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A description of Bourgain‐Pavlovič�s
ill‐posedness theorem of the Navier‐Stokes

equations in the critical Besov space

Okihiro Sawada*

Abstract

It is investigated the border in between the time‐local well‐posedness and the

ill‐posedness of the Navier‐Stokes equations in the whole space with the initial data

in the critical spaces. It is known by Koch‐Tataru that the time‐local existence

theorem of mild solutions in BMO^{-1}=\dot{F}_{\infty,2}^{-1} . Besides, Bejenaru‐Tao and Bourgain‐
Pavlovic proved that the equicontinuity is not equipped when the initial data belong
to \dot{B}_{\infty,\infty}^{-1}=\dot{F}_{\infty,\infty}^{-1} . In addition, the term‐wise estimates for the successive approxi‐
mation of the mild solutions and its convergence or divergence are established.

1 Introduction

1.1 Problem

This note is a brief survey of the results related to [47], mainly.
We consider the Cauchy problem of the nonstationary incompressible viscous flow of

the ideal fluid in the whole space \mathrm{R}^{n} with n\geq 2 . This is mathematically described as

the Navier‐Stokes equations:

(NS) \left\{\begin{array}{ll}
u_{t}-\triangle u+(u, \nabla)u+\nabla p = 0 & \mathrm{i}\mathrm{n} \mathrm{R}^{n}\times(0, T) ,\\
\nabla\cdot u = 0 & \mathrm{i}\mathrm{n} \mathrm{R}^{n}\times(0, T) ,\\
u|_{t=0} = u_{0} & \mathrm{i}\mathrm{n} \mathrm{R}^{n}.
\end{array}\right.
Received September 29, 2011. Revised June 2, 2012.
*

Department of Mathematical and Design Engineering, Gifu University, Yanagido 1‐1,
501‐1193, Japan

E‐mail address: okihiro@gifu‐u.ac.jp

© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved



60 Okihiro Sawada

This initial value problem is called (NS). We define the notations of derivatives as follows:

u_{t}:=\partial_{t}u:=\partial u/\partial t, \partial_{j}:=\partial/\partial x_{j} for j=1 ,
. . .

, n, \nabla:=(\partial_{1}, \ldots, \partial_{n}) , \displaystyle \triangle:=\sum_{j=1}^{n}\partial_{j}^{2}.
Here, for vectors a= (al, . . .

,
a^{n} ) and b=(b\mathrm{l}, . . . , b^{n}) ,

a\cdot b or (a, b) denotes \displaystyle \sum_{j=1}^{n}a^{j}b^{j}.
The velocity u=(u\mathrm{l}, . . . , u^{n})=(u^{1}(x, t), \ldots, u^{n}(x, t)) and the pressure p=p(x, t) are

unknown functions. The problem is to determine the solution (u, p) to (NS) uniquely
from the given initial velocity u_{0} in some function space. It is natural to impose the

compatibility condition on u_{0} ,
that is, \nabla\cdot u_{0}=0 holds for all x\in \mathrm{R}^{n}.

The mathematical analysis of mechanics of viscous fluid has a long history. Mathemat‐

ical studying of (NS) was started by Oseen [43] who established the time‐local existence

of a classical solution to (NS) with a regular initial datum. One of the most important
results on (NS) is obtained by Leray [35, 36] in 1930' \mathrm{s} . In [35] Leray showed that for

n=2 there exists a unique time‐global classical solution, when the initial velocity u_{0}

is square‐integrable with \nabla  u_{0}=0 in the distribution sense. He also constructed the

time‐global weak solutions for n=3 . See also Hopf [22] and Masuda [37]. It is a famous

open problem whether one can obtain the uniqueness and smoothness of Leray�s weak

solutions, that is, (NS) admits a time‐global unique solution in L^{2} (R3). That is different

to our aim, so we do not penetrate into its detail.

By the Duhamel principle we derive the integral equation from (NS)

(INT) u(t)=e^{t\triangle}u_{0}-\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}\mathrm{P}(u( $\tau$), \nabla)u( $\tau$)d $\tau$.
See e.g. Fujita‐Kato [14, 28]. We call the solution of (INT) a mild solution. This

derivation is understood via the following abstract equation of value in a Banach space:

(ABS) u'=\triangle u-\mathrm{P}(u, \nabla)u, u(0)=u_{0}.

Here, we denote the heat semigroup e^{t\triangle}:=G_{t}* ,
the Gauss kernel G_{t}(x) :=\displaystyle \frac{1}{(4 $\pi$ t)^{n/2}}e^{-\frac{|x|^{2}}{4t}},

convolution with respect to spatial variables f*g(x) :=\displaystyle \int_{\mathrm{R}^{n}}f(x-z)g(z)dz ,
the Helmholtz

projection \mathrm{P}:=($\delta$_{ij}+R_{i}R_{j})_{i,j=1,\ldots,n} ,
Kronecker�s delta $\delta$_{ij}=1 if i=j, $\delta$_{ij}=0 if i\neq j,

the Riesz transform R_{i}:=\partial_{i}(-\triangle)^{-1/2} :=\displaystyle \mathcal{F}^{-1}\frac{\sqrt{-1}$\xi$_{i}}{| $\xi$|}\mathcal{F} . The Fourier transform is defined

by

\displaystyle \mathcal{F}f( $\xi$):=\hat{f}( $\xi$):=\frac{1}{(2 $\pi$)^{n/2}}\int_{\mathrm{R}^{n}}e^{-\sqrt{-1}x\cdot $\xi$}f(x)dx,
and \mathcal{F}^{-1} is its inverse;

\displaystyle \mathcal{F}^{-1}f(x):=\check{f}(x):=\frac{1}{(2 $\pi$)^{n/2}}\int_{\mathrm{R}^{n}}e^{\sqrt{-1}x\cdot $\xi$}f( $\xi$)d $\xi$.
If u is a mild solution, (u, p) is expected to be a classical solution, i.e. u is in C^{1} in t

and C^{2} in x at each time t>0 and location x\in \mathrm{R}^{n} . This formal equivalency between
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(INT) and (NS) can be justified when u has a sufficient regularity, provided if p is defined

suitably, for example,

p=\displaystyle \sum_{i,j=1}^{n}R_{i}R_{j}u^{i}u^{j} . (1.1)

We rather discuss (INT) and mild solutions than (NS) and classical solutions. Mild

solutions are usually constructed as the limit of the successive approximation (or, its

subsequence)

u_{1}(t) :=e^{t\triangle}u_{0} and u_{j+1}(t) :=u_{1}-\mathcal{B}(u_{j}) for j\in \mathrm{N} (1.2)

in C([0, T];X) for u_{0}\in X with a Banach space X
,

where

\mathcal{B}(u, v) :=\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}\mathrm{P}(u( $\tau$), \nabla)v( $\tau$)d $\tau$ and \mathcal{B}(u) :=\mathcal{B}(u, u) . (1.3)

In this note we discuss on the time‐local solvability, time‐global solvability for small

data, uniqueness and ill‐posedness of the Navier‐Stokes equations in the whole space with

initial data in critical spaces, due to the analysis of mild solutions and approximation.
We will refer to the definition of function spaces and their properties, in particular, the

important facts concerning with the mild solutions. This note is contributed to understand

of the positive results by Koch‐Tataru [30], and the negative one by the technique due to

Bejenaru‐Tao [3], Bourgain‐Pavlovic [8] and the author of this note [47].

1.2 Motivation

We now refer to the motivation of recent works on (NS) in several function spaces. To solve

(NS) uniquely and time‐globally in 3‐dimension, one may consider the following steps:

firstly the smooth time‐local solution is constructed; secondly the solution is extended

uniquely and time‐globally. Along this strategy, Kato‐Fujita [28] introduced the notion of

mild solutions, and proved that (NS) admits a unique time‐local smooth solution, when

u_{0}\in H^{\frac{n}{2}-1} (Rn). They actually discussed that the approximation sequence \{u_{j}\} uniquely

converges to the mild solution in the class C([0, T];H^{\frac{n}{2}-1}) . Although they established

this result in smooth bounded domains with non‐slip boundary conditions originally, the

proof can be applied to the whole space problem without any difficulty. The detail was

shown in [14].
Since the results of Kato‐Fujita are splendid, there are a lot of papers of the appli‐

cations of their method in many directions. Some researcher wanted to eliminate the

smoothness on the initial data, since the smoothness of the solutions is automatically
obtained by the usual smoothing effect of solutions to equations of parabolic type. For

this purpose Kato [27] (in the whole space) and Giga‐Miyakawa [21] (in a bounded do‐

main) studied the properties of the heat semigroup in the Lebesgue spaces, using L^{p}-L^{q}
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smoothing estimates, and they proved that (NS) admits a time‐local unique smooth so‐

lution in L^{n}(\mathrm{R}^{n}) for all n\geq 2 . Giga [16] also obtained the time‐local existence with

initial data in L^{p}(\mathrm{R}^{n}) for  n\leq p<\infty . The time‐local existence for  L^{\infty} initial data is

also constructed by Cannon‐Knightly [10], Cannone [11], Giga‐Inui‐Matsui [19] in general
dimension.

We explain the scaling invariant space. For  $\lambda$>0 , put

u_{ $\lambda$}(x, t):= $\lambda$ u( $\lambda$ x, $\lambda$^{2}t) , p_{ $\lambda$}(x, t):=$\lambda$^{2}p( $\lambda$ x, $\lambda$^{2}t) .

If (u, p) is a solution to (NS), then (u_{ $\lambda$}, p_{ $\lambda$}) also satisfies (NS), automatically. If (u_{ $\lambda$}, p_{ $\lambda$})=
(u, p) ,

then that is called a self‐similar solution. A study on the self‐similar solutions

plays an important role for mathematical investigation on partial differential equations.

Meyer [38] proposed the notion of the scaling invariant spaces with respect to x as

follows: we regard X as a scaling invariant space if \Vert u\Vert_{X}=\Vert $\lambda$ u( $\lambda$\cdot+a)\Vert_{X} for all  $\lambda$>0

and a\in \mathrm{R}^{n} . Concretely, L^{n}(\mathrm{R}^{n}) is scaling invariant; in fact, one may easily check

\Vert u\Vert_{L_{x}^{n}}=\Vert $\lambda$ u( $\lambda$\cdot+a)\Vert_{L_{x}^{n}} . Once the initial velocity u_{0} belongs to a scaling invariant space,

and small enough with respect to the norm, there is a chance to obtain the existence of a

time‐global smooth unique solution. In 1984 Kato [27] figured out this fact, he showed it

when u_{0}\in L^{n}(\mathrm{R}^{n}) . So, we call this fact Kato�s principle or, time‐global well‐posedness for

small data (GWSD). This immediately implies that u=0 is a stable stationary solution

to (NS) in a small ball of L^{n}
,

that is to say, the local stability. We intend to say that,
around 1981, Giga‐Miyakawa [21, 41, 42] also noticed this fact independently of Kato.

