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Abstract

In this note, we determine the wave front sets of solutions to time dependent Schrédinger
equations with a sub-quadratic potential by using the representation of the Schrédinger
evolution operator of a free particle introduced in [11] via wave packet transform (short
time Fourier transform).

1 Introduction

In this note, we consider the following initial value problem of the time dependent Schrodinger
equations,
{i(?tu +2Au—V(t,x)u=0, (t,z)€RxR", 1)

u(0,x) = ug(x), xR,

where i = /~1L, u: RxR" = C, A=3"7, % and V (¢, x) is a real valued function.
i

We shall determine the wave front sets of solutions to the Schrédinger equations (1)
with a sub-quadratic potential V' (¢,x) by using the representation of the Schrodinger
evolution operator of a free particle introduced in [11] via the wave packet transform
which is defined by A. Cérdoba and C. Fefferman [1]. In particular, we determine the
location of all the singularities of the solutions from the information of the initial data.
Wave packet transform is called short time Fourier transform in several literatures([7]).

We assume the following assumption on V (¢, z).

Assumption 1.1. V(t,z) is a real valued function in C*°(R x R™) and there exists
0 < p < 2 such that for all multi-indices «,

03V (t,2)| < C(1+ |z~

holds for some C > 0 and for all (¢,z) € R x R™.
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Let o € S(R")\{0} and f € S'(R™). We define the wave packet transform W, f(z,¢)
of f with the wave packet generated by a function ¢ as follows:

Wolw.8) = [ P miwe "y, w¢ R

In the sequel, we call the function ¢ a window function (or window).
In the previous paper [11], we give a representation of the Schrodinger evolution op-
erator of a free particle, which is the following:

Ww(t)u(ta z, g) = 6_%t|§|2W¢OUO($ - £t7 5)7 (2)

where p®) = B (z) = /D20 (z) with po(z) € S(R™)\{0} and Womu(t,z,§) =
W lu [ (t,)(z,€). In the following, we often use this convention W, wu(t,z,§) =
W y[u(t, )](z, §) for simplicity.

In order to state our results precisely, we prepare several notations. Let b = (2 — p)/4.
For pg(z) € S(R™), we put p®(z) = /2P py(x) and gof\t)(a:) = A/2,(N0) (\by) for
A > 1. For (g, &) € R*xR™\{0}, we call a subset V = K xI" of R?" a conic neighborhood
of (z9,&o) if K is a neighborhood of xp and I' is a conic neighborhood of & (i.e. £ € I" and

a > 0 implies af € I'). For A > 1 and (z,£) € R™ x R”, let z(s;t, 2, \{) and &(s;t, x, \E)

be the solutions to

{@(s) = &), a(t) =, .

£(s) =-VVi(s,z(s)), &(t)=AL.

The following theorem is our main result.
Theorem 1.2. Let ug(z) € L*(R") and u(t,x) be a solution of (1) in C(R; L*(R™)).
Then under the assumption 1.1, (zg,&y) ¢ WF(u(t,z)) if and only if there exists a conic
neighborhood V.= K x T of (xo,&y) such that for all N € N, for all a > 1 and for all
vo(z) € S(R™) satisfying [ x*po(z)dz # 0 for some multi-index «, there exists a constant
CN,a,p0 > 0 satisfying

W, ouo(@(05t,2,08), £(0:,2,A8)| < Cvapod ™

forA>1, a7t <|¢|<aand (2,8) €V.

Remark 1.3. Ww(_t)uo(as, €) is the wave packet transform of ug(x) with a window function
A

—t
o5 (@).
Remark 1.4. In [12], the authors investigate the wave front sets of solutions to Schrédinger

equations of a free particle and a harmonic oscillator via the wave packet transformation.

Remark 1.5. In one space dimension, if V(t,z) = V(z) is super-quadratic in the sense
that V(z) > C(1 + |z|)?"¢ with some ¢ > 0, K. Yajima [20] shows that the fundamental
solution of (1) has singularities everywhere.

