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REMARKS ON WIENER AMALGAM SPACE TYPE ESTIMATES FOR
SCHRODINGER EQUATION

KEIICHI KATO, MASAHARU KOBAYASHI AND SHINGO ITO

ABSTRACT. We give a new estimate for the solution to the Schréodinger equation with
potentials V (z) = +|x|? on the Winer amalgam spaces.

1. INTRODUCTION

We shall give a new estimate for the solution to the Schrodinger equation

1.1) iOu+ Hu=0, (t,z)€ RxR",

(L u(0,z) = up(x), =€ R"

in the framework of the Wiener amalgam spaces. Here i = /—1, u(t,r) is a complex
valued function of (t,z) € R x R", up(x) is a complex valued function of z € R™ and
dyu = Ou/0t, and we shall highlight the case H = 1A or H = (A + |z|?) with Au =
Sor 0%u/oxs.

There are a large number of works devoted to study the equation (1.1). Particularly,
in the context of the Wiener amalgam spaces W?? (or the modulation spaces MP?),
these types of issues were initiated in the works of Bényi-Gréchenig-Okoudjou-Rogers [1],
Wang-Hudzik [14] and Wang-Zhao-Guo [15], and these works have been developed by a
number of authors using a large variety of methods (see, for example, Bényi-Okoudjou
2], Kobayashi-Sugimoto [10], Miyachi-Nicola-Rivetti-Tabacco-Tomita [11], Tomita [12],
Wang-Huang [13], and the papers [3], [4] cited below). The precise definitions of the
Wiener amalgam spaces and the modulation spaces will be given in Section 2, but the
main idea of these spaces is to consider the space variable and the variable of its Fourier
transform simultaneously.

Concerning the Wiener amalgam spaces, the following theorem is known.

Theorem A (Cordero-Nicola (3], [4]). Let 2 < p < oo, 1/p+1/p = 1 and ¢y €
S(R™")\ {0}
(i) Suppose H = 1A. Then
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holds for all uy € S(R™).
(it) Suppose H = (A — |z|*). Then

1

. < —
R e

ol 0

holds for all uy € S(R™).
(#11) Suppose H = (A + |z|?). Then

1+ |sinh [\ 2"z
. s < (2 ,
ot Mgy S (o) ol
holds for all uy € S(R™).

In (i), (i1) and (iii), u(t,x) denotes the solution of (1.1) with u(0,x) = up(z).

The main purpose of the present paper is to give a refinement of Theorem A. More
precisely, we give an estimate for u(t, z) with u(0,2) = ug(r) € WI(R"), 1 < p,q < oo,
For the purpose, we introduce the function space W&, which is a generalization of M4
and WP (see Definition 2.2 below). The next theorem plays an essential role.

THEOREM 1.1. Let ¢y € S(R™) \ {0}.
(1) Suppose H = %A. Then

Vi (u(t, ) (2, )] = [V uo(z — 1€, )
holds for ug € S(R™).
(i) Suppose H = 1(A — |z|?). Then

Vit (ult; ) (2, ) = [Viguo((t), £(1))]
holds for uy € S(R™), where

2(t) = weost — Esint,  &(t) = zsint + € cost.

(#11) Suppose H = (A + |z|*). Then

Vit (ult; ) (2, ) = [Viouo((t), £(1))]
holds for uy € S(R™), where

x(t) = xcosht — &sinht, &(t) = —xsinht + £ cosht.

In (i), (i1) and (iii), u(t,z) and p(t,z) denote the solutions of (1.1) with u(0,z) = up(x)
and p(0,x) = @o(x). Moreover, V,yug and Vi y(u(t,-)) denote the short-time Fourier

transform of ug and u(t,-) with respect to the windows @y and (t,-), respectively (see
Section 2.1).

We remark that Theorem 1.1 also gives the key estimate

[t et < C@)uolly e

®0

to prove Theorem A (cf. [8, loc. cit.]), and the results in (i) and (i7) of this theorem were
already announced in Kato-Kobayashi-Ito [8], [9].
As a consequence of Theorem 1.1, we have the following estimates.
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COROLLARY 1.2. Let 1 < p,q < oo and g9 € S(R™)\ {0}.
(1) Suppose H = %A. Then

Juollweg = lutt, s
I’n On
holds for all uy € S(R™), where A = 1 1 )€ GL(2n,R).
(i1) Suppose H = (A — |z|?). Then
Juallwgg = utt e
n _ (cost-1I, —sint-I,
holds for all uy € S(R™), where B = (Sint I cost- 1, > € GL(2n,R).
(#11) Suppose H = (A + |z|*). Then
Juollwg = lut Mz
n _ (cosht-1I, sinht-I,
holds for all ug € S(R™), where C = sinht- I, cosht- In> € GL(2n,R).