Moreover, Giga [16] and von Wahl [54] pointed out that Kato�s principle is applicable
whence the function space of initial data is scaling invariant. This means that one may

not make sense the smallness in not scaling invariant spaces. After [21, 27], there are a

lot of contribution works on Kato�s principle in several scaling invariant spaces. Actually,
Kato‐Ponce did it in \dot{H}_{2}^{\frac{n}{2}-1} in [29], Kozono‐Yamazaki showed it in \dot{B}_{p,\infty}^{-1+n/p} for p\in(n, \infty)
in [32], or Cannone et al. in [11, 12, 13, 44]. In addition, the weak‐ \mathrm{L}^{}(\mathrm{R}^{n}) space (which
is equivalent to the Lorentz space L^{n,\infty} ) is also considered by Kozono‐Yamazaki [33]. In

2001 Koch‐Tataru proved it by [30] in BMO^{-1} . The function spaces which are concerned

are wider and wider:

\dot{H}_{2}^{n/2-1}\subset L^{n}\subset\dot{B}_{p,\infty}^{-1+n/p}\subset BMO^{-1}=\dot{F}_{\infty,2}^{-1}\subset\dot{F}_{\infty,\infty}^{-1}=\dot{B}_{\infty,\infty}^{-1}
for p\in(n, \infty) . These embeddings are continuous (in norms), and \dot{B}_{\infty,\infty}^{-1} is the biggest
function space in scaling invariant spaces. In fact, Meyer showed that all scaling invariant

space is a subspace of \dot{B}_{\infty,\infty}^{-1} . This implies that all self‐similar solution belongs to \dot{B}_{\infty,\infty}^{-1}.
Therefore, from view point of pure mathematical interests, many researchers tried (still
try) to investigate (NS) in such function spaces. Bourgain‐Pavlovic [8] finally showed the

negative results in \dot{B}_{\infty,\infty}^{-1} , namely, Kato�s principle is not applicable in \dot{B}_{\infty,\infty}^{-1} . This note is



\mathrm{B}\mathrm{o}\mathrm{u}\mathrm{R}\mathrm{G}\mathrm{A}\mathrm{I}\mathrm{N}- PAVLOVI \acute{\mathrm{C}}' \mathrm{S} ill‐posedness theorem 0F THE NAvIER‐Stokes equations 63

a contribution for better understanding of their results, and we also argue the convergence

or divergence of successive approximation.

Furthermore, there are some results on the local existence of mild solutions in the

subcritical spaces (not scaling invariant, for example, the Besov space B_{p,q}^{- $\alpha$} with  $\alpha$<

1-n/p) . See e.g. [46]. Besides, in the case of supercritical spaces ( $\alpha$>1-n/p) it

seems to be tough to construct mild solutions by successive approximation, in general.

Nevertheless, using L^{2}‐theory by Leray‐Hopf, one can obtain the existence of time‐global
weak solutions when u_{0}\in L^{p}(\mathrm{R}^{3}) for p\in(2,3) ; see e.g. Calderón [9].

Before closing this section, we will refer to notation. Hereafter, we denote the numer‐

ical constants by C
,

which may differ to the others in lines, likely. We do not distinguish
scalar valued functions and vector valued, as well as the function spaces, if no confusion

occurs. We use Bourgain�s notation of an equivalency A\sim B
,

which means that there is

a constant C such that C^{-1}A\leq B\leq CA as well as the norm equivalency \Vert \Vert_{A}\sim\Vert \Vert_{B}
by C^{-1}\Vert f\Vert_{A}\leq\Vert f\Vert_{B}\leq C\Vert f\Vert_{A} for all f ; we use it when we do not have interests in the

constant C
, particularly. We also use a notation of the almost equivalency A\simeq B

,
which

means that A=B+R such that \displaystyle \Vert R\Vert\leq\frac{1}{3}\Vert B\Vert with some norm \Vert \Vert.

2 Function spaces

2.1 Sobolev space

Let us introduce the function spaces in this section. Let n\in \mathrm{N}, s\in \mathrm{R} and let 1\leq p,  q\leq
\infty . The set of test functions is denoted by \mathcal{D} or, C_{c}^{\infty}(\mathrm{R}^{n}) . Its topological dual stands

for \mathcal{D}'
,

which is the set of distributions. The set of rapidly decreasing functions (in the

sense of Schwartz) is written as S ; the set of tempered distributions is S' . For p\in[1, \infty],
L^{p}:=L^{p}(\mathrm{R}^{n}) :=\{f\in L_{loc}^{1};\Vert f\Vert_{p}<\infty\} is the Lebesgue space of p‐th integrable functions

whose norm denotes

\Vert f\Vert_{p}:= (\displaystyle \int_{\mathrm{R}^{n}}|f(x)|^{p}dx)^{1/p} if p<\infty,

\Vert f\Vert_{\infty}:= \displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\sup_{x\in \mathrm{R}^{n}}|f(x)| if p=\infty.

We often omit the notation of the domain (Rn). Note that S\subset L^{p}\subset S' ,
and the first

inclusion is dense when  p\in[1, \infty ). So, we may define the operators (,  e^{t\triangle}, R_{i}, \mathrm{P}
, etc.)

as a tempered distribution.

The solenoidal subspace stands for L_{ $\sigma$}^{p}:=\{f\in L^{p};\nabla\cdot f=0\} ,
where \nabla\cdot f=0 means

in the distribution sense. For p\in(1, \infty) one may see

L_{ $\sigma$}^{p}=\overline{C_{c, $\sigma$}^{\infty}}\Vert\cdot\Vert_{p}:= closure of \{f\in C_{c}^{\infty}; \nabla\cdot f=0\} in \Vert \Vert_{p}.

Let m\in \mathrm{N}_{0}:=\mathrm{N}\cup\{0\}, p\in[1, \infty] ,
the Sobolev space W^{m,p} denotes by

W^{m,p}:= \{f\in L^{p};\Vert f\Vert_{W^{m,p}}<\infty\},
\displaystyle \Vert f\Vert_{W^{m,p}}:= \sum_{| $\alpha$|\leq m}\Vert\partial^{ $\alpha$}f\Vert_{p}.
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Here  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n})\in \mathrm{N}_{0}^{n} is a multi‐index; \partial^{ $\alpha$}:=\partial_{1}^{$\alpha$_{1}}\cdots\partial_{n}^{$\alpha$_{n}} and | $\alpha$|:=$\alpha$_{1}+\cdots+
$\alpha$_{n} . Usually, m is called the differentiability exponent, and p is called the integrability

exponent. We also use this terminology, throughout of this note. The inhomogeneous

Bessel‐potential space is defined by

H_{p}^{s}:=(1-\triangle)^{-s/2}L^{p}:=\{\mathcal{F}^{-1}(1+| $\xi$|^{2})^{-s/2}\hat{f};f\in L^{p}\}
with s\in \mathrm{R} and p\in[1, \infty] . Note that W^{m,p}=H_{p}^{m} for m\in \mathrm{N}_{0}.

The homogeneous Sobolev space is defined by

\dot{W}^{m,p}:= \{f\in L_{loc}^{p};\Vert f\Vert_{W^{m,p}}<\infty\},
\displaystyle \Vert f\Vert_{W^{m,p}}:= \sum_{| $\alpha$|=m}\Vert\partial^{ $\alpha$}f\Vert_{p}.

We denote \dot{H}_{p}^{s}:=(-\triangle)^{-s/2}L^{p}:=\{\mathcal{F}^{-1}| $\xi$|^{-s}\hat{f};f\in L^{p}\} by the homogeneous Bessel‐

potential space. One can also see that \dot{W}^{m,p}=\dot{H}_{p}^{m} for m\in \mathrm{N}_{0}.

Concerning to the fractional order of Sobolev space, we analogously define the Slo‐

bodeckij space W^{s,p} with the norm

\displaystyle \Vert f\Vert_{W^{s,p}}:=\Vert f\Vert_{W}[s],p+\sum_{| $\alpha$|=[s]}(\int\int\frac{|\partial^{ $\alpha$}f(x)-\partial^{ $\alpha$}f(y)|^{p}}{|x-y|^{n+\{s\}p}}dxdy)^{1/p}
for s\in \mathrm{R}_{+}\backslash \mathrm{N} and p\in(1, \infty) . Here we have used the Gauss notation; s=[s]+\{s\} and

[s]\in \mathrm{N}_{0} and \{s\}\in(0,1) . There are many characterization of these function spaces, in

particular, using the interpolation theory; see e.g. [4, 52]. However, we omit the details.

2.2 BMO, Besov and Triebel‐Lizorkin spaces

Now we consider BMO (Bounded Mean Oscillation) functions:

BMO :=\{f\in L_{loc}^{1};[[f]]_{BM\mathrm{O}}<\infty\},
[[f]]_{BMO} :=\displaystyle \sup_{Q\subset \mathrm{R}^{n^{\frac{1}{|Q|}}}}\int_{Q}|f(y)-f_{Q}|dy,

f_{Q} :=\displaystyle \frac{1}{|Q|}\int_{Q}f(z)dz.
Clearly, [[\cdot]]_{BM\mathrm{O}} is a seminorm, however, not a norm. In fact, [[f]]_{BM\mathrm{O}}=0 if and only
if f is constant. We should note that BMO/\mathrm{R} (or, BMO/\mathrm{C} if we deal with complex
valued functions) is a normed space, then a Banach space. Obviously, L^{\infty}\subset BMO\subset S'.

Notice that [[f]]_{BM\mathrm{O}}\leq 2\Vert f\Vert_{\infty} . We now introduce the Carleson measure due to Strichartz

[51] and this leads us the equivalent norms:

[[f]]_{BM\mathrm{O}}\displaystyle \sim\sup_{x\in \mathrm{R}^{n},R>0}(\frac{1}{|B_{R}(x)|}\int_{B_{R}(x)}\int_{0}^{R^{2}}|e^{t\triangle}f(y)|^{2}\frac{dt}{t}dy)^{1/2} (2.1)

for f\in BMO/\mathrm{R} . Here we have used \sim the notation of a norm‐equivalency.
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To define the Besov spaces and Triebel‐Lizorkin spaces we now introduce the Paley‐
Littlewood decomposition. Let us call \{$\phi$_{j}\}_{j=-\infty}^{\infty} the Paley‐Littlewood decomposition if

\hat{ $\phi$}_{0}\in C_{c}^{\infty}(\mathrm{R}^{n}) , supp \hat{ $\phi$}_{0}\subset\{ $\xi$;1/2\leq| $\xi$|\leq 2\}, \hat{ $\phi$}_{j}( $\xi$)=\hat{ $\phi$}_{0}(2^{-j} $\xi$) and \displaystyle \sum_{j=-\infty}^{\infty}\hat{ $\phi$}_{j}( $\xi$)=1
except for  $\xi$=0 . Also, let us denote  $\psi$=\displaystyle \mathcal{F}^{-1}(1-\sum_{j=1}^{\infty}\hat{ $\phi$}_{j}) ,

so \{\hat{ $\psi$}, \hat{ $\phi$}_{1}, \hat{ $\phi$}_{2}, . . .\} is a dyadic

decomposition of the unity in the phase space.

Notice that  $\psi$, $\phi$_{j}\in S . We can easily verify by dilation argument that

\Vert$\phi$_{j}\Vert_{1}=\Vert$\phi$_{0}\Vert_{1}, j\in \mathrm{Z} (2.2)

independently in j . Obviously, \displaystyle \int$\phi$_{j}=0 for all j\in \mathrm{Z} . Also,

\mathcal{F}^{-1}(\hat{ $\phi$}_{j}\cdot\hat{ $\phi$}_{k})=$\phi$_{j}*$\phi$_{k}=0 if |j-k|\geq 2,

this fact is called Bony�s paraproduct lemma due to [5]. This yields that

$\phi$_{j}*f=$\phi$_{j}*(\displaystyle \sum_{k=j-1}^{j+1}$\phi$_{k})*f . (2.3)

In the same way, we have  $\psi$*$\phi$_{j}=0 for j\geq 2 . By (2.2) and (2.3) it holds true that for

s\in \mathrm{R} there exists a positive constant C such that

\Vert(1-\triangle)^{s/2}$\phi$_{j}*f\Vert_{p} \leq C2^{sj}\Vert$\phi$_{j}*f\Vert_{p} for j\in \mathrm{N},
\Vert(-\triangle)^{s/2}$\phi$_{j}*f\Vert_{p} \leq C2^{sj}\Vert$\phi$_{j}*f\Vert_{p} for j\in \mathrm{Z},

which is a sort of Bernstein�s inequality; see e.g. [4].