Corollary 1.6. If p < 1, then (x9,&) ¢ WF(u(t,z)) if and only if there exists a conic
neighborhood V.= K x I' of (x9,&y) such that for all N € N, for all a > 1 and for all
vo(z) € S(R™) satisfying [ %po(z)dx # 0 for some multi-index «, there exists a constant
CN,a,p0 > 0 satisfying

!WA—MO(% — ME )| < Chaod ™

forA>1,a ' <[¢|<aand (z,6) €V
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The idea to classify the singularities of generalized functions “microlocally” has been
introduced firstly by M. Sato, J. Bros and D. lagolnitzer and L. Héormander independently
around 1970. Wave front set is introduced by L. Hérmander in 1970 (see [9]). It is proved
in [10] that the wave front set of solutions to the linear hyperbolic equations of principal
type propagates along the null bicharacteristics.

For Schrédinger equations, R. Lascar [13] has treated singularities of solutions mi-
crolocally first. He introduced quasi-homogeneous wave front set and has shown that
the quasi-homogeneous wave front set of solutions is invariant under the Hamilton-flow
of Schrodinger equation on each plane ¢ = constant. C. Parenti and F. Segala [18] and
T. Sakurai [19] have treated the singularities of solutions to Schrédinger equations in the
same way.

The Schrédinger operator i0; + %A commutes x + itV. Hence the solutions become
smooth for t > 0 if the initial data decay at infinity. W. Craig, T. Kappeler and W. Strauss
[2] have treated this smoothing property microlocally. They have shown for a solution of
(1) that for a point xg # 0 and a conic neighborhood I of xq, (x)"ug(z) € L?(I") implies
(&yra(t,€) € L*(I') for a conic neighborhood of I of zy and for t # 0, though they
have considered more general operators. Several mathematicians have shown this kind of
results for Schrodinger operators [4], [5], [14], [16], [17].

A. Hassell and J. Wunsch [8] and S. Nakamura [15] determine the wave front set of the
solution by means of the initial data. Hassell and Wunsch have studied the singularities
by using “scattering wave front set”. Nakamura has treated the problem in semi-classical
way. He has shown that for a solution u(t, z) of (1), (o, &) ¢ WF (u(t)) if and only if there
exists a C§° function a(x,€) in R*™ with a(zo,&) # 0 such that ||a(z + tDy, hDy)ug|| =
O(h>) as h | 0. On the other hand, we use the wave packet transform instead of the
pseudo-differential operators.

2 Preliminaries

In this section, we introduce the definition of wave front set W (u) and the characteri-
zation of wave front set by G. B. Folland [6].

Definition 2.1 (Wave front set). For f € S'(R"), we say (xo, &) € WE(f) if there exist
a function x(z) in C§°(R™) with x(zo) # 0 and a conic neighborhood I' of {y such that
for all V € N there exists a positive constant Cy satisfying

IXFO < Cy(+ )N
for all £ € T

To prove Theorem 1.2, we use the following characterization of the wave front set by
G. B. Folland [6]. Let ¢ € S(R™) satisfying [ z%p(z)dz # 0 for some multi-index a. For
fixed b with 0 < b < 1, we put py(z) = \/2p(\0x).

Proposition 2.2 (G. B. Folland [6, Theorem 3.22] and T. Okaji [16, Theorem?2.2]). For
f € S (R™), we have (x9,&) € WFE(f) if and only if there exist a conic neighborhood K
of x¢g and a conic neighborhood I' of &y such that for all N € N and for all a > 1 there
exists a constant Cn o > 0 satisfying

(W f(2, )] < Cnah™

forA>1,2€ K and ¢ €T witha ! < [¢] < a.
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Remark 2.3. Folland [6] has shown that the conclusion follows if the window function
¢ is an even and nonzero function in S(R™) and b = 1/2. In Okaji [16], the proof of
Proposition 2.2 for b = 1/2 is given.

Remark 2.4. Folland [6] and Okaji [16] have proved for b = 1/2. It is easy to extend for
0<b<1.