In (i), (i1) and (iii), u(t,z) and p(t,z) denote the solutions of (1.1) with u(0,z) = up(x)
and ¢(0,2) = po(z). Here GL(2n,R) is the group of all invertible real matrices of order
2n. Moreover, I, and O, denote the n x n identity matriz and the n X n zero matriz,
respectively.

We observe that the result in (#4) implies that the operator ¢®# defined by u(t,z) =
ey (z), preserves the WP4-norm (and MP?-norm) if p = ¢. In fact, since det B = 1, we
have by the change of variable that

Juollwz (= luollaze) = Nt Yooz
However, this is false if p # ¢. Actually, we notice that
s
NE =) and Juollwgs = [uF-)|

™

|Vﬂﬂou0(xa€)| - Vw(%,)(u(ga M
e(550)

Using this and the fact that WP = FMP ¢ M?P for general p and ¢, we have the
assertion.

2. PRELIMINARIES

The following notation will be used throughout this article. We write S(R™) to de-
note the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions on R™ and S’'(R™) to denote the space of tempered distributions on R", i.e.,

the topological dual of S(R™). The Fourier transform is defined by f(§) = Ff(§) =
Jn f(2)e” ™ dx and the inverse Fourier transform by fY(x) = F~'f(z) = (2m) " f(—x).

We define 1
1l = ([ 17(@Pas)”

for 1 < p < oo and ||f||z~ = ess.sup,cgrn |f(z)]. We use the notation I < J if I is
bounded by a constant times J, and we denote I ~ J if I < J and J < 1.
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2.1. Short-Time Fourier Transform. We recall the definitions of the short-time Fourier
transform and its adjoint operator. Let f € S'(R™) and ¢ € S(R™). Then the short-time
Fourier transform Vy f of f with respect to the window ¢ is defined by

Vof(2,8) = (f(y), ply — x)e¥*) = . FW)oly — x)e ¥ dy.

Let F be a function on R™ x R™ and ¢ € S(R"). Then the (informal) adjoint operator
V; of Vy is defined by

ViF@) = [[ P9 - pesaye

with @& = (2m)~"d§.
If f,¢p € S(R"), then Vyf € S(R*) (|7, Theorem 11.2.5]). For f € S'(R") and
¢ € S(R"), Vi f is a continuous function on R™ x R™ and

Vo f(2,6)] < C(1+Ja| + )Y for all (z,6) € R* x R”
for some constant C, N > 0 ([7, Theorem 11.2.3]). Moreover, for ¢, ¢,y € S(R™) satisfy-
ing (¢, ¢) # 0 and (v,%) # 0, we have the inversion formula

L i f fes®Y

(v, @)
([7, Corollary 11.2.7]) and the pointwise inequality
C
( ) | ¢f(£lf,€)| < |<7’w>|(| 7/Jf| | ¢’Y|)(£IT,€), IS ( )a

for all (z,&) € R* ([7, Lemma 11.3.3]).

2.2. Modulation Spaces and Wiener Amalgam Spaces. We review some basic facts
concerning the modulation spaces and the Wiener amalgam spaces which will be needed
in the following section.

DEFINITION 2.1 (Feichtinger [5], [6]). Let 1 < p,¢ < oo and ¢ € S(R"™) \ {0}. Then
the modulation space M}“(R") = MP9 consists of all tempered distributions f € S’(R")
such that the norm

1/q

qa/p
||f||M;,;»q:(/R ([ mrwera) d€> = IV (. )z

is finite (with usual modifications if p = 0o or ¢ = 00). Furthermore, the Wiener amalgam
space WP*(R") = WP consists of all tempered distributions f € S'(R") such that the

norm
1/q

p/q
||f||wg’q=</R ([ s o) d:c) = Ve (2.l

is finite (with usual modifications if p = co or ¢ = o0).

The space M g’q(R”) is a Banach space, whose definition is independent of the choice of
the window ¢, i.e., MP*(R") = MJ*(R") for all ¢,¢ € S(R") \ {0} ([6, Theorem 6.1]).
This property is crucial in the sequel, since we choose a suitable window ¢ to estimate
the modulation space norm. If 1 < p,q < oo then S(R") is dense in M?? ([6, Theorem
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6.1]). We also note L? = M*? and MP-9 — MP>% if p; < py,q; < ¢y ([6, Proposition
6.5]). Let us define by MP?(R™) the completion of S(R™) under the norm || - || s/p.c. Then
MPA(R") = MPYR"™) for 1 < p,q < oco. Moreover, the complex interpolation theory
for these spaces reads as follows: Let 0 < 6 < 1 and 1 < p;,¢q; < 00,7 = 1,2. Set
Ip=1=0)/pr+0/p2, 1/qg = (1 = 0)/q1 + 0/qz, then (MP1I MP2®)e = MP ([6,
Theorem 6.1], [13, Theorem 2.3]). We refer to [6] and [7] for more details.