Denition 2.1. Let s\in \mathrm{R}, p\in[1, \infty] and q\in[1, \infty] . An inhomogeneous Besov space is

defined by

B_{p,q}^{s} :=\{f\in S';\Vert f\Vert_{B_{p,q}^{s}}<\infty\},
\Vert f\Vert_{B_{p,q}^{s}} :=[\displaystyle \Vert $\psi$*f\Vert_{\infty}+\sum_{j=1}^{\infty}2^{jsq}\Vert$\phi$_{j}*f\Vert_{p}^{q}]^{1/q} if q<\infty,

\Vert f\Vert_{B_{p,\infty}^{s}} :=\displaystyle \Vert $\psi$*f\Vert_{\infty}+\sup_{1\leq j\leq\infty}2^{js}\Vert$\phi$_{j}*f\Vert_{p} if q=\infty.

This Besov norm is understood as \Vert \Vert_{l^{q}(L^{p})} in the sense that \{\Vert f_{j}\Vert_{p}\}_{j=0}^{\infty}\in l^{q} ,
where

f\mapsto\{ $\psi$*f, 2^{s}$\phi$_{1}*f, 2^{2s}$\phi$_{2}*f, . . .\} =:\{f_{j}\}_{j=0}^{\infty} . Following Johnsen [25], we call s the

differentiability‐exponent, p the integral‐exponent and q the sum‐exponent.

Denition 2.2. An inhomogeneous Tr iebel‐Lizorkin space is defined by

F_{p,q}^{s} :=\{f\in S';\Vert f\Vert_{F_{p,q}^{s}}<\infty\},
\Vert f\Vert_{F_{p,q}^{s}} :=\displaystyle \Vert| $\psi$*f|+(\sum_{j=1}^{\infty}2^{jsq}|$\phi$_{j}*f|^{q})^{1/q}\Vert_{p} if p, q<\infty,

\displaystyle \Vert f\Vert_{F_{p,\infty}^{s}} :=\Vert| $\psi$*f|+\sup_{1\leq j\leq\infty}2^{js}|$\phi$_{j}*f|\Vert_{p},
\displaystyle \Vert f\Vert_{F_{\infty,q}^{s}} :=\sup_{k\in \mathrm{N}_{0},x\in \mathrm{R}^{n}}\frac{1}{|B^{2-k}(x)|}\int_{B_{2-k}(x)}(\sum_{j\geq k}2^{sjq}|$\phi$_{j}*f(y)|^{q})^{1/q}dy,

\displaystyle \Vert f\Vert_{F_{\infty,\infty}^{s}} :=\sup_{k\in \mathrm{N}_{0},x\in \mathrm{R}^{n}}\frac{1}{|B^{2-k}(x)|}\int_{B_{2-k}(x)}\sup_{j\geq k}2^{sj}|$\phi$_{j}*f(y)|dy.
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Similarly to the Besov norm, this Triebel‐Lizorkin norm is understood as \Vert \Vert_{L^{p}(l^{q})} in

the sense that \Vert\Vert f_{j}\Vert_{lq}\Vert_{L^{p}}.
Note. (a) B_{p,q}^{s} and F_{p,q}^{s} are Banach spaces. One can easily check that the Cauchy

sequence converges. Clearly, S is a subset of B_{p,q}^{s} and F_{p,q}^{s} for all s\in \mathrm{R} and p, q\in[1, \infty] ;

and dense if  p<\infty and  q<\infty.

(b) B_{p,p}^{s}=F_{p,p}^{s} . Moreover, B_{p,p}^{s}=F_{p,p}^{s}=W^{s,p} if s\in \mathrm{R}_{+}\backslash \mathrm{N}.
(c) The embeddings hold from Minkowski�s inequality ( l^{q}\subset l^{r} for q\leq r ):

B_{p,1}^{s}\subset B_{p,p}^{s}\subset H_{p}^{s}\subset B_{p,\infty}^{s} if p\leq 2,

B_{p,1}^{s}\subset H_{p}^{s}\subset B_{p,p}^{s}\subset B_{p,\infty}^{s} if p\geq 2,

F_{p,1}^{s}\subset H_{p}^{s}=F_{p,2}^{s}\subset F_{p,\infty}^{s} if p\in(1, \infty) .

The last one follows from the fact that F_{p,2}^{0}=L^{p} (equivalent norms) and the Mikhlin‐

Hörmander multiplier theory.

(d) The embeddings of Sobolev type

B_{p_{1},q_{1}}^{s_{1}}\subset B_{p_{2},q_{2}}^{s_{2}} and F_{p_{1},q_{1}}^{s_{1}}\subset F_{p_{2},q_{2}}^{s_{2}}

hold if either (

s_{1}>s_{2} and p_{1}=p_{2}
�

or (s_{1}-n/p_{1}=s_{2}-n/p_{2}, s_{1}>s_{2} and p_{1}<p_{2}
�

without any restriction on the sum‐exponents q_{1} and q_{2}.

(e) The equivalency between the Besov space and the Hölder class:

B_{\infty,\infty}^{s}=C^{s} if s\in \mathrm{R}_{+}\backslash \mathrm{N}

holds. For s\in \mathrm{N} the Besov space B_{\infty,\infty}^{s} is equivalent to the Zygmund class C^{s}
,

which is

a natural extension for all s>0 of Hölder class; see e.g. the book of Triebel [52].
(f) We easily see that

B_{\infty,1}^{0}\subset BUC\subset L^{\infty}\subset B_{\infty,\infty}^{0}.
Here BUC stands for the space of bounded and uniformly continuous functions. Only
one typographical error in the book of Triebel [52] appears in here: B_{\infty,1}^{0} seems to be a

Banach algebra with respect to the point‐wise multiplication. However, that is not true.

This fact was pointed out by Yamazaki; the concrete explaining is found in Runst‐Sickel

[45].
(g) For the cases p\in(0,1) or q\in(0,1) ,

one can analogously define B_{p,q}^{s} and F_{p,q}^{s} as

quasi‐Banach spaces, corresponding quasi‐norms; the triangle inequality does not hold, in

general. We do not penetrate this situation, since we always need the triangle inequality
with almost every calculation in this note, for instance, to construct mild solutions by
iteration arguments.

We are now in a position to define the homogeneous Besov and Triebel‐Lizorkin spaces.

Let \mathcal{Z}' be the topological dual space of

\mathcal{Z}:=\{f\in S;\partial^{ $\alpha$}\hat{f}(0)=0, \forall $\alpha$\in \mathrm{N}_{0}^{n}\}.
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Denition 2.3. For s\in \mathrm{R},  1\leq p\leq\infty and  1\leq q\leq\infty ,
we define the homogeneous

Besov space by (see [4, 45, 52, 53

\dot{B}_{p,q}^{s}:= \{f\in \mathcal{Z}';\Vert f\Vert_{B_{p,q}^{s}}<\infty\},
\Vert f\Vert_{B_{p,q}^{s}}:= [\displaystyle \sum_{j=-\infty}^{\infty}2^{jsq}\Vert$\phi$_{j}*f\Vert_{p}^{q}]^{1/q} if q<\infty,

\Vert f\Vert_{B_{p,\infty}^{s}}:= \displaystyle \sup_{-\infty\leq j\leq\infty}2^{js}\Vert$\phi$_{j}*f\Vert_{p} if q=\infty.

Also, we define the homogeneous Tr iebel‐Lizorkin space by

\dot{F}_{p,q}^{s}:= \{f\in \mathcal{Z}';\Vert f\Vert_{F_{p,q}^{s}}<\infty\},
\Vert f\Vert_{F_{p,q}^{s}}:= \displaystyle \Vert[\sum_{j=-\infty}^{\infty}2^{jsq}|$\phi$_{j}*f|^{q}]^{1/q}\Vert_{p} if p, q<\infty,

and define it for the cases  p=\infty or  q=\infty by the same modification of inhomogeneous
Tr iebel‐Lizorkin spaces.

Note. (h) By the definition of $\phi$_{j} it is clear that \Vert f\Vert_{B_{p,q}^{s}}=0 if f\in \mathcal{P}:= {polynomials.
Thus, \Vert \Vert_{B_{p,.q}^{s}} and \Vert \Vert_{F_{p,q}^{s}} are seminorms. The quotient spaces divided by polynomials

\dot{B}_{p,q}^{s}/\mathcal{P} and F_{p,q}^{s}/\mathcal{P} are Banach spaces.

(i) Clearly, \mathcal{Z} is a subset of \dot{B}_{p,q}^{s} and \dot{F}_{p,q}^{s} ,
and dense if p, q<\infty.

(j) \dot{B}_{p,q}^{s} and \dot{F}_{p,q}^{s} are subsets of S' if the exponents satisfy

either (

s<n/p
�

or (s=n/p and q=1�. (2.4)

Under this conditions, the operators \mathcal{F}, e^{t\triangle}, \mathrm{P}, R_{i} can be defined on the homogeneous

spaces as the tempered distribution sense. Also, it is natural to select the representative
element such that

f=\displaystyle \sum_{j=-\infty}^{\infty}$\phi$_{j}*f in S' . (2.5)

See the details in Bourdaud [6] or Kozono‐Yamazaki [32]. Throughout of this note, we

basically treat the homogeneous space under the exponents satisfying (2.4) only.

(k) The following equivalencies are known:

\mathcal{H}^{1}=\dot{F}_{1,2}^{0} and BMO=\dot{F}_{\infty,2}^{0},

which are equivalent norms. Here \mathcal{H}^{1}:=\{f\in L^{1};R_{i}f\in L^{1}, \forall_{i}=1, . . . , n\} is the Hardy

space. It holds true that \dot{B}_{p,p}^{s}=\dot{F}_{p,p}^{s} . Also, the homogeneous versions of the embeddings
as the same to (c) and (d) hold.

(l) We are mainly interested in the case  p=\infty ,
and following continuous embeddings

are easily seen:

\dot{B}_{\infty,1}^{0}\subset BUC\subset L^{\infty}\subset BMO\subset\dot{B}_{\infty,\infty}^{0}.
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Typically, thanks to (2.5), we get

\displaystyle \Vert f\Vert_{\infty}=\Vert\sum_{j=-\infty}^{\infty}$\phi$_{j}*f\Vert_{\infty}\leq\sum_{j=-\infty}^{\infty}\Vert$\phi$_{j}*f\Vert_{\infty}=\Vert f\Vert_{B_{\infty,1}^{0}}.
(m) By dilation for any integer j there exists a positive constant C_{0} (independent of k

and j) such that \Vert R_{k}$\phi$_{j}\Vert_{1}\leq C_{0} . Hence, we see that the Riesz transform is bounded in

the homogeneous spaces as subspaces of S' when the exponents satisfy (2.4).
In this note we mainly deal with the case  p=\infty . Define \dot{\mathcal{B}}_{\infty,\infty}^{-1} by

\dot{\mathcal{B}}_{\infty,\infty}^{-1}= \{f\in S';\Vert f\Vert_{\mathcal{B}_{\infty,\infty}^{-1}}<\infty\},
\displaystyle \Vert f\Vert_{B_{\infty,\infty}^{-1:=}} \Vert|f\Vert|:=\sup_{ $\rho$>0}\sqrt{ $\rho$}\Vert e^{ $\rho$\triangle}f\Vert_{\infty}.

The equivalency \dot{\mathcal{B}}_{\infty,\infty}^{-1}=\dot{B}_{\infty,\infty}^{-1}/\mathrm{R} and \Vert\cdot\Vert_{B_{\infty,\infty}^{-1}}\sim\Vert\cdot\Vert_{B_{\infty,\infty}^{-1}} hold true except for constant

functions; see e.g. [1, 34]. Indeed, for a non‐zero constant function f_{c}\equiv c\in \mathrm{R}^{n}\backslash \{0\} we

see that

\displaystyle \sup_{ $\rho$>0}\sqrt{ $\rho$}\Vert e^{ $\rho$\triangle}f_{c}\Vert_{\infty}=\sup_{ $\rho$>0}\sqrt{ $\rho$}|c|=\infty\neq\sup_{j\in \mathrm{Z}}2^{-j}\Vert$\phi$_{j}*f_{c}\Vert_{\infty}=0.
The reader should notice that the non‐zero f_{c} do not satisfy (2.5).