3 Proofs of Theorem 1.2 and Corollary 1.6

In this section, we prove Theorem 1.2 and Corollary 1.6.

Proof of Theorem 1.2. The initial value problem (1) is transformed by the wave packet
transform to

(z’@t V6V, — iV, V() - Ve — JEP - V(t, :B)) X
W@(f)u(ta$a£) = RU(t,l’,g), (4)

W(p(o)U(O, 1’,5) = thou()(xag)a

where V(t,2) = V(t,2) — VoV (t, z) - = and

Ru(t,z,§) = Z/w(“(y — o) Vit 2,9) (5 — %) (ye — zi)u(t, y)e Vdy
g,k

with Vig(t,z,y) = fol 0;0kV (t,x + 0(y — x))(1 — 6)dh. Solving (4), we have the integral
equation

W wu(t,z,€) = el IE(ta O +Valsta Doy g (2051, 2,€),£(0:t, ,6))

t -
_ z/ e—if;{%|£(81;t,:c7£)|2+V(817$($1;t7z7£))}d81Ru(3’x(s;t’ z,8),&(s;t, x,€))ds
0

where x(s;t,z,§) and £(s;t,z,£) are the solutions of

{r{c(s) = &(s), a(t) =
f(s) :_vwv( (

x,

), &(t) =¢.
For fixed tg, we have

ngt—fo)u(tv :B(ta th z, )\g)a g(tv th z, )\5))

= TR T 0NN g (a(0; 0,2, ), (0 0,2, 76))

t + ~
b [ e 0m A T onrto s Ao R, (5,2, 06), s 0, A s, (6)
0

substituting (x(t;tg, x, A§), £(t; o, x, AE)) and gpg\_to)(:v) for (x,£) and @g(z) respectively.
Here we use the fact that

z(t;to, z, AS), (¢ to, z, AS)) = x(s;to, 2, AE),

z(t;to, z, AE), (¢ to, z, AS)) = &(s5t0, 7, A)

x(s;t,
£(sst,
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and e%mgog\_to)(a:) = @g\t_to)(az).

We only show the sufficiency here because the necessity is proved in the same way. To
do so, we show that there exist a neighborhood K of xg and a conic neighborhood I' of
&o such that the following assertion P(o,pq) holds for all ¢ > 0 and for all ¢y € S(R™)
satisfying [ 2%po(x)dz # 0 for some a.

P(o,p0): “ For a > 1 there exists a positive constant Cy 4,4, such that

|Wgof\f—fo)u(ta l’(t;to,ib, )\f),f(t;to,iB, Ag))| < Cﬂ,a,tpo)‘_a (6)
forallz € K,all ¢ e T with 1/a < |¢{| <a,all A >1and 0 <t <t 7
In fact, taking t = to, we have gog\to_to) = (¢0)y, z(to; to, x, A§) = @ and {(to; to, , A) =

A¢. Hence from (6), we have immediately
‘W(()DO))\U(tO’ :1;’ Af)’ S Ca7a7§00A_0.

for A > 1, x € K and £ € I" with 1/a < |£] < a. This and Proposition 2.2 show the
sufficiency.

We fix b = (2 — p)/4. We write x* = x(s;tg, x, AE), " = &(s;tp, 2, AE), t* = s — tp and
() = (w0), (x) for simple description.

We show by induction with respect to o that P(o, ) holds for all o > 0 and for all
w0 € S(R™) satistying [ 2%po(x)dz # 0 for some a.

First we show that P(0, ¢g) holds for all ¢y € S(R™). Since ug(x) € L2(R"), u(t,z) €
C(R; L*(R™)). Schwarz’s inequality and conservativity for L? norm of solutions of (1)
show that

W mwpult. o(tito, 2,0, A (t:to. 2, A6))
< 1649w - s(tto,z 29 lutt.p)ldy

< 16 O pellult, )]l 2
= lloaO 2 lluo O 22 = o ()2 lluo ()l -

Hence P(0, @) holds.

