_{1}(g, f)
and the derivative of each term on the right is equal to half the derivative of the product,
i.e., f'g and g'f respectively.

Another type of paraproduct was introduced by A. Calderón (1965) for analytic func‐

tions F, G defined on the upper half plane \{x+iy: x\in \mathrm{R}, y>0\} that vanish at infinity.
This paraproduct is defined as

 $\Pi$(F, G)(z)=-i\displaystyle \int_{0}^{\infty}F'(z+iy)G(z+iy)dy
for complex numbers z with positive imaginary part.

One also has the reconstruction property of $\Pi$_{1} , i.e.,

F(z)G(z)= $\Pi$(F, G)(z)+ $\Pi$(G, F)(z)
since

 $\Pi$(F, G)(z)+ $\Pi$(G, F)(z)=-i\displaystyle \int_{0}^{\infty}[F'(z+iy)G(z+iy)+F(z+iy)G'(z+iy)]dy
=-i\displaystyle \int_{0}^{\infty}(FG)'(z+iy)dy
=-\displaystyle \int_{0}^{\infty}\frac{d}{dy}(FG)(z+iy)dy
=-[\displaystyle \lim_{y\rightarrow\infty}(FG)(z+iy)-(FG)(z)]
=(FG)(z) .

We recall the Poisson kernel

P(x)=\displaystyle \frac{1}{ $\pi$}\frac{1}{1+x^{2}}
and the conjugate Poisson kernel

Q(x)=\displaystyle \frac{1}{ $\pi$}\frac{x}{1+x^{2}}
and their dilations P_{t}(x)=t^{-1}P(x/t) and Q_{t}(x)=t^{-1}Q(x/t) . We consider the derivatives

of these kernels

P'(x)=-\displaystyle \frac{1}{ $\pi$}\frac{2x}{(1+x^{2})^{2}}
and

Q'(x)=\displaystyle \frac{1}{ $\pi$}\frac{1-x^{2}}{(1+x^{2})^{2}}
and we note that P' and Q' are integrable functions with mean value zero.
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If we consider the analytic functions F(x+iy)=(f*P_{y})(x)+i(fQ)(x) and G(x+iy)=
(g*P_{y})(x)+i(g*Q)(x) for some real‐valued functions f and g ,

then

F'(x+iy)=\displaystyle \frac{d}{dx}F(x+iy)=\frac{d}{dx}[(f*P_{y})(x)+i(f*Q_{y})(x)]=\frac{1}{y}[(f*P_{y}')(x)+i(f*Q_{y}')(x)]
and  $\Pi$(F, G)(x) becomes to

\displaystyle \int_{0}^{\infty}[(f*P_{y}')(x)+i(f*Q_{y}')(x)][(g*P_{y})(x)+i(g*Q_{y})(x)]\frac{dy}{y}
for real numbers x . This can be written as a finite sum of integrals of the form

\displaystyle \int_{0}^{\infty}(g*P_{y})(x)(f*\mathbb{Q}_{y})(x)\frac{dy}{y}
and of the form

\displaystyle \int_{0}^{\infty}(g*\mathbb{Q}_{y})(x)(f*\mathbb{Q}_{y})(x)\frac{dy}{y}
where \mathbb{Q} is one of Q, P', Q'.

Using the above, the restriction of  $\Pi$(F, G) on the real line gives rise to paraproducts
of the form

$\Pi$_{2}(f,  $\Psi$;g,  $\Phi$)(x)=\displaystyle \int_{0}^{\infty}(f*$\Psi$_{y})(x)(g*$\Phi$_{y})(x)\frac{dy}{y}
and of the form

$\Pi$_{2}(f,  $\Psi$;g,\displaystyle \overline{ $\Psi$})(x)=\int_{0}^{\infty}(f*$\Psi$_{y})(x)(g*\overline{ $\Psi$}_{y})(x)\frac{dy}{y},
where  $\Phi$,  $\Psi$