3 Local well‐posedness in \dot{f}_{\infty,2}^{-1}
3.1 Well‐posedness in the sense of Hadamard

In this section we explain the results of Koch‐Tataru [30], briefly. They constructed time‐

local unique mild solutions with initial data in vmo^{-1}
,

and mild solutions can be extended

time‐globally if BMO^{-1} ‐norm of the initial velocity is small sufficiently. Before stating
their results, we now recall the notion of well‐posedness in the sense of Hadamard.

Denition 3.1. We say that the Cauchy problem is (WP) well‐posed in X if the following
three conditions are satisfied:

(i) A solution exist.

(ii) The solution is unique.

(iii) The solution equips the equicontinuity.

The property (iii) means that the solution depends on the initial data continuously in

some reasonable topology e.g. C([0, \infty);X) ,
that is, for all t>0 and  $\epsilon$>0 there exists

 $\delta$>0 such that || u0—ũ0 || X < $\delta$ then || u(t)‐ũ(t) || X < $\epsilon$ . Here  u(t) and ũ(t) are solutions

at time t with initial data u_{0} and ũ, respectively. If we only get the time‐local existence of

unique solution, replacing \infty by  T for some T\in(0, \infty) and t\in(0, T) at (i) and (iii), then

it is called (TLWP) time‐local well‐posed. For the case one can obtain the well‐posedness
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if the initial data are small enough, it is called (GWSD) time‐global well‐posedness for

small data. From view point of the dynamical system, (GWSD) implies the local stability
of the trivial solution u=0 . We call (IP) ill‐posed if one of (\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) is failed. This usual

terminology is used throughout this note.

Leray [35] showed that (NS) is (WP) in L_{ $\sigma$}^{2} (R2). The famous problem is to show

whether (NS) is (WP) in L_{ $\sigma$}^{2} (R3), or not. Kato [27], Giga‐Miyakawa [21] proved that

(NS) is (TLWP) and (GWSD) in L_{ $\sigma$}^{n}(\mathrm{R}^{n}) .

We will discuss well‐posedness of (NS) in the Besov or Triebel‐Lizorkin spaces closed

and related to L^{\infty}
,

due to the mild solutions. We now focus into the continuity of solutions

in time at the initial time. Dealing with L^{\infty} ‐initial data, we have to take care about the

following fact:

Lemma 3.2. Let f\in L^{\infty} . Then e^{t\triangle}f\rightarrow f in L^{\infty} as t\rightarrow 0 if and only if f\in BUC.

In other words, e^{t\triangle} is strongly continuous in BUC, but not in L^{\infty} . Or, e^{t\triangle} is (C_{0})-
semigroup in BUC. Concerning the Heavyside function, h(x)=1 for x\geq 0 and h(x)=0
for x<0 ,

it is easy to see that \displaystyle \Vert e^{t\triangle}h-h\Vert_{\infty}=\frac{1}{2} for all t>0 . The proof of this lemma is

found in e.g. [19].
Recall the integral equation (INT). It is clear that the second terms of right‐hand‐side

vanish as t\rightarrow 0 whence it is integrable. So, in order to get the continuity of solutions in

time up to initial time, it is naturally required the restriction on u_{0}\in X satisfying that

e^{t\triangle} is strongly continuous at t=0 in X . For this purpose we now introduce the little

Besov space and little Triebel‐Lizorkin space.

Denition 3.3. Let s\in \mathrm{R}, 1\leq p,  q\leq\infty . Subspaces of  B_{p,q}^{s} and F_{p,q}^{s} are defined by

b_{p,q}^{s} := { g\in B_{p,q}^{s};e^{t\triangle}g\rightarrow g in B_{p,q}^{s} as t\rightarrow 0 },
f_{p,q}^{s} := { g\in F_{p,q}^{s};e^{t\triangle}g\rightarrow g in F_{p,q}^{s} as t\rightarrow 0 }.

Assume, in addition, that exponents satisfy (2.4), the homogeneous version is defined by

\dot{b}_{p,q}^{s} := { g\displaystyle \in\dot{B}_{p,q}^{s};g=\sum_{j=-\infty}^{\infty}$\phi$_{j}*g in S', e^{t\triangle}g\rightarrow g in \dot{B}_{p,q}^{s} as t\rightarrow 0 },
f_{p,q}^{s} := { g\displaystyle \in F_{p,q}^{s};g=\sum_{j=-\infty}^{\infty}$\phi$_{j}*g in S', e^{t\triangle}g\rightarrow g in F_{p,q}^{s} as t\rightarrow 0 }.

They are closed subspace of usual Besov or Triebel‐Lizorkin spaces, so Banach spaces.

It is easy to check that

\overline{C_{c}^{\infty}}\Vert\cdot\Vert_{B_{p,q}^{s}}\subset b_{p,q}^{s}=\overline{B_{p,q}^{s+1}}\Vert\cdot\Vert_{B_{p,q}^{s}}\subset B_{p,q}^{s}.

Also, one may see that b_{p,q}^{s}=B_{p,q}^{s} if and only if  q<\infty . See more details of little Besov

spaces in [2, 46].
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Next, we refer to the function spaces which are used by Koch‐Tataru [30]. Let  BMO^{-1}

be

BMO^{-1}:= \{f\in S';\Vert f\Vert_{BMO-1}<\infty\},
\displaystyle \Vert f\Vert_{BMO-1}:= \sup_{x\in \mathrm{R}^{n},R>0}(\frac{1}{|B_{R}(x)|}\int_{0}^{R^{2}}\int_{B_{R}(x)}|e^{t\triangle}f(y)|^{2}dydt)^{1/2},

where B(x) is an open ball radius R>0 centered at x\in \mathrm{R}^{n} . One may see that BMO^{-1}

is equivalent to the set of first derivatives of BMO functions, and also they coincide the

specific homogeneous Triebel‐Lizorkin space:

BMO^{-1}=\partial BMO=\dot{F}_{\infty,2}^{-1}.
Recall (2.1). The reader may find the details of basic properties of BMO or \dot{F}_{p,q}^{s} in e.g.

[30, 45, 50, 51, 56].
One can see that the several interesting functions belong to BMO^{-1} (and then \dot{B}_{\infty,\infty}^{-1} ),

for example, the trigonometric functions e.g. [x\mapsto\sin x] which are not decaying at space

infinity, [x\mapsto\sin x+\sin(\sqrt{2}x)] is an almost periodic function, [x\mapsto e^{x}\sin(e^{x})] is a growing
and oscillating function, [x\displaystyle \mapsto p.v.\frac{1}{x}] has a singularity.

For T\in(0, \infty] we denote the norm of BMO_{T}^{-1} by

\displaystyle \Vert f\Vert_{BM\mathrm{O}_{T}^{-1}}:=\sup_{x\in \mathrm{R}^{n},R\in(0,\sqrt{T})}(\frac{1}{|B_{R}(x)|}\int_{0}^{R^{2}}\int_{B_{R}(x)}|e^{t\triangle}f(y)|^{2}dydt)^{1/2}
Let us now define the bmo^{-1} and vmo^{-1}.

bmo^{-1}:= \{f\in S';\Vert f\Vert_{bmo-1}:=\Vert f\Vert_{BM\mathrm{O}_{1}-1}<\infty\}=F_{\infty,2}^{-1}\supset BMO^{-1},
vmo^{-1}:= \displaystyle \{f\in bmo^{-1};\lim_{T\rightarrow 0}\Vert f\Vert_{BM\mathrm{O}_{T}^{-1}}=0\}

= \displaystyle \{f\in bmo^{-1};\lim_{t\rightarrow 0}\Vert e^{t\triangle}f-f\Vert_{bmo-1}=0\}=f_{\infty,2}^{-1}.
Here vmo is the localized version of VMO the space of vanishing mean oscillation func‐

tions. In the book of Stein [50] VMO functions are required the vanishing in both

\displaystyle \lim_{T\rightarrow 0}\Vert f\Vert_{BM\mathrm{O}_{T}}=\lim_{T\rightarrow\infty}\Vert f\Vert_{BM\mathrm{O}_{T}}=0 ,
which is slightly different to above.

Let T\in(0, \infty] ,
the function v of x and t we define \mathcal{E}_{T}‐norm by

\displaystyle \Vert v\Vert_{\mathcal{E}_{T}}:= \sup_{0<t<T}\sqrt{t}\Vert v(t)\Vert_{\infty}

+\displaystyle \sup_{x\in \mathrm{R}^{n},R\in(0,\sqrt{T})}(\frac{1}{|B_{R}(x)|}\int_{0}^{R^{2}}\int_{B_{R}(x)}|v(y, t)|^{2}dydt)^{1/2}
This norm is associated to the natural class of solutions of the heat equation as well as

the Navier‐Stokes equations. Actually, let v=e^{t\triangle}v_{0} with v_{0}\in BMO^{-1} ,
we see that

\displaystyle \Vert e^{t\triangle}v_{0}\Vert_{\mathcal{E}_{T}} =\sup_{0<t<T}\sqrt{t}\Vert e^{t\triangle}v_{0}\Vert_{\infty}

+\displaystyle \sup_{x\in \mathrm{R}^{n},R\in(0,\sqrt{T})}(\frac{1}{|B_{R}(x)|}\int_{0}^{R^{2}}\int_{B_{R}(x)}|e^{t\triangle}v_{0}(y)|^{2}dydt)^{1/2}
\leq C\Vert v_{0}\Vert_{B_{\infty,\infty}^{-1}}+C\Vert v_{0}\Vert_{F_{\infty,2}^{-1}}\leq C\Vert v_{0}\Vert_{F_{\infty,2}^{-1}}<\infty,

the first inequality obviously holds for taking  T=\infty . The discovering \mathcal{E}_{T} ‐norm is crucial.
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3.2 In vmo^{-1}=f_{\infty,2}^{-1}
We give the main results of Koch‐Tataru:

Theorem 3.4 (Koch‐Tataru [30]). (NS) is (TLWP) in vmo^{-1}
, i.e., \forall_{u_{0}}\in vmo^{-1}, \exists_{T}>0

and mild solution \exists 1_{u}\in \mathcal{E}_{T}\cap C([0, T];vmo^{-1}) . Moreover, (GWSD) in BMO^{-1}
, i.e., if we

assume, in addition, that \Vert u_{0}\Vert_{BM\mathrm{O}-1} is small enough, then \exists 1_{u}\in \mathcal{E}_{\infty}\cap C([0, \infty);vmo^{-1}) .

Remark 3.5. (i) When u_{0}\in bmo^{-1} ,
there is a lack of continuity of mild solutions at

t=0 . Also, uniqueness is not known; see Miura [39].

(ii) By definition of \mathcal{E}_{T} ‐norm it is shown that the mild solution u(t)\in L^{\infty} for any small

t>0 . Thus, the pressure giving by (1.1) makes sense of value in BMO for t>0.

Under this setting (u, p) satisfies (NS) in the classical sense, and the solution is uniquely
determined by u_{0} ; see Kato [26].

(iii) By smoothing effect for any small t_{0}>0 the mild solution u(t_{0})\in W^{1,\infty}(\mathrm{R}^{n}) . So,
this t_{0} can be regarded as a new initial time, and u(t) as a new bounded and smooth

initial velocity. By analysis in L^{\infty} ‐framework by e.g. [19] we may observe the properties

of obtained mild solutions, more precisely. For example, the propagation speed of Koch‐

Tataru
�

\mathcal{S} solutions is infinity; see e.g. [40].

(iv) It is well‐known that Serrin' \mathcal{S} class L^{s}(0, T;L^{r}) with \displaystyle \frac{2}{s}+\frac{n}{r}\leq 1 satisfy ing s>2 and

r\in(n, \infty) produces the regularity of solutions to (NS). Since the embedding  L^{s}(0, T;L^{r})\subset
\mathcal{E}_{T} holds, one can argue the solution in Serrin' \mathcal{S} class as a Koch- Tataru

�
\mathcal{S} solution.