Next we show that for fixed ¢y € S(R") satisfying [ z%pg(z)dz # 0 for some a,
P(o+(2—p)/2,p0) holds under the assumption that P(c, ) holds for all ¢y satisfying
J 2%po(x)dz # 0 for some a. To do so, it suffices to show that for fixed ¢y, there exists
a positive constant C ., such that

|Ru(s, (s; o, T, AE), £(85 to, 2, AE))| < C g A~ HE/2) (7)

forallz € K,all ¢ € T with 1/a < |{] < a, all A > 1 and 0 < s < tg, since the first term
of the right hand side of (5) is estimated by the condition on uy.
Taylor’s expansion of V (s, z*,y) yields that

Ru(s,z*,&", \)

oSV (s, x* N a (s— —iye*
= > %/(w — )% (y — a*)u(s,y)e ¥ dy + Ry, (8)

2<|a|<L—1
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where

RL(SaZB*ag*’)‘) =L Z i;

y // (/ (/1 9oV (s,2" — 0(a* — ))(1 9)L—1d9) (@ — y)°

x Ty — %) )y — 2)eE D ay) W, o-r0yu(s, 2 m)dzdl.
Here we use the inversion formula of the wave packet transform

L WoWL () = f().

lpll2
/ / 9(y, ey — )™ dédy

for a smooth tempered function g(y, &) on R?™.

The strategy for the proof of (7) is the following. In Step 1, taking b = (2 — p)/4
according to the value of p which is the order of increasing of V (¢, x) with respect to = in
the assumption 1.1, we estimate the first term of the right hand side of (8). In Step 2,
taking L sufficiently large according to the value of o, we estimate the second term Rj, of
the right hand side of (8).

(Stepl) We estimate the first term of the right hand side of (8). Since

. ilz = N(y —a)? Abt* 1 ilz = Ny —a)?
(:BJ o yj) exp (_ 2t*)\2b 8ZJ +37 )\b eXp | — 2t*)\2b ’

we have

* a i‘Z_Ab(y )’2 Abt* 1 “ Z’Z_Ab(y_x*)‘z
(" —y)“exp (— 7 2 0. + we) e |- SYESeD .

Thus we have

where

(2" — y)“sﬂ(f*)(y —*)

- (7 . . b o * 2
:(277)\2bt*i)_"/2)\”b/2/ ()\—t(? + L > exp (_z|z Ay —27)| >300(z)dz
z*)|

Ab 2t* \2b

o3 =2 \nb/2 iz = Ay — )P\ (At 1\
= (2 A2bpxg)—n/2\"b/ /exp (— 57\ : 8Z+Vz wo(2)dz

= Z C/Bﬂt*Iﬁl)\b(lﬂl—lvl)@g\ﬁﬁ)(t*’y_33*)’
B+y=a
where %7 (z) = aﬂ(?;?goo(x) and go(ﬁw(t,a:) = e3th (@(B’V))A(x). Since PV (z) =
2708 vo(z) satistying [ o8 (x)dx # 0 for some «, the assumption of induction yields
that

|(The first term of the right hand side of (8))|

DD DI |aa 5,27)[Cp ot PINVIPD N ) o uls, o, 6%)
2<|a|<L—1 B+y=a

1 * — * — —
< Z Z a0(14_|$ & |a|C’5ﬁt 1B \6(BI=1") o \—° .
2<]a|<L—1B+v=a
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Since

¥ =x(s;tg,x, N) = +/ #(s1)dsy
to

=x+ (s—to)AN— [ (s—51)ViV(s1,2(s1))ds1, (9)

to

there exists a positive constant Ay such that
2 > - [t[A (10)
~ 2a

for all A > \g, A2 < [t*| < tg, x € K and &€ € T with 1/a < |¢| < a. ( see Appendix A
for the proof of (10)). Hence we have for A™2 < |t*| < tg

|(The first term of the right hand side of (8))]