We also remark that N
Vo f (2, ) = 2m) " V3 f (€, —x)]
by Parseval’s formula. Thus
£ lwze = fllaze = [ llaaze = [ fllzaran

and we have WP4 = FM?P. This implies that the definition of W»? is independent of
the choice of the window, since the modulation space M?? is independent of the choice
of the window. For the same reason, WP has other properties similar to those of MP1,

2.3. Function Space W[{,. Now, we introduce the function space Wi, which is a
generalization of MP4 a,nd Wp 4

DEFINITION 2.2. Let 1 < p,q < oo and ¢ € S(R™) \ {0}. For N € GL(2n,R), we define
the space WJ'{,(R") = Wi’ by

WELRY) = {f € SR | fllwss, < o0}

1wz, = ( L (L wer ey |ng>”q d:v)

(with usual modifications if p = oo or ¢ = 00).

where
1/q

Obviously, we have

. . I, O
WPL(R") = WPUR™)  with N:(On In>

and
In O"l
In addition, we have W (R") = WPP(R") = MZ?(R") for 1 < p < oo and N €

GL(2n,R). We can easily prove some basic properties similar to those of M??. For
example, we have the following.

LEMMA 2.3. Let 1 < p,q < o0, ¢, € S(R")\ {0} and N € GL(2n,R). Then we have

Ifllwza, =~ I fllwee,

WPL(R) = MEYR™)  with N:(O” I">.

for f e WH(R™).
PROOF. Applying the inequality (2.1) in Section 2.1, we have

Vof (2, ON) | S (Vi f [+ Vey]) (2, N)

1
|<w|
b

//Rgn Vo f ((x =y, & = n)N) [ [V ((y, mN) [dydn,
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where the last & follows from the change of variable (y,n) — (y,n)N . Hence, we have
1fllwrs, = ||V¢f( 2, N [l

(7, w [(v, )| // Vet (@ =y, & =mN) gz Ve (v, mN) [dyen

=R——Wum%&mm¢%

We note that ||fy||W1 1 < oo, since Vyy € S(R*™) and det N # 0. Interchanging the roles

of ¢ and 9, we obtam the desired result.
OJ

3. PROOF OF THEOREM 1.1

PRrOOF. We shall prove only (iii), because we can treat (i) and (i) in the same way as
().

Let u(t,z) and ¢(t, ) be the solutions of (1.1) with H = $(A + |z]?), u(0,z) = up €
S(R™) and ¢(0,2) = ¢o(x) € S(R™) \ {0}. Using integration by parts, we have

(%Au(t, -)) (2,€)
% /R ety — 2)Ayu(t,y)e ¥ 4dy

1 —iy- . — N —iy-
= / §Ay90(t7 Yy— ZIT)U(t, y)G yﬁdy + / (_ZS ’ Vy)ﬁp(ta Yy — ZIT)U(t, y)G yﬁdy

- %Ifl2 /Rn p(t,y — z)ult,y)e™ " dy
= Vit ()09 + (€ 92 = 516l ) Vit alt, N .8),

Moreover, we have

10:Vp(a) (ult, ) (@, 6) = Veaoygie ) (ult, ) (@, €) + Vipgr, (i0hult, ) (2, €)

Vet

and
VLP(YZ')(' ’ |2u(t7 ))(l" S)
= [ Fr= it e iy

- _W/ oty — p)ult,y)e ™ dy + / v — 2Pp(t, y — 2)u(t, y)e ¥idy
n Rn

* 2/ oty —x)ult,y) x -y e Vidy

= —|2[*Vipie) (ult; ) (@, ) + Vg (ult, ))(@,6) + 2iz - VeV, (u(t, 1)) (@, 6).
As u(t,z) and (t, x) satisfy (1.1), we have
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= Vot (100000 + 58+ Pute,)) ()

- V[@ﬂt,)%(A+|.|2)¢(t,.)](U(t, ))(x, )
=0.

Hence the initial value problem (1.1) is transformed via the short-time Fourier transform
with respect to the window function (¢, x) to

(3.1)

(iat + Z(§ “Vy+x- V£) - %(|£|2 + |$|2)) Vgo(t,')(u(tv ))(x,&) =0,
VSO(Of) (U(O, ))(xa &) = VwOUO(x: 5)

By the method of characteristics, we have

Vit (u(t, ) ((8), €(1))] = [Vipo o (0, &),

where

x(t) = wgcosht + &sinht  and  &(t) = zgsinht + & cosht.

From this, we immediately have the desired result.
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