We use the iteration scheme (so‐called successive approximation or fixed point argu‐

ment) for the proof of Theorem 3.4. In fact, we successively define \{u_{j}\} by (1.2) with

(1.3). One can see that the approximation sequence \{u_{j}\}_{j=1}^{\infty} is a Cauchy sequence in

\mathcal{E}_{T}\cap C([0, T];vmo^{-1}) . The Key of the proof is the inequality for estimating to the bilin‐

ear terms: there exists a positive constant C such that

\Vert B(u, v)\Vert_{\mathcal{E}_{T}}\leq C\Vert u\Vert_{\mathcal{E}_{T}}\Vert v\Vert_{\mathcal{E}_{T}} for u, v\in \mathcal{E}_{T} . (3.1)

This inequality holds true even for  T=\infty . One may find the proof of (3.1) due to the

point‐wise estimates of the heat kernel in [30], and the estimates involving the higher
order differentiation in [40].

It is not known the benefit bilinear estimates in neither  C([0, T];vmo^{-1}) to which the

solutions naturally belong, as long as the author knows. Remark that the function space

which contain non‐decaying functions is usually not a Banach algebra with respect to

point‐wise multiplications, e.g. \dot{B}_{\infty,1}^{0}, vmo^{-1}, BMO^{-1} and \dot{B}_{\infty,\infty}^{-1} , except for L^{\infty} . Thus,
it seems to be difficult to make sense the bilinear terms in such function spaces, basically.
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4 Ill‐posedness in \dot{f}_{\infty,\infty}^{-1}=\dot{b}_{\infty,\infty}^{-1}
4.1 Norm ination

In this section we will give a rigorous proof of [8], that is, (NS) is (IP) in \dot{f}_{\infty,\infty}^{-1}=\dot{b}_{\infty,\infty}^{-1}
in \mathrm{R}^{3} . Firstly, it is shown a lack of equicontinuity of mild solutions. Also, we see that it

seems to be difficult to construct a unique time‐local mild solution.

Theorem 4.1 (Bourgain‐Pavlovic [8]). Let n=3 . For  $\delta$\in(0,1) and T\in(0,1) ,
there

exists a u_{0}\in\dot{b}_{\infty,\infty}^{-1}(\mathrm{R}^{3}) such that \Vert u_{0}\Vert_{B_{\infty,\infty}^{-1}}< $\delta$ with \nabla\cdot u_{0}=0 ,
there exists a mild solution

u in C([0, T];\dot{b}_{\infty,\infty}^{-1}) and \Vert u(T)\Vert_{B_{\infty,\infty}^{-1}}>1/ $\delta$.
Remark 4.2. (i) This assertion indicates that in the class C([0, T];\dot{b}_{\infty,\infty}^{-1}) to which

mild solutions ought to belong, mild solutions do not have the equicontinuity. Thus, this

assertion is to be said ill‐posedness theorem. Namely, (NS) is not (TLWP) in \dot{b}_{\infty,\infty}^{-1}
and wider spaces, for example, b_{\infty,\infty}^{-1} and the supercritical spaces b_{\infty,\infty}^{- $\alpha$} with  $\alpha$>1 . Also,

(NS) is not (WPSD) in \dot{b}_{\infty,\infty}^{-1} , even though \dot{b}_{\infty,\infty}^{-1} is scaling invariant. Furthermore, to

show the uniqueness of mild solutions in this class seems to be difficult in the sense that

the usual arguments due to Gronwall type inequality do not work.

(ii) One can also prove the lack of equicontinuity by the technique of Bejenaru‐Taao [3],
see subsection 4.3.

(iii) This assertion is still true for the case n\geq 4 by the simple modification of the proof.

However, in the case n=2 it is not clear whether the same results can be proved, or not.

(iv) It is supposed that one can also obtain the same statement in other function spaces.

Yoneda wrote [55] for ill‐posedness in \dot{F}_{\infty,q}^{-1} with q\in(2, \infty) , using the same argument

of [8]. Moreover, the author thinks that the similar results can be obtained for strong
solutions to other equations of parabolic type, particularly, the Keller‐Segel equations; see

e.g. Iwabuchi [23].

4.2 Initial datum

Theorem 4.1 follows from the technique of Bourgain [7] for establishing the similar ill‐

posedness theorem for the \mathrm{K}\mathrm{d}\mathrm{V} equation. His method is so‐called �norm inflation�. Before

stating the outline of the proof, we now fix the initial velocity, concretely. In what follows,
the initial velocity is fixed to be of the form

u_{0}(x) :=\displaystyle \frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}[e_{2}\cos(k_{s}\cdot x)+e_{3}\cos(l_{s}\cdot x)] , (4.1)

that is to say,

u_{0}(x)=(0, \displaystyle \frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}\cos(h_{s}x_{1}), \frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}\cos(h_{s}x_{1}-x_{2}))
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with parameters Q>0 and large r\in \mathrm{N} ; other notations are as follows:

e_{2}:=\vec{e}_{2}:=(0,1,0) (=v_{s}) ,

e_{3} :=\vec{e}_{3}:=(0,0,1) (=v_{s}') ,

h_{s} :=h(s) :=2^{s(s-1)/2}$\gamma$^{s-1} $\eta$ for  s\in \mathrm{N},
k_{s}:=(h_{s}, 0,0) ,

l_{s}:=(h_{s}, -1,0) (=k_{s}') .

Here  $\gamma$,  $\eta$\in \mathrm{N} are also parameters; v_{s}, v_{s}', k_{s}' are the notation in [8]. The specific time

T when the inflation occurs can be regarded as a parameter, replacing the time variable

[t\mapsto $\lambda$ t] with some  $\lambda$>0 . Using this scaling argument, we can relax the restriction

T<1 . However, for the sake of simplicity of the proof, and for the readers� convenience,
T remains as a given small number.

It is clear by definition that u_{0}(x)=(0, u_{0}^{2}(x_{1}), u_{0}^{3}(x_{1}, X)) and u_{0}\in\dot{B}_{\infty,\infty}^{-1} by the

simple calculation below. Moreover, u_{0} is a uniformly continuous function, so u_{0}\in\dot{b}_{\infty,\infty}^{-1} ;

see [46]. It should be emphasized that we are able to fix the directions of v_{s}=e_{2} and

v_{s}'=e_{3} without loss of generality, since (NS) is invariant under the Galilei transformation.

In addition, it should be more emphasized that the selections of v_{s} and v_{s}' are slightly
different to those of [8]; that is a crucial point noticed by Yoneda.

The proof of Theorem 4.1 is realized by the suitable selection of the parameters

(Q, r,  $\gamma$,  $\eta$) for each  $\delta$, T\in(0,1) . Since

 h_{s+1}/h_{s}=2^{(2s+1)/2} $\gamma$ , (4.2)

it follows that  h_{s}<<h_{s+1} for large s or  $\gamma$ ; this property is so‐called (lacunary�. For the

sake of simplicity,  h(z) :=2^{z(z-1)/2}$\gamma$^{z-1} $\eta$ denotes the function of  z>0 . The compatibility
condition \nabla\cdot u_{0}=0 is satisfied by e_{2} k_{s}=0 and e_{3}\cdot l_{s}=0 , obviously. It is clear that

u_{0} is a smooth periodic function (thus bounded) with the period 2 $\pi$/h in x_{1} and  2 $\pi$ in

 x_{2} . This implies that the mild solution is also periodic with the period  2 $\pi$
, regarded as

a function on the torus (2 $\pi$ \mathrm{T})^{3} ,
as long as the mild solution exists. So, the kinematic

energy is bounded by the initial energy \displaystyle \frac{1}{2}\Vert u_{0}\Vert_{L^{2}((2 $\pi$ \mathrm{T})^{3})}^{2} ; this is huge but finite. And also,

û0 is a sum of Dirac�s delta functions, therefore, u_{0}\in FM_{0} ;

FM_{0} := {\mathcal{F}^{-1}v\in S';v= sum of finite Radon measures, v(0)=0}.

We refer to the detail of FM_{0} in [17, 18].
Let u_{1} be the first approximation of iteration, that is, the solution to the heat equation

with initial datum given by (4.1):

u_{1}(x, t)=\displaystyle \frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}[e_{2}e^{-h_{s}^{2}}{}^{t}\mathrm{c}\mathrm{o}\mathrm{s}(h_{s}x_{1})+e_{3}e^{-(h_{s}^{2}+1)t}\cos(h_{s}x_{1}-x_{2})].
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For t>0 we obtain that u_{1}(t) :=u_{1} t ) \in L^{\infty}\cap BMO^{-1} ,
even though these norms are

large. The function u_{1} is of the form

u_{1}=(0, u_{1}^{2}(x_{1}, t), u_{1}^{3}(x_{1}, x_{2}, t)) . (4.3)

It is well‐known that one can construct the unique mild solution with initial velocity

given by (4.1) in the L^{\infty} ‐framework. Moreover, the estimate for the possible existence

time T_{*} (until the mild solution is constructed in C([0, T_{*}];L^{\infty}) by the usual iteration

scheme) is obtained by [19] to be bounded from below: T_{*}\geq C/\Vert u_{0}\Vert_{\infty}^{2}\sim h_{r}^{-2} with the

universal constant C>0 . Indeed, by h_{r}>>r we see that

\displaystyle \Vert u_{0}\Vert_{\infty}\sim\frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}\sim h_{r}>>1 if r>>1.

Therefore, T_{*} might be very tiny. Also, one may see that

\Vert u_{0}\Vert_{BM\mathrm{O}-1}\sim Q\sqrt{r}>>1 if r>>1.

However, we observe the homogeneous Besov norm \Vert\cdot\Vert_{B_{\infty,\infty}^{-1}}\sim =\displaystyle \sup_{ $\rho$>0}\sqrt{ $\rho$}\Vert e^{ $\rho$\triangle}\cdot\Vert_{\infty}
as

\Vert u_{0}\Vert_{B_{\infty,\infty}^{-1}}\sim\Vert|u_{0} \displaystyle \sim\frac{Q}{\sqrt{r}}<<1 if r>>1 . (4.4)

In fact, by the definition of Besov norm from Paley‐Littlewood decomposition it holds

true that

\displaystyle \Vert u_{0}\Vert_{B_{\infty,\infty}^{-1}} \sim\sup_{j\in \mathrm{Z}}\Vert$\phi$_{j}*\nabla^{-1}u_{0}\Vert_{\infty}
\displaystyle \leq\sqrt{2}\frac{Q}{\sqrt{r}}\sup_{j}\sup_{x}|$\phi$_{j}*\sum_{s=1}^{r}\cos(k_{s}\cdot)(x)|
\displaystyle \leq 2\sqrt{2}\sup_{j}\Vert$\phi$_{j}\Vert_{1}\frac{Q}{\sqrt{r}}<<1 if r>>1.