1

= *\)P—led BINBUBI=ID o=
< E E a!C(1+yt |N)PTINC 1IN CA
2<]a|<L-1B+y=a

< Z )\p—|a|+b|a|—0'
2<|e|<L-1
—24-2b— —(2—p)/2—
< QAP o \—(2-p)/ v

since b = (2 — p)/4. For [t*| < A™?*, we have which shows that

|(The first term of the right hand side of (8))]

1
< Z Z JC’C’Bﬁt*w')\b('/Bl_hl)C’)\_a
2<]a|<L—-1B+y=a

1 _ _ g2
< YN GO = oy,

2<]a|<L—1B+y=a

(Step 2) We estimate Ry,. Let 1,19 be C* function on R satisfying

1 for s <1,

S) =
¥n(s) {O for s > 2,
0 for s <1,

S) =
vals) {1 for s > 2,

Y1(s) +1a(s) =1 forall s € R.

Take d > 0 satisfying 1 — b < d < 1. Putting V,(s,z*,y) = fol oSV (s, x* — 0(z* —y))(1 —
6)L=1df and

Inji(s, ™, £, N)
/// i ( 1 +’§It_*|g)32b’Ad—1> Ve ((1 - Lﬁt;)z‘b)\d*) Vals, ", y)(a" = )"

A =)0l = W ey uls, 2 mye € dzdndy
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for 7,k = 1,2, we have
Rp(s,z*,&\) =L Z 'H ”2 Z Tojn(s, 2%, &5 N). (11)
jaj=r, & 101> 5=y
We need to show that for j,k = 1,2, there exists a positive constant Cy 4, such that
(5,0, €5, V)] < Conagpoh =02 12)

for A >1, 2 € K, €T with 1/a < |{| <aand 0 < s <ty For I,;;, integration by
parts and the fact that (1 — A,)e®EM = (1 + |¢ —n|>)e?E yield that

Taaatsa &) = [[[ @ ge—n?)™

), (¢ y—a*
x (1= AN [so(f =2l (v — ) ((1 +’A\t*\)2bykd—1>

v 2 * —iy(&*—n)
x¢1 ((1—|—)\|t*|)2b)\d—1 Vals, a7, y)| W amu(s, z,m)e dydndz.

We take d’ = (1 — d)/(4b), which satisfies 2bd’ +d — 1= (d — 1)/2 < 0. Since |y — z*| <
C(1 4 M) A4~ in the support of 9y <%) with respect to y, the estimate
(10) shows that for [¢*| > A¥~1

05V (s,2" + 8y — 2*))[[(a" — 9)°] < O+ |* + 0y — ")) (1 + A PEADE
< C(l + |£B*| B |y - ZB*Dp_L(l + )\|t*|)2bL)\(d—1)L
< C(l—l—)\‘t D —(1- 2b)L>\(d 1)L
from which we have
[Ta1,1(5, 2%, €5 A)] < CATDEN, (13)

where [ are positive numbers which are independent of L. Since d — 1 < 0, (12) with
j = k = 1 holds if we take L sufficiently large. For [t*| < A¥~! we have |y — z*| <
C(1 + At*))2Ad—1 < A2bd'+d—1 < \([@=1)/2 which shows (13) for some I.

Finally we estimate I, ;i for j = 2 or k = 2. Before the estimate, we estimate
gog\t)(a:) = 820 () in the domain D = {(t,z)||z| > (1 + |At|)?*A9"1}. Take a positive
number § satisfying 0 < 0 < b+d— 1. Note that in D, [\°z| > AP(1+|At)2Ad—1 > \bHd—1
and b+d—1>0.

For 0 < t < A™2%, the fact that gogt)(:v) € C(R; S(R™)) yields that for any integer N
and any multi-index «, we have in D

2b
1020\ ()] = 182 (D (o)) | < O @ A2l =N) ()=
For \™2 <t < t, Weputgo()() ()()+<,0§\)2()Where

bo—y|?