,
and \overline{ $\Psi$} are integrable functions with mean 1, 0

,
and 0

, respectively. For

purposes of most applications, it will suffice to consider functions  $\Phi$,  $\Psi$
,

and \overline{ $\Psi$} that are

compactly supported in their spatial domains or in frequency.
In the sequel we will consistently denote by  $\Psi$, \overline{ $\Psi$} functions whose Fourier transforms

are compactly supported and vanish at the origin while we will denote by  $\Phi$, \overline{ $\Phi$} functions

whose Fourier transforms are compactly supported and are equal to one at the origin.
Finally, we have the discrete versions of $\Pi$_{2} which we call $\Pi$_{3}

$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)=\displaystyle \sum_{j}S_{j}^{ $\Phi$}(g)\triangle_{j}^{ $\Psi$}(f)
and

$\Pi$_{3}(f,  $\Psi$;g,\displaystyle \overline{ $\Psi$})=\sum_{j}\triangle_{j}^{\overline{ $\Psi$}}(g)\triangle_{j}^{ $\Psi$}(f) ,

where \triangle_{j}^{ $\Psi$} is the Littlewood‐Paley operator given by convolution with $\Psi$_{2-j} and S_{j}^{ $\Phi$} is an

averaging operator given by convolution with $\Phi$_{2-j}.
We would like to consider boundedness p‐roperties of these paraproducts. The easiest

one to study is the paraproduct $\Pi$_{3}(f,  $\Psi$;g,  $\Psi$) (or analogously its continuous version).
Suppose that  $\Psi$ is an integrable  C^{1} function on \mathrm{R}^{n} with mean value zero that satisfies

(12) | $\Psi$(x)|+|\nabla $\Psi$(x)|\leq B(1+|x|)^{-n-1}
Introducing the square function

\displaystyle \mathrm{S}^{ $\Psi$}(f)=(\sum_{j\in \mathrm{Z}}|\triangle_{j}^{ $\Psi$}(f)|^{2})^{1/2}
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we have that

(13) \Vert \mathrm{S}^{ $\Psi$}(f)\Vert_{L^{p}}\leq C\Vert f\Vert_{L^{p}}
for  1<p<\infty . (The same estimate is valid for  0<p\leq 1 provided the L^{p} norm on the

right hand side of (13) is replaced by the H^{p} quasi‐norm of f and  $\Psi$ is assumed to have

more smoothness). We also have that

 $\Pi$_{3}(f,  $\Psi$;g,\overline{ $\Psi$})\leq \mathrm{S}^{ $\Psi$}(f)\mathrm{S}^{\overline{ $\Psi$}}(g)
from which several estimates about $\Pi$_{3} can be obtained. For example, it follows from

Hölder�s inequality that

\Vert$\Pi$_{3}(f,  $\Psi$;g,\overline{ $\Psi$})\Vert_{L^{p}}\leq C\Vert f\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{p_{2}}}
whenever 1/p_{1}+1/p_{2}=1/p and p_{1}, p_{2}>1 ,

with the analogous modification when p_{1} or

p_{2} are less than or equal to 1.

So the most difficult paraproducts are the ones of the form $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) . These can be

studied easier under the assumption that  $\Psi$ and  $\Phi$ are smooth functions with compactly
supported frequency. Also, at this point, the one‐dimensional and higher dimensional

theory does not present any differences.

For purposes of exposition, we let  $\Psi$ be a smooth function with Fourier transform

supported in the annulus  1/2<| $\xi$|<2 on \mathrm{R}^{n} and satisfying

\displaystyle \sum_{j\in \mathrm{Z}}\hat{ $\Psi$}(2^{-j} $\xi$)=1,  $\xi$\neq 0.
We let  $\Phi$ be a smooth function whose Fourier transform is supported in the ball | $\xi$|\leq 2
and that it is equal to 1 on the smaller ball | $\xi$|\leq 1/2 . The paraproduct $\Pi$_{3} can be written

as

$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)=\displaystyle \sum_{j}\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g)+R(f, g) ,

where R(f, g) is another paraproduct of the form $\Pi$_{3}(f,  $\Psi$;g,\overline{ $\Psi$}) that was previously stud‐

ied.