Here we have used the two facts that \Vert$\phi$_{j}\Vert_{1}=\Vert$\phi$_{0}\Vert_{1} for j\in \mathrm{Z} and for each s\in\{1, . . . , r\}
there are at most 2 indices j\in \mathrm{Z} such that $\phi$_{j}*\cos(k_{s}\cdot x)\neq 0 . For reader�s convenience

we now give an elementally proof of (4.4) as follows; we will explain the details later:

\displaystyle \Vert|u_{0} =\sup_{ $\rho$>0}\sqrt{ $\rho$}\Vert e^{ $\rho$\triangle}u_{0}\Vert_{\infty}
=\displaystyle \sup_{ $\rho$}\sqrt{ $\rho$}\frac{Q}{\sqrt{r}}\sup_{x}|\sum_{s=1}^{r}h_{s}[e_{2}e^{-h_{s}^{2} $\rho$}\cos(k_{s}\cdot x)+e_{3}e^{-(h_{s}^{2}+1) $\rho$}\cos(l_{s}\cdot x)]|
\displaystyle \leq\sqrt{2}\frac{Q}{\sqrt{r}}\sup_{ $\rho$>0}\sum_{s=1}^{r}\sqrt{ $\rho$}h_{s}e^{-h_{s}^{2} $\rho$}

\displaystyle \leq\leq\sqrt{2}\frac{}{}\sqrt{2}\frac{Q}{\sqrt{r},\sqrt{r}Q}[ $\rho$ s=1s=1
\displaystyle \leq\sqrt{2}\frac{Q}{\sqrt{r}}[2+\sup_{ $\rho$\geq h_{r}^{-2}}\int_{0}^{s_{ $\rho$}-1}\sqrt{ $\rho$}h(z+1)e^{-h(z+1)^{2} $\rho$}dz

+\displaystyle \frac{e^{-1/2}}{\sqrt{2}}+\sup_{ $\rho$\geq h_{r}^{-2}}\int_{s_{ $\rho$}}^{r}\sqrt{ $\rho$}h(z)e^{-h(z)^{2} $\rho$}dz]
\displaystyle \leq\sqrt{2}\frac{Q}{\sqrt{ $\rho$}}[2+\frac{e^{-1/2}}{\sqrt{2}}+\sup_{ $\rho$\geq h_{r}^{-2}}\int_{1}^{r}\sqrt{ $\rho$}h(z)e^{-h(z)^{2} $\rho$}dz]\leq C_{*}\frac{Q}{\sqrt{r}}
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with the numerical constant C_{*} independent of parameters. We take g( $\sigma$) := $\sigma$ e^{-$\sigma$^{2}} ,
then g

is monotone increasing when  $\sigma$<1/\sqrt{2} ,
and monotone decreasing when  $\sigma$>1/\sqrt{2} . Thus,

we choose s_{ $\rho$}\in\{1, . . . , r\} such that

\sqrt{ $\rho$}h_{s}\leq\sqrt{ $\rho$}h_{s+1} if s<s_{ $\rho$}, \sqrt{ $\rho$}h_{s}\geq\sqrt{ $\rho$}h_{s+1} if s\geq s_{ $\rho$}.

The maximal value of g is taken as \displaystyle \max g=g(1/\sqrt{2})=1/\sqrt{2e} . By the monotonic‐

ity we derive the estimate replaced from sum by integration. The last inequality fol‐

lows from the fact that the derivation of \displaystyle \int_{1}^{r}\cdots with respect to  $\rho$ is positive when  $\rho$ is

small, besides this is negative when  $\rho$ is large. In this section we often use the fact that

\displaystyle \sup_{ $\rho$>0}\sum_{s=1}^{r}\sqrt{ $\rho$}h_{s}e^{-h_{s}^{2} $\rho$}\leq C_{*} bounded uniformly in r.

Recall the successive approximation and its modification of convergence version. Let

us put the sequence \{v_{k}\}_{k=1}^{\infty} as

v_{1}(t) :=u_{1}(t) :=e^{t\triangle}u_{0},
v_{k+1}(t) :=u_{k+1}(t)-u_{k}(t)=-\mathcal{B}(u_{k})+\mathcal{B}(u_{k-1})

for k\in \mathrm{N} . Therefore, we rewrite u_{j} and the mild solution u=\displaystyle \lim_{j\rightarrow\infty}u_{j} as

u_{j}(t)=\displaystyle \sum_{k=1}^{j}v_{k}(t) and u(t)=\displaystyle \sum_{k=1}^{\infty}v_{k}(t) , (4.5)

as long as the mild solution exists. In what follows, we calculate v(t) and estimate the

Besov norm of them at t=T . Moreover, we notice that

v_{k}=(0,0, v_{k}^{3}(x_{1}, x_{2}, t)) for k\geq 2 . (4.6)

Gathering (4.3) with (4.6), the mild solution should be of the form

u=(0, u_{1}^{2}(x_{1}, t), u^{3}(x_{1}, x_{2}, t)) with u^{3}=\displaystyle \sum_{k=1}^{\infty}v_{k}^{3} . (4.7)

4.3 Term‐wise estimates

For all  $\delta$, T\in(0,1) ,
we correctly select parameters (Q, r,  $\gamma$,  $\eta$) to see that

\displaystyle \Vert v_{1}(T)\Vert_{B_{\infty,\infty}^{-1}}\leq\Vert u_{0}\Vert_{B_{\infty,\infty}^{-1}}\simeq C_{*}\frac{Q}{\sqrt{r}}=:S< $\delta$ . (4.8)

Also,  v_{2}=M_{2}+R_{2} and M_{2} :=e_{3}\displaystyle \frac{Q^{2}}{4}e^{-t}\sin x_{2} with

\displaystyle \Vert v_{2}(T)\Vert_{B_{\infty,\infty}^{-1}}\simeq\Vert M_{2}(T)\Vert_{B_{\infty,\infty}^{-1}}=C_{\flat}Q^{2}=:L\geq\frac{2}{ $\delta$} (4.9)

in the next subsection. Here A\simeq B means the almost equal, that is, A=B+R such

that |R|<\displaystyle \frac{1}{3}|B| for the scalar valued, and \displaystyle \Vert R\Vert_{B_{\infty,\infty}^{-1}}<\frac{1}{3}\Vert B\Vert_{B_{\infty,\infty}^{-1}} for functions; C_{\flat}>0 is
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a numerical constant. We will see that M_{2} is the major term of v_{2} at t\simeq T in the next

subsection. Conversely, R_{2} is the collection of the remainder terms of v_{2} at t\simeq T . It is

remarkable that M(t) no longer might be the leading term if we take neither a different

norm nor t<<T . We further prove that v_{3}=M_{3}+R_{3} with

M_{3}:=-\displaystyle \frac{Q^{3}}{8\sqrt{r}}te^{-t}\sum_{s=1}^{r}h_{s}e^{-h_{s}^{2}}{}^{t}\{\cos(h_{s}x_{1}+x_{2})+\cos(h_{s}x_{1}-x_{2})\}e_{3}
and

\displaystyle \Vert v_{3}(T)\Vert_{B_{\infty,\infty}^{-1}}\simeq\Vert M_{3}(T)\Vert_{B_{\infty,\infty}^{-1}}\simeq\frac{Q^{3}\sqrt{T}}{8\sqrt{2er}}\simeq\frac{Q^{2}}{4 $\eta$}S (4.10)

for t\simeq T\simeq$\eta$^{-2} . Moreover, we see that for v_{4}

v_{4}(T)=M_{4}(T)+R_{4}(T) , M_{4}(T)=-KM_{2}(T) , K:=\displaystyle \frac{(1-3e^{-2})Q^{2}}{8r$\eta$^{2}}>0
and the estimate

\Vert v_{4}(T)\Vert_{B_{\infty,\infty}^{-1}}\simeq\Vert M_{4}(T)\Vert_{B_{\infty,\infty}^{-1}}\simeq KL . (4.11)

By induction one may also show that v_{k}(T)=M_{k}(T)+R_{k}(T) and

M_{2k-1}(T)=(-K)^{k-2}M_{3}(T) and M_{2k}(T)=(-K)^{k-1}M_{2}(T) (4.12)

for k\geq 2 with t\simeq T\simeq$\eta$^{-2} . For the proof of Theorem 4.1, taking parameters such that

K<1/12 ,
we may appeal to rough estimates for the remainder terms in the following

way. Since the number of terms of v_{k} is 2^{k}
,

and the biggest term in the Besov norm of

the components of v_{k} is that of M_{k} ,
it is allowed to compute

\Vert v_{2k-1}(T)\Vert_{B_{\infty,\infty}^{-1}} \leq ( \# terms) . \Vert M_{2k-1}(T)\Vert_{B_{\infty,\infty}^{-1}}\leq(4K)^{k-2}S,
\Vert v_{2k}(T)\Vert_{B_{\infty,\infty}^{-1}} \leq ( \# terms) . \Vert M_{2k}(T)\Vert_{B_{\infty,\infty}^{-1}}\leq(4K)^{k-1}L

for k\geq 3 . Once we obtain these estimates, it follows from (4.5):

\displaystyle \Vert u(T)\Vert_{B_{\infty,\infty}^{-1}}\geq\Vert v_{2}(T)\Vert_{B_{\infty,\infty}^{-1}}-\sum_{k=2}^{\infty}(4K)^{k-1}\Vert v_{2}(T)\Vert_{B_{\infty,\infty}^{-1}}\geq\frac{L}{2},
if K<1/12 . We simply discard the sum of odd numbers above, since S is very small

compared with L . Finally, the choice of parameters yields that  S\simeq $\delta$ and  L\displaystyle \simeq\frac{2}{ $\delta$} ,
this

completes the proof of Theorem 4.1.

We see the proofs of (4.8)-(4.11) in [47]. So, we omit the details in here.

Choice of parameters We now mention the selection of the parameters (Q, r,  $\gamma$,  $\eta$) for

the proof of Theorem 4.1. Firstly, we always fix  $\gamma$ :=3 . We impose that  $\eta$\in \mathrm{N} with

 $\eta$\geq 2 large such that  $\eta$\sim T^{-1/2} for T\in(0,1) . For any  $\delta$\in(0,1) ,
we fix Q>1 large
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such that Q>\sqrt{\frac{3}{C_{\flat} $\delta$}} . Finally, we choose r\in \mathrm{N} large such that r>4C_{*}^{2}$\delta$^{-4}, T>h_{r}^{-2} and

K<\displaystyle \frac{1}{12}.
No blow‐up From the choice of initial velocity, the gradient of pressure terms are

always annihilated, that is to say, \nabla p=0 due to (1.1) and (4.7). This yields that the

mild solution exists uniquely and time‐globally in C([0, \infty);L^{\infty}(\mathrm{R}^{3})) ,
since it is known

that the mild solution exists uniquely and time‐locally in this class, and the a priori
estimate \Vert u(t)\Vert_{L}\infty\leq\Vert u_{0}\Vert_{L}\infty holds for all  t>0 by the maximal principle for the solution

u to the following Burgers type equations

u_{t}-\triangle u+(u, \nabla)u=0, u|_{t=0}=u_{0}\in L^{\infty}

Therefore, the blow‐up does not occur.

Role of Q The choice of the parameter Q (depending on r and  $\eta$ ) is essential. As the

conclusion, we investigate the following four cases:

1. It is possible to show that \Vert u_{j}(T)\Vert_{B_{\infty,\infty}^{-1}} does not converge as  j\rightarrow\infty when  Q is

large so that K>4 . This implies that one should take a subsequence to proceed
the iteration scheme (1.2) to construct the mild solution up to time T from the initial

datum u_{0} given by (4.1), even though \{u_{j}\} is a Cauchy sequence in C([0, T_{*}];L^{\infty})
with T_{*}\sim h_{r}^{-2}.

2. If Q is large, but not so large compared with r and  $\eta$ such that  K<1/12 ,
then the

norm inflation occurs, likely. The author guesses that the norm inflation solution

can be extended time‐global one with exponential decay as  t\rightarrow\infty
,

since  M_{k} is

always the major part of v_{k} and the estimates above are valid for all t>T.

3. On the other hand, if Q is small such that C_{\#}Q<1 ,
where C_{\#} is the universal

constant related to the constant C in (3.1), then the norm inflation does not occur.

In this case the unique time‐global mild solution exists due to Theorem 3.4 and

subsection 4.7.

4. One can prove that there exists a unique time‐global mild solution in the certain

class e.g. C([0, \infty);L^{\infty}) if Q<<1 due to the argument of [18]. In this case the

mild solution decays exponentially as t\rightarrow\infty.