Y —gle—ylm
90(;,)]( ) = W/% (| |> 227 oo (y)dy

for j = 1,2. In the support of o <|y|> ly| > A% holds. Since @o € S(R™), for any integer
N we have

[po(y)| < Cn(L+[y) " < On(L+ X)L+ ly) ™
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The above estimates, the fact that

Nz =y ly =Nz . n N\ —y?
(I—Ay)exp(—z oN2b =1+ (2)? +2)\2bt exp | —i— o,

and integration by parts yield that for any integer N and multi-index «,

182055(@)] < Onad™N (1 + [a) 71

in D for A > 1.
In the support of 11 <|%|>, ly| < 2X\% holds. Hence
Aoz — g 1 b
1 _

> S ((1 FAE)ZAGT N 2A5)
(L4 XD ¢ prat 5+1-b—d
—— (A 1—2X\°F

T 20¢|A% ( ( D

for some constant C' > 0, since b < 1/2 and 6 + 1 — b — d < 0. This estimate as above,
the fact that

[Nz — y]? ly = Az> . m [Nz — y]?
(1—-24y)exp (—z b =1+ )2 + inany ) P |~ 5y
and integration by parts yield that for any integer N and any multi-index «
08 6h @)] < CrwvaA ™ ()™
in D for A > 1. The estimates as above show that
0568 @)| < CrvaA ™ ()™

in Dfor A>1,0<t<tyand z € R" This estimate implies that for any integer N

ly — a7 ly — =]
‘/1/)2 ((]_ + )\|t*|)2b)\d—l) wk ((1 + )\|t*|)2b)\d—l>

Vals, 2, p)(@" = )%\ (y — 29l (y — 2)e ¥E Dy
SO+ =) T A+ )T

which shows (12) with j =2 and k =1,2forz € K, { € I' with 1/a <|{| <aand A > 1
and 0 < s < . In the same way as above, we have that (12) with j = 1,k = 2 holds for
rxeK, el withl/a<|{|<aand A >1and 0 < s <t. O

Proof of Corollary 1.6. (9) shows that
z(0;t, 2, M) = & — A&+ ONVh). (14)
In the same way as for (14), we have
E(0;t, 2, M) = AtE + OV 1). (15)
Since p — 1 < 0, (14) and (15) show that Theorem 1.2 implies Corollary 1.6. d
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A Proof of the estimate (10)

In this appendix, we give the proof of the estimate (10). We fix p. We show the estimate
(16) for [to| > |t*] > AP~ A > Ng, z € K, £ € T with 1/a < [¢] < a.

Proof. The equation (9) can be solved by Picard’s iteration method. We put z(®)(s) =
x4 (s — to) A and we define

SO () Z gy (5 — to)AE — 8(8 — 1)V V (s1, 2 (s1))dsy

to

for N > 0. Then we have the solution z(s) of (9) as z(s) = limy_e V) (s). We show
that there exists a positive constant A\g > 1 such that

1
g ltIAs |2 (s)] < 2alt*|A, (16)

for A > Ao, W71 < |t*| < tg, x € K and £ € T with 1/a < || < a. We only treat the case
that 1 < p < 2. We show (16) by induction with respect to N.

Obviously (16) holds for N = 0.

Assuming that (16) holds for N, we have

S
ls — s1|| V.V (s1, x(N)(Sl))‘dsl

to

to
> [ E ol = [ ls = silC(1+ o) (s0)) s

2D (5)] > |z + (s — to)AE] —

to
ZWMM—M—C/)b—MO+%%—&kaWM
> £ INE] — [a] — Ol — CA gl ot

B T to _ _
> el (1- i - 08— Clalex2iep )
N alx alt a’=P|to|P
> el (1- 4t - ol - ol

Since p > 0 and 2 — p > 0, there exists a constant A\g > 1 such that

el ol @l 1

1
P A A= T2

for A > Ag. Hence we have [N+ (s)| > LI IAE] > &[] A
In the same way as above, we can show that

2N ()] < 2/ Aa

for A > Ao, W71 < |#*| < tg, # € K and £ € I with 1/a < [¢] < a, assuming that (16)
holds for N. O
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