The main feature of the paraproduct operator $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) is that it is essentially a

sum of orthogonal functions in frequency. Indeed, the Fourier transform of the function

\overline{\triangle_{j}^{ $\Psi$}(f}) is supported in the set

\{ $\xi$\in \mathrm{R}^{n}:2^{j-1}\leq| $\xi$|\leq 2^{j+1}\},

while the Fourier transform of the function S_{j-3}^{\overline{ $\Phi$}}(g) is supported in the set

\displaystyle \bigcup_{k\leq j-3}\{ $\xi$\in \mathrm{R}^{n}:2^{k-1}\leq| $\xi$|\leq 2^{k+1}\}.
This implies that the Fourier transform of the function \triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g) is supported in the

algebraic sum

\{ $\xi$\in \mathrm{R}^{n}:2^{j-1}\leq| $\xi$|\leq 2^{j+1}\}+\{ $\xi$\in \mathrm{R}^{n}:| $\xi$|\leq 2^{j-2}\}
which is contained in the set

(14) \{ $\xi$\in \mathrm{R}^{n}:2^{j-2}\leq| $\xi$|\leq 2^{j+2}\},
and the family of sets in (14) is �almost disjoint� as j varies.
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We now introduce a function  $\Theta$ whose Fourier transform is supported in the annulus

\{ $\xi$\in \mathrm{R}^{n} : 2^{-3}\leq| $\xi$|\leq 2^{3}\} and is equal to one on the annulus \{ $\xi$\in \mathrm{R}^{n} :  2^{-2}\leq| $\xi$|\leq
 2^{2}\} . Then the Littlewood‐Paley operator \triangle_{j}^{ $\Theta$}(h)=h*$\Theta$_{2-j} satisfies \triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g)=
\triangle_{j}^{ $\Theta$}(\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g)) and we may write

$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)=\displaystyle \sum_{j\in \mathrm{Z}}\triangle_{j}^{ $\Theta$}(\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g))
It is now possible to compute the L^{p} norm of $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) for p>1 by duality as the

supremum of expressions of the form

(15) \displaystyle \int_{\mathrm{R}^{n}}$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)(x)h(x)dx
over functions h with \Vert h\Vert_{L^{p}}, \leq 1 . Using that \triangle_{j}^{ $\Theta$} is self‐adjoint we have that the expression
in (15) is equal to

\displaystyle \int_{\mathrm{R}^{n}}\sum_{j\in \mathrm{Z}}\triangle_{j}^{ $\Theta$}(h)\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g)dx
which is bounded by

\displaystyle \int_{\mathrm{R}^{n}}\mathrm{S}^{ $\Theta$}(h)\mathrm{S}^{ $\Psi$}(f)\sup_{j}S_{j}^{ $\Phi$}(g)dx
Clearly we have

\displaystyle \sup_{j}S_{j}^{ $\Phi$}(g)\leq c_{ $\Phi$}M(g) ,

where M is the Hardy‐Littlewood maximal function and the required conclusion follows

from the boundedness of \mathrm{S}^{ $\Theta$}, \mathrm{S}^{ $\Psi$}
,

and M on L^{q} for all q>1.
We have now obtained the following

Proposition 2. The operator $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) is bounded fr om L^{p_{1}}\times L^{p_{2}} to L^{p} whenever

1<p_{1}, p_{2},  p<\infty and  1/p_{1}+1/p_{2}=1/p.

To extend this proposition to the case p\leq 1 and p_{1}, p_{2}>1 ,
we use the theory of Hardy

spaces. First we need the following lemma.

Lemma 1. Let \triangle_{k} be the Littlewood‐Paley operator given by \triangle_{k}(g)^{-}( $\xi$)=\hat{g}( $\xi$)\hat{ $\Psi$}(2^{-k} $\xi$) ,

k\in \mathrm{Z} , where  $\Psi$ is a Schwartz function whose Fourier transfO rm is supported in the

annulus \{ $\xi$ : 2^{-b}<| $\xi$|<2^{b}\} , for some b\in \mathrm{Z}^{+} and satisfies \displaystyle \sum_{k\in \mathrm{Z}}\hat{ $\Psi$}(2^{-k} $\xi$)=c_{0} , for some

constant c_{0} . Let  0<p<\infty . Then there is a constant  c=c(n,p, c_{0},  $\Psi$) ,
such that for

functions f in H^{p}\cap L^{2}
,

and also in L^{p}\cap L^{2}
,

we have

\displaystyle \Vert f\Vert_{Lp}\leq c\Vert(\sum_{k\in \mathrm{Z}}|\triangle_{k}(f)|^{2})^{1/2}\Vert_{L^{p}}.
Proof. Let  $\Phi$ be a Schwartz function with integral one. Then the following quantity
provides a characterization of the  H^{p} norm:

\displaystyle \Vert f\Vert_{H^{p}}\approx\Vert\sup_{t>0}|f*$\Phi$_{t}|\Vert_{L^{p}}.
It follows that for f in H^{p}\cap L^{2}

,
which is a dense subclass of H^{p}

,
one has the estimate

|f|\displaystyle \leq\sup_{t>0}|f*$\Phi$_{t}|,
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since the family \{$\Phi$_{t}\}_{t>0} is an approximate identity. Thus

\Vert f\Vert_{L^{p}}\leq c\Vert f\Vert_{H^{p}}

whenever f is an element of H^{p}\cap L^{2}.

Keeping this observation in mind we can write:

\displaystyle \Vert f\Vert_{Lp}\leq c\Vert f\Vert_{Hp}\leq\Vert(\sum_{j\in \mathrm{Z}}|\triangle_{j}(f)|^{2})^{1/2}\Vert_{L^{p}}.
By density this estimate is also extends to functions f in L^{p}\cap L^{2}. \square 

Using this lemma, we extend Proposition 2 to the case where p\leq 1.

Proposition 3. The operator $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) is bounded fr om L^{p_{1}}\times L^{p_{2}} to L^{p} whenever

p_{1}, p_{2}>1, p\leq 1 and 1/p_{1}+1/p_{2}=1/p.

Proof. Let  $\Theta$ be as in the proof of Proposition 2. We split  $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) as a sum of ten

operators $\Pi$_{3}^{s}(f,  $\Psi$;g,  $\Phi$) ,
s=0 ,

. . .

, 9, where

$\Pi$_{3}^{s}(f,  $\Psi$;g,  $\Phi$)=\displaystyle \sum_{j:j=10m+s}\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g)
We consider for instance the case where s=0 . Then in view of Lemma 1 we have

\displaystyle \Vert$\Pi$_{3}^{0}(f,  $\Psi$;g,  $\Phi$)\Vert_{L^{p}}\leq c'\Vert(\sum_{k\in \mathrm{Z}}|\triangle_{k}^{ $\Theta$}($\Pi$_{3}^{0}(f,  $\Psi$;g,  $\Phi$))|^{2})^{1/2}\Vert_{L^{p}}
=c'\displaystyle \Vert(\sum_{k\in \mathrm{Z}}|\triangle_{k}^{ $\Theta$}(\sum_{j:j=10m}\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g))|^{2})^{1/2}\Vert_{L^{p}}
\displaystyle \leq c'\Vert(\sum_{k\in \mathrm{Z}}|\triangle_{k}^{ $\Theta$}(\sum_{1j-k|<4 ,j=10m}\triangle_{j}^{ $\Psi$}(f)S_{j-3}^{ $\Phi$}(g))|^{2})^{1/2}\Vert_{L^{p}}.

But given a k there is at most one multiple of 10, j=j(k) ,
such that |j(k)-k|<

4 . The function \hat{\mathrm{O}-}(2^{-k} $\xi$) is equal to 1 on the support of the Fourier transform of

\triangle_{j(k)}^{ $\Psi$}(f)S_{j(k)-3}^{ $\Phi$}(g) .

So matters essentially reduce to the study of the L^{p} boundedness of the square function

(\displaystyle \sum_{k\in \mathrm{Z}}|\triangle_{j(k)}^{ $\Psi$}(f)S_{j(k)-3}^{ $\Phi$}(g)|^{2})^{1/2}
where j(k) is a fixed one‐to‐one function of k . The preceding square function is bounded

by

\displaystyle \mathrm{S}^{ $\Psi$}(f)\sup_{j}S_{j}^{ $\Phi$}(g)\leq c\mathrm{S}^{ $\Psi$}(f)M(g)
and an application of Hölder�s inequality yields the required assertion.