Once we get (4.9) with large L
,

it seems to be difficult to apply the fixed point

argument, directly. More precisely, the mapping from the initial data to the mild solutions

seems to be not of class C^{2} ; Germain intended to show it in [15]. The proof of Theorem 4.1

is slightly different to that of [8]. They actually intended to show

\Vert y(T)\Vert_{B_{\infty,\infty}^{-1}}<<1 , (4.13)
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where y:=u-u_{2}:=u-u_{1}+B(u_{1})=\displaystyle \sum_{k=3}^{\infty}v_{k} . Bourgain‐Pavlovic [8] proceeded on

the investigation to get (4.13). However, it is not clear to the author how to choose the

parameters such that (4.13) and (4.9) are satisfied along their strategy, simultaneously.

Although they mentioned the way‐out by new techniques (slicing the time‐interval into

many parts) due to Koch‐Tzvetkov e.g. [31], it is unlikely to get some advantage by their

method in the situation u, y\in C([0, T];\dot{b}_{\infty,\infty}^{-1}) . Remark that it seems to be hard to find

the associate norm like \Vert \Vert_{\mathcal{E}_{T}} for Koch‐Tataru�s solution. As seen in (4.11), it is difficult

to show (4.13) without smallness of Q directly, even if y is relatively smaller than v_{2}.

Besides, if Q is small, then the norm inflation does not occur.

Technique of Bejenaru‐Tao We explain the technique by Bejenaru‐Tao [3]. They also

proved a lack of equicontinuity to the nonlinear Schrödinger equation in some supercritical

spaces. Their proof is based on the scaling argument and the contradiction arguments as

follows. Thanks to Theorem 3.4, there exists  $\epsilon$ such that there exists a unique time‐global
mild solution if \Vert u_{0}\Vert_{BM\mathrm{O}-1}< $\epsilon$ . Consider the family of initial velocity  $\lambda$ u_{0} for 0< $\lambda$\leq 1.

Find u_{0}\in BMO^{-1} such that the \dot{B}_{\infty,\infty}^{-1} ‐norms of u, u_{1}, y have the order o( $\lambda$) as  $\lambda$\rightarrow 0

for all t>0 ; besides, $\lambda$^{-1}\Vert v_{2}\Vert_{B_{\infty,\infty}^{-1}}>C with some constant C with some  $\lambda$>0 and t.

The scaling argument works well, since the bilinear estimates (3.1) do not depend on T.

Actually, u_{0} is taken as similar to (4.1). This contradicts to the expansion u=u_{1}+v_{2}+y.

The author thinks that their proof is good, however, there is no information about the

behavior of mild solutions. While, Theorem 4.1 is a constructive and concrete assertion

for the ill‐posedness.

4.4 First and second approximation

In this subsection we only calculate the forms of v_{2} . Divide v_{2} into three parts. Let us see

(u_{1}( $\tau$), \nabla)u_{1}( $\tau$)

=\displaystyle \sum_{m=1}^{3}\frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}[e_{2}^{m}e^{-h_{s}^{2} $\tau$}\cos(k_{s}\cdot x)+e_{3}^{m}e^{-(h_{s}^{2}+1) $\tau$}]\cos(l_{s}\cdot x)]
\displaystyle \times\partial_{m}(\frac{Q}{\sqrt{r}}\sum_{q=1}^{r}h_{q}[e_{2}e^{-h_{q^{\mathcal{T}}}^{2}}\cos(k_{q}\cdot x)+e_{3}e^{-(h_{q}^{2}+1) $\tau$}]\cos(l_{q}\cdot x)])

=\displaystyle \frac{Q^{2}}{r}\sum_{s=1}^{r}\sum_{q=1}^{r}h_{s}h_{q}e_{3}e^{-(h_{s}^{2}+h_{q}^{2}+1) $\tau$}\cos(k_{s}\cdot x)\sin(l_{q}\cdot x)
=\displaystyle \frac{Q^{2}}{r}\sum_{s=1}^{r}h_{s}^{2}e_{3}e^{-(2h_{s}^{2}+1) $\tau$} (- \frac{1}{2})\sin x_{2}

+\displaystyle \frac{Q^{2}}{r}\sum_{s=1}^{r}h_{s}^{2}e_{3}e^{-(2h_{s}^{2}+1) $\tau$}\frac{1}{2}\sin(2h_{s}x_{1}-x_{2})
+\displaystyle \frac{Q^{2}}{r}\sum_{s,q=1,s\neq q}^{r}h_{s}h_{q}e_{3}e^{-(h_{s}^{2}+h_{q}^{2}+1) $\tau$}\cos(k_{s}\cdot x)\sin(l_{q}\cdot x)

=:N_{1}+N_{2}+N_{3}.

For each \ell=1
, 2, 3 we set

U_{\ell} :=U_{\ell}(t) :=-\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}\mathrm{P}N_{\ell}( $\tau$)d $\tau$.
Thus, v_{2}=\displaystyle \sum_{\ell=1}^{3}U_{\ell} . In the conclusion U_{1} happens ((inflation�, as the contrast to that

U_{2} and U_{3} are small, when Q and r are large. Notice that v_{2} satisfies (4.6). Therefore,
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\nabla\cdot N_{\ell}=0 and \mathrm{P}N_{\ell}=N_{\ell} as well as \nabla\cdot v_{2}=0.

The estimates for v_{2} are shown in [47]. The original proof of [8] has a gap at the

estimate for U_{3} ,
which seems to be balanced to U_{1} . So, it was not clear whether the norm

inflation actually occurs, or not. Yoneda found the modification of the initial datum such

that U_{3} can be regarded as small terms (compared with U_{1} ) as the same as U_{2}.

4.5 Calculi for V3 and v_{4}

In this subsection the forms of V3 and v_{4} are derived, concretely. We invoke

V3=u_{3}-u_{2} =u_{1}-\mathcal{B}(u_{2})-\{u_{1}-\mathcal{B}(u1)\}
=-B(v_{1}+v_{2}, v_{1}+v_{2})+B(v_{1}, v_{1})
=-\mathcal{B}(v_{1}, v_{2})
=-\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}\mathrm{P}e_{3}v_{1}^{2}( $\tau$)\partial_{2}v_{2}^{3}( $\tau$)d $\tau$
=-\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}v_{1}^{2}( $\tau$)\partial_{2}v_{2}^{3}( $\tau$)d $\tau$ e_{3}.

Since v_{1} and v_{2} are functions independent of X3, the fourth equality holds by v_{2}=(0,0, v_{2}^{3}) ,

and the last equality holds by divergence‐free of the integrant. Clearly, V3 satisfies (4.6)
with k=3;v_{3}^{1}=v_{3}^{2}=0 . Analogously, we observe that (4.6) are valid for all k\geq 4.

We now calculate the concrete expression of v_{3}^{3} at t\simeq T\simeq$\eta$^{-2} :

v_{3}^{3} =-\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}[\{\frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}e^{-h_{s}^{2} $\tau$}\cos(h_{s}x_{1})\} . \displaystyle \frac{Q^{2}}{4r}
. \{ \displaystyle \sum_{q=1}^{r}(1-e^{-2h_{q^{\mathcal{T}}}^{2}})e^{- $\tau$}\cos x_{2}

+\displaystyle \sum_{q=1}^{r}(e^{2h_{q^{\mathcal{T}}}^{2}}-1)e^{-4(h_{q}^{2}+1) $\tau$}\cos(2\mathrm{h}\mathrm{x}\mathrm{x})
+\displaystyle \sum_{q\neq p}(e^{2h_{q}h_{p} $\tau$}-1)e^{-(h_{q}^{2}+2h_{q}h_{p}+h_{p}^{2}+1) $\tau$}\cos(h_{q}x_{1}+hxx)
+\displaystyle \sum_{q\neq p}(1-e^{-2h_{q}h_{p^{\mathcal{T}}}})e^{-(h_{q}^{2}-2h_{q}h_{p}+h_{p}^{2}+1) $\tau$}\cos(h_{q}x_{1}-h_{p}x_{1}+x_{2})\}]d $\tau$

=\displaystyle \frac{-Q^{3}}{4\sqrt{r}}\int_{0}^{t}\sum_{s=1}^{r}h_{s}e^{-(h_{s}^{2}+1) $\tau$}e^{(t- $\tau$)\triangle}\{\cos(h_{s}x_{1})\cos x_{2}\}d $\tau$+( remainder)

=\displaystyle \frac{-Q^{3}}{8\sqrt{r}}te^{-t}\sum_{s}h_{s}e^{-h_{s}^{2}t}\{\cos(h_{s}x_{1}+x_{2})+\cos(h_{s}x_{1}-x_{2})\}+(remainder)
=:M_{3}(t)+R_{3}(t) .

Here and hereafter, we do not distinguish the vector valued M_{k} and its third component

if no confusion occurs likely, since M_{k}=(0,0, M_{k}^{3}) for all k\geq 2 as well as R_{k}=(0,0, R_{k}^{3}) .

It is easy to see the estimate \Vert M_{3}(T)\Vert_{B_{\infty,\infty}^{-1}}\sim Q^{3}/\sqrt{r}<<1 and the remainder term R_{3}

is small compared with M_{3} as the similar to the estimates for U_{1}, U_{2} and U_{3}.

Next, we compute v_{4} . It follows that at t\simeq T\simeq$\eta$^{-2}

v_{4}^{3} =-\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}[\{\frac{Q}{\sqrt{r}}\sum_{s=1}^{r}h_{s}e^{-h_{s}^{2} $\tau$}\cos(h_{s}x_{1})\} . (-\displaystyle \frac{Q^{3}}{8\sqrt{r}}) $\tau$ e^{- $\tau$}
. \displaystyle \sum_{q=1}^{r}h_{q}e^{-h_{q^{\mathcal{T}}}^{2}} \{- \sin(h_{q}x_{1}+x_{2})+\sin(h_{q}x_{1}-x_{2})\}]d $\tau$+R_{4}

=-\displaystyle \frac{Q^{4}}{8r}\sum_{s=1}^{r}h_{s}^{2}e^{-t}\int_{0}^{t} $\tau$ e^{-2h_{s}^{2} $\tau$}d $\tau$\sin x_{2}+R_{4}
=-\displaystyle \frac{Q^{4}}{32r}e^{-t}\sin x_{2}[\sum_{s=1}^{r}\frac{1}{h_{s}^{2}}\{1-e^{-2h_{s}^{2}}{}^{t}(1+2h_{s}^{2}t)\}]+R_{4}
=-\displaystyle \frac{(1-3e^{-2})Q^{4}}{32r$\eta$^{2}}e^{-t}\sin x_{2}+R_{4}=-KM_{2}+R_{4}.
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Here we move the summation over s\geq 2 to the remainder terms; the remainder term

R_{4} might differ to the others in lines, likely. Also, it is easy to see that the Besov

norm of R_{4} is relatively small compared with that of M_{4}= −KM2. Then, we have

\Vert v_{4}(T)\Vert_{B_{\infty,\infty}^{-1}}\simeq KL . The same argument indicates (4.12), as long as T\simeq$\eta$^{-2} . Therefore,
the proof of Theorem 4.1 now completes. \square 

4.6 No convergence of approximation

For the case of huge Q ,
the successive approximation is no longer a good approximation

in C(0, T;\dot{B}_{\infty,\infty}^{-1}) .

Theorem 4.3 (S. [47]). For T>0 there exists a u_{0} such that \Vert u_{j}(T)\Vert_{B_{\infty,\infty}^{-1}(\mathrm{R}^{3})} does not

converge.

Proof. Let us assume T<1/4 without loss of generality. We choose the initial datum u_{0}

given by (4.1). We will prove that

\displaystyle \Vert R_{k}(T)\Vert_{B_{\infty,\infty}^{-1}}<\frac{1}{3}\Vert M_{k}(T)\Vert_{B_{\infty,\infty}^{-1}} (4.14)

for k\in \mathrm{N} . Once we get (4.14), one sees

\displaystyle \Vert u_{4j+2}(T)\Vert_{B_{\infty,\infty}^{-1}}\geq\sum_{k=1}^{j}(K/4)^{k-1}\Vert M_{2}(T)\Vert_{B_{\infty,\infty}^{-1}}\rightarrow\infty as  j\rightarrow\infty (4.15)

when  K>4 . It suffices to show (4.14) under the suitable choice of parameters with k\geq 3.