\square 
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4. Paraproducts and differentiation

In this section we discuss how one can use the previously defined paraproducts to

study differentiation, and in particular, the Kato‐Ponce differentiation rule. We refer the

author to the work of Muscalu, Pipher, Thiele, and Tao [21] for an elegant exposition
on the theory of paraproducts, and their connection with the Kato‐Ponce differentiation

rule.

Given a paraproduct of the form

$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)(x)=\displaystyle \sum_{j\in \mathrm{Z}}\triangle_{j}^{ $\Psi$}(f)(x)S_{j}^{ $\Phi$}(g)(x) ,

for some functions  $\Phi$ and  $\Psi$ as above, we investigate what happens when we differentiate

it in the  x variable with respect to the differential operator \partial^{ $\alpha$} . Here  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n}) is

a multiindex and the total order of differentiation is | $\alpha$|=$\alpha$_{1}+\cdots+$\alpha$_{n}.
The classical Leibniz rule gives a sum of terms, one of which is obtained when \partial^{ $\alpha$} falls

on \triangle_{j}^{ $\Psi$}(f) , yielding \triangle_{j}^{ $\Psi$}(\partial^{ $\alpha$}f) . Then there is a sum of terms of products of derivatives of

both \triangle_{j}^{ $\Psi$}(f) and S_{j}^{ $\Phi$}(g) . A typical term of this sort is

c_{ $\alpha,\ \beta$}2^{j| $\alpha$|}\triangle_{j}^{\partial^{ $\beta$} $\Psi$}(f)S_{j}^{\partial^{ $\alpha$- $\beta$} $\Phi$}(g) ,

where at least one entry of the multiindex  $\beta$ is strictly smaller than the corresponding entry
of  $\alpha$ . The operator \triangle_{j}^{\partial^{ $\beta$} $\Psi$} is a Littlewood‐Paley operator given by convolution with the

bump \partial^{ $\beta$}$\Psi$_{2-j} ,
while S_{j}^{\partial^{ $\alpha$- $\beta$} $\Phi$} is an averaging operator given by convolution with the bump

\partial^{ $\alpha$- $\beta$}$\Phi$_{2-j} . Since differentiations \partial^{ $\alpha$- $\beta$} include at least one derivative, one has that both

\partial^{ $\alpha$- $\beta$} $\Phi$ and \partial^{ $\beta$} $\Psi$ act like ( $\Psi$ �

functions, i.e., they are smooth functions with compactly
supported Fourier transform that vanishes at the origin (they have vanishing integral).

We need to replace  2^{j| $\alpha$|}\triangle_{j}^{\partial^{ $\beta$} $\Psi$}(f) by another Littlewood‐Paley operator involving a

derivative of f . This can be easily achieved by looking at the frequency. We may write

2^{j| $\alpha$|}\displaystyle \triangle_{j}^{\overline{\partial^{ $\beta$} $\Psi$}}(f)=2^{j| $\alpha$|}\overline{\partial^{ $\beta$} $\Psi$}(2^{-j} $\xi$)\hat{f}( $\xi$)=\frac{\overline{\partial^{ $\beta$} $\Psi$}(2^{-j} $\xi$)}{(2^{-j}| $\xi$|)^{| $\alpha$|}}| $\xi$|^{ $\alpha$}\hat{f}( $\xi$) .

But the function \overline{$\psi$_{ $\alpha,\ \beta$}}=| $\xi$|^{-| $\alpha$|}\overline{\partial^{ $\beta$} $\Psi$}( $\xi$) is well defined and smooth since \hat{ $\Psi$} vanishes in a

neighborhood of the origin. It follows that

2^{j| $\alpha$|}\triangle_{j}^{\partial^{ $\beta$} $\Psi$}(f)=\triangle_{j}^{$\psi$_{ $\alpha,\ \beta$}}(D^{| $\alpha$|}f)
This discussion leads to the conclusion that

\partial^{ $\alpha$}$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)=$\Pi$_{3}(\partial^{ $\alpha$}f,  $\Psi$;g,  $\Phi$)+R(D^{| $\alpha$|}f, g) ,

where R(D^{| $\alpha$|}f, g) is a finite sum of paraproducts of the form $\Pi$_{3}(D^{| $\alpha$|}f,  $\Psi$;g,\overline{ $\Psi$}) . We may
also replace  $\Psi$ by  $\Psi$_{ $\alpha$} ,

where

\displaystyle \hat{$\Psi$_{ $\alpha$}}( $\xi$)=\frac{$\xi$^{ $\alpha$}}{| $\xi$|^{| $\alpha$|}}\hat{ $\Psi$}( $\xi$) ,

from which it follows that

\partial^{ $\alpha$}$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)=$\Pi$_{3}(D^{| $\alpha$|}f, $\Psi$_{ $\alpha$};g,  $\Phi$)+R(D^{| $\alpha$|}f, g) ,

These observations allow us to conclude the interesting fact that differentiating a para‐

product of the form $\Pi$_{3}(f,  $\Psi$;g,  $\Phi$) yields a sum of paraproducts in which only the first

function is differentiated.
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The preceding discussion yields to the proof of another version of the Kato‐Ponce

differentiation rule: we may write

fg=$\Pi$_{3}(f,  $\Psi$;g,  $\Phi$)+$\Pi$_{3}(g,  $\Psi$;f,  $\Phi$)
and differentiating with respect to \partial^{ $\alpha$} gives

\partial^{ $\alpha$}(fg)=$\Pi$_{3}(D^{| $\alpha$|}f, $\Psi$_{ $\alpha$};g,  $\Phi$)+$\Pi$_{3}(D^{| $\alpha$|}g, $\Psi$_{ $\alpha$};f,  $\Phi$)+R(D^{| $\alpha$|}f, g)+R(D^{| $\alpha$|}g, f) .

Taking L^{p} norms and using Proposition 3 we obtain a bilinear version of Theorem 3 in

which D^{s} on the left in (11) is replaced by \partial^{ $\alpha$} (where s=| $\alpha$| ).
We now prove a result analogous to Theorem 2 for the homogeneous derivatives D^{s}.

Theorem 4. Suppose that 1\leq p_{1}, p_{2}, q_{1},  q_{2}<\infty and  1/2\leq r<\infty be such that

\displaystyle \frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}.
Assume that s>2n+1 . Then

(16) \Vert D^{s}(fg)\Vert_{L^{r}}\leq C[\Vert D^{s}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}]
is valid when 1<p_{1}, p_{2}, q_{1},  q_{2}<\infty . Also

(17) \Vert D^{s}(fg)\Vert_{L^{r,\infty}}\leq C[\Vert D^{s}(f)\Vert_{L^{p_{1}}}\Vert g\Vert_{L^{q_{1}}}+\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}]
is valid when at least one of p_{1}, p_{2}, q_{1}, q_{2} is equal to 1.

Proof. Let us work with Schwartz functions f and g . Introduce a smooth bump  $\Psi$ whose

Fourier transform is supported in the annulus  6/7<| $\xi$|<2 and is equal to one on

1<| $\xi$|<12/7 and such that

\displaystyle \sum_{j}\hat{ $\Psi$}(2^{-j} $\xi$)=1
for all  $\xi$\neq 0 . Let \triangle_{j} be the associated Littlewood‐Paley operator. Then we have

fg=\displaystyle \sum_{j,k}\triangle_{j}(f)(g)
and this identity holds at every point in \mathrm{R}^{n} . We introduce the operator S_{k}=\displaystyle \sum_{j\leq k}\triangle_{j}
which is given by multiplication on the Fourier side by \hat{ $\Phi$}(2^{-k} $\xi$) .

We write fg as the sum of the following three terms:

$\Pi$_{1}(f, g)=\displaystyle \sum_{j<k-2}\triangle_{j}(f)\triangle_{k}(g) ,

$\Pi$_{2}(f, g)=\displaystyle \sum_{k<j-2}\triangle_{j}(f)\triangle_{k}(g) ,

$\Pi$_{3}(f, g)=\displaystyle \sum_{|j-k|\underline{<}2}\triangle_{j}(f)\triangle_{k}(g) .