Determine  $\gamma$=3 and r=2 . Select  $\eta$\in \mathrm{N} as  $\eta$\geq 2 and  $\eta$\simeq T^{-1/2} . Let Q be taken large
such that K>4 . If \ell is odd and \ell\geq 3 ,

then we see

\displaystyle \frac{||R_{\ell}(T)||_{B_{\infty,\infty}^{-1}}}{||M_{\ell}(T)||_{B_{\infty,\infty}^{-1}}}\leq 2^{\ell}(\sum_{s=1}^{2}e^{-h_{s}^{2}T})^{\ell}=2^{\ell}(e^{-1}+e^{-36})^{\ell}<\frac{1}{3}.
Analogously as the estimates for R_{2} ,

in the case for even \ell\geq 4 one can prove the similar

inequality. This completes the proof of Theorem 4.3. \square 

The calculation above implies that it seems hard to show the convergence of \{u_{j}\} in

the class C(0, T;\dot{b}_{\infty,\infty}^{-1}) . It is not clear whether the other successive approximation, for

example,

w_{1} :=u_{1} and w_{j+1} :=w_{1}-\mathcal{B}(w_{j}, w_{j+1}) ,

does converge, or not. Although one can easily observe that \Vert u_{4j+2}(T)\Vert_{BM\mathrm{O}-1} tends to

infinity as  j\rightarrow\infty by the continuous embedding  BMO^{-1}\subset\dot{B}_{\infty,\infty}^{-1} ,
it is not clear to

the author whether another norms e.g. \Vert \Vert_{L^{3}((2 $\pi$ \mathrm{T})^{3})} or \Vert \Vert_{L^{\infty}} of \{u_{j}(T)\} diverge as

 j\rightarrow\infty ,
or not. It is obvious that the proofs of above theorems do not fit the situation in

two‐dimension.
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4.7 Estimate for y

In the end of this note we express the remainder y=u-u_{2} and its property whence

Q is small enough for readers� convenience. Before computing the norms, we establish a

proposition for embedding type for periodic functions.

Proposition 4.4. Let  $\kappa$>0 and  n\in N. Assume that  v\in L^{\infty}\cap\dot{B}_{\infty,\infty}^{-1}(\mathrm{R}^{n}) is periodic
with period  2 $\pi$/ $\kappa$ in  x_{j} for all j=\{1, . . . , n\} . Then

\Vert v\Vert_{B_{\infty,\infty}^{-1}}\leq C$\kappa$^{-n}\Vert v\Vert_{\infty} (4.16)

holds true with constant C depending only on n.

The proof is easy, so we omit. It is easy to see that for v\in \mathcal{E}_{T} enjoying the period

 2 $\pi$/ $\kappa$ in \mathrm{R}^{3}

\Vert v(T)\Vert_{B_{\infty,\infty}^{-1}}\leq C$\kappa$^{-n}\Vert v(T)\Vert_{\infty}=C$\kappa$^{-3}T^{-\frac{1}{2}}\Vert T^{\frac{1}{2}}v(T)\Vert_{\infty}\leq C$\kappa$^{-3}T^{-\frac{1}{2}}\Vert v\Vert_{\mathcal{E}_{T}}
by (4.16) and the definition of \mathcal{E}_{T}‐norm. This technique leads us to show the smallness

of Besov norm of functions at T by the smallness of \mathcal{E}_{T} ‐norm, even though it seems to be

tough to compute the Besov norm directly.
Now we estimate y . Let u be a mild solution, and let y:=u-v_{1}-v_{2} . A formal

calculation yields that

y_{t}=u_{t}-(v_{1})_{t}-(v_{2})_{t}

=u_{t}-\displaystyle \triangle e^{t\triangle}u_{0}-\mathrm{P}(u_{1}(t), \nabla)u_{1}(t)-\int_{0}^{t}\triangle e^{(t- $\tau$)\triangle}\mathrm{P}(u_{1}( $\tau$), \nabla)u_{1}( $\tau$)d $\tau$.
Subtracting this to \triangle y=\triangle u-\triangle v_{1}-\triangle v_{2} ,

we have

y_{t}-\triangle y=-\mathrm{P}(u, \nabla)u+\mathrm{P}(u_{1}, \nabla)u_{1}

=G_{1}+G_{2}+G_{3}=:G.

Here we set

G_{1} :=G_{1}(t) :=-\mathrm{P}\{(y, \nabla)(u_{1}-v_{2})+(u_{1}-v_{2}, \nabla)y\},
G_{2}:=G_{2}(t):=-\mathrm{P}(y, \nabla)y,

G_{3} :=G_{3}(t) :=-\mathrm{P}(u_{1}, \nabla)v_{2}.

Since

u_{1}=(0, u_{1}^{2}(x_{1}, x_{2}, t), u_{1}^{3}(x_{1}, x_{2}, t)) and v_{2}=(0,0, v_{2}^{3}(x_{1}, x_{2}, t)) ,

it is noticed that (v_{2}, \nabla)u_{1}=0 and (v_{2}, \nabla)v_{2}=0 , easily. Furthermore, from \mathcal{B}(u_{1})(0)=0
it deduces that y(x, 0)\equiv 0 . By Duhamel�s principle y can be regarded as the solution to

the following equation of integral form:

 y(t)=\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}G( $\tau$)d $\tau$ . (4.17)
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In terms of  B
,

we rewrite it by

y=-\mathcal{B}(y, u_{1}-v_{2})-B(u_{1}-v_{2}, y)-B(y)-B(u_{1}, v_{2}) .

Moreover, we may obviously seek that y=(0,0, y^{3}(x_{1}, x_{2}, t)) as well as (4.6).
It is straightforward to prove the estimates for v_{1} and v_{2} in \mathcal{E}_{T}‐norm. We thus choose

T small such that C\sqrt{T}Q^{2}<1/4 as well as r large such that CQ/\sqrt{r}<1/4 . Compute

(4.17) in \mathcal{E}_{T}‐norm by (3.1) and the triangle‐inequality to have

\Vert y\Vert_{\mathcal{E}_{T}}=\Vert \mathcal{B}(y, u_{1}-v_{2})+\mathcal{B}(u_{1}-v_{2}, y)+\mathcal{B}(y)+\mathcal{B}(u_{1}, v_{2})\Vert_{\mathcal{E}_{T}}

\leq C\{(\Vert u_{1}\Vert_{\mathcal{E}_{T}}+\Vert v_{2}\Vert_{\mathcal{E}_{T}}+\Vert y\Vert_{\mathcal{E}_{T}})\Vert y\Vert_{\mathcal{E}_{T}}+\Vert u_{1}\Vert_{\mathcal{E}_{T}}\Vert v_{2}\Vert_{\mathcal{E}_{T}}\}

\displaystyle \leq C\{(Q+\sqrt{T}Q^{2}+\Vert y\Vert_{\mathcal{E}_{T}})\Vert y\Vert_{\mathcal{E}_{T}}+\frac{\sqrt{T}Q^{3}}{\sqrt{r}}\}
\displaystyle \leq(C_{\#}Q+C\Vert y\Vert_{\mathcal{E}_{T}})\Vert y\Vert_{\mathcal{E}_{T}}+\frac{1}{4C} (4.18)

with some positive constant C_{\#} . It is not difficult to show that y is small in this way if

C_{\#}Q<1.
In [8] Bourgain and Pavlovic compute \Vert y\Vert_{\mathcal{E}_{T}} , dividing the time‐interval into many

parts. Although the author thinks that it is unnecessary to employ their method, it is

supposed that their technique leads us to some new idea and inspiration. So, the author

would give an explaining of their method.

Let T_{0}\in(0, T) be fixed, and let T_{0} be assumed as a new initial time for the equation

(4.17) with initial datum y(T_{0}) . That is to say, for t>T_{0}

 y(t)=e^{(t-T_{0})\triangle}y(T_{0})+\displaystyle \int_{T_{0}}^{t}e^{(t- $\tau$)\triangle}G( $\tau$)d $\tau$ . (4.19)

One can rewrite the second terms in the right hand side of (4.19) by

\displaystyle \int_{T_{0}}^{t}e^{(t- $\tau$)\triangle}G( $\tau$)d $\tau$=\int_{0}^{t}e^{(t- $\tau$)\triangle}G( $\tau$)$\chi$_{[T_{0},t]}( $\tau$)d $\tau$
=-\mathcal{B}(y^{\#}, u_{1}^{\#}-v_{2}^{\#})-\mathcal{B}(u_{1}^{\#}-v_{2}^{\#}, y^{\#})-\mathcal{B}(y^{\#})-\mathcal{B}(u_{1}^{\#}, v_{2}^{\#})

in terms of \mathcal{B} . Here we have denoted \# by

 y^{\#}:=y^{\#}(t):=\left\{\begin{array}{ll}
0 & if t<T_{0},\\
y(t) & if t\geq T_{0}.
\end{array}\right.
Analogously, we define u_{1}^{\#} and v_{2}^{\#} . By semigroup property we also rewrite the first terms

in the right hand side of (4.19) by

 e^{(t-T_{0})\triangle}y(T_{0})=e^{(t-T_{0})\triangle}\displaystyle \int_{0}^{T_{0}}e^{(T_{0}- $\tau$)\triangle}G( $\tau$)d $\tau$
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=\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}G( $\tau$)$\chi$_{[0,T_{0}]}( $\tau$)d $\tau$
=-\mathcal{B}(y^{\flat}, u_{1}^{\flat}-v_{2}^{\flat})-\mathcal{B}(u_{1}^{\flat}-v_{2}^{\flat}, y^{\flat})-\mathcal{B}(y^{\flat})-\mathcal{B}(u_{1}^{\flat}, v_{2}^{\flat}) .

Here \flat denotes

 y^{\flat}:=y^{\flat}(t):=\left\{\begin{array}{ll}
y(t) & if t<T_{0},\\
0 & if t\geq T_{0}.
\end{array}\right.
Analogously, we define u_{1}^{\flat} and v_{2}^{\flat} . When we settle T_{1}\in(T_{0}, T) small again to deduce that

\Vert y\Vert_{\mathcal{E}_{T_{1}}} have a better estimate. By (3.1) and so on, we see

\Vert y\Vert_{\mathcal{E}_{T_{1}}}\leq C(\Vert u_{1}^{\#}\Vert_{\mathcal{E}_{T_{1}}}+\Vert v_{2}^{\#}\Vert_{\mathcal{E}_{T_{1}}}+\Vert y^{\#}\Vert_{\mathcal{E}_{T_{1}}})\Vert y^{\#}\Vert_{\mathcal{E}_{T_{1}}}+C\Vert u_{1}^{\#}\Vert_{\mathcal{E}_{T_{1}}}\Vert v_{2}^{\#}\Vert_{\mathcal{E}_{T_{1}}}
+C(\Vert u_{1}^{\flat}\Vert_{\mathcal{E}_{T_{1}}}+\Vert v_{2}^{\flat}\Vert_{\mathcal{E}_{T_{1}}}+\Vert y^{\flat}\Vert_{\mathcal{E}_{\mathcal{E}_{1}}})\Vert y^{\flat}\Vert_{\mathcal{E}_{T_{1}}}+C\Vert u_{1}^{\flat}\Vert_{\mathcal{E}_{T_{1}}}\Vert v_{2}^{\flat}\Vert_{\mathcal{E}_{T_{1}}}

\displaystyle \leq C(\frac{Q}{\sqrt{r}}+\sqrt{T_{0}}Q^{2}+\sqrt{T_{1}-T_{0}}Q^{2}+\Vert y\Vert_{\mathcal{E}_{T_{1}}})\Vert y\Vert_{\mathcal{E}_{T_{1}}}
+C\displaystyle \frac{\sqrt{T_{0}}+\sqrt{T_{1}-T_{0}}}{\sqrt{r}}Q^{