The first and the second of these terms is easy to handle by the standard technique
described in Section 2, which also works for all s>0 :

D^{s}($\Pi$_{1}(f, g))(x)=\displaystyle \sum_{k}\int_{\mathrm{R}^{n}}\int_{\mathrm{R}^{n}}e^{2 $\pi$ ix\cdot( $\xi$+ $\eta$)^{\wedge}}\overline{S_{k-3}}(f)( $\xi$)\triangle_{k}(g)( $\eta$)| $\xi$+ $\eta$|^{s}d $\xi$ d $\eta$,
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which equals

D^{s}($\Pi$_{1}(f, g))(x)=\displaystyle \int_{\mathrm{R}^{n}}\int_{\mathrm{R}^{n}}\hat{f}( $\xi$)| $\eta$|^{s}\hat{g}( $\eta$)e^{2 $\pi$ ix\cdot( $\xi$+ $\eta$)}[\sum_{k}\hat{ $\Phi$}(2^{-k+3} $\xi$)\hat{ $\Psi$}(2^{-k} $\eta$)\frac{| $\xi$+ $\eta$|^{s}}{| $\eta$|^{s}}]d $\xi$ d $\eta$.
The expression inside the square brackets is a bilinear Coifman‐Meyer multiplier, hence

boundedness holds for this term by Proposition 1. We obtain that

(18) \Vert D^{s}($\Pi$_{1}(f, g))\Vert_{L^{r}}\leq C\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}
is valid when 1<p_{2},  q_{2}<\infty . Also

(19) \Vert D^{s}($\Pi$_{1}(f, g))\Vert_{L^{r,\infty}}\leq C\Vert f\Vert_{L^{p_{2}}}\Vert D^{s}(g)\Vert_{L^{q_{2}}}
when p_{2} or q_{2} equals 1. The argument for $\Pi$_{2} is similar, producing estimates analogous
to (18) and (19) with the roles of f and g interchanged.

Now we look at $\Pi$_{3} . For simplicity let us only consider the term where j=k , i.e.,

\displaystyle \sum_{j}\triangle_{j}(f)\triangle_{j}(g) .

Then we may write

D^{s}($\Pi$_{3}(f, g)) = \displaystyle \sum_{k}\triangle_{k}D^{s}(\sum_{j}\triangle_{j}(f)\triangle_{j}(g))
= \displaystyle \sum_{k}D^{s}\triangle_{k}(\sum_{j\geq k-3}\triangle_{j}(f)\triangle_{j}(g))
= \displaystyle \sum_{k}2^{ks^{-}}\triangle_{k}(\sum_{j\geq k-3}\triangle_{j}(f)\triangle_{j}(g))
= \displaystyle \sum_{k}2ks^{-}\triangle_{k}(\sum_{\ell\geq-3}\triangle_{\ell+k}(f)\triangle\ell+k(g))
= \displaystyle \sum_{\ell\geq-3}2^{-\ell s}\sum_{k}-\triangle_{k}(2^{(\ell+k)s}\triangle_{\ell+k}(f)\triangle\ell+k(g))
= \displaystyle \sum_{\ell\geq-3}2^{-\ell s}\sum_{k}\triangle_{k(\triangle\ell+k}-\triangle_{\ell+k}(f)^{-}(D^{s}g)) ,

where we set | $\xi$|^{s}\hat{ $\Psi$}( $\xi$)=\hat{\mathrm{O}-}( $\xi$) and let \overline{\triangle_{k}} be the Littlewood‐Paley operator associated

with  $\Theta$.

The symbol of the preceding bilinear operator is

\displaystyle \sum_{\ell\geq-3}2^{-\ell s}\sum_{k}\hat{\mathrm{O}-}(2^{-k}( $\xi$+ $\eta$))\hat{\mathrm{O}-}(2^{-k-\ell}( $\xi$)) $\Psi$(2^{-k-\ell}( $\eta$))
Notice that each differentiation in  $\xi$ or  $\eta$ produces a factor of  2^{\ell}(| $\xi$|+| $\eta$|)^{-1} ,

so to preserve

convergence of the series in \ell
,

one may only differentiate in  $\xi$ and  $\eta$ combined at most  $\beta$
times with | $\beta$|<s . Thus this symbol is of Coifman‐Meyer type if s>2n+1 ,

in which

case it satisfies (7) for all | $\beta$|\leq 2n+1 . It follows that $\Pi$_{3} also satisfies (18) and (19). The

proof is now complete. \square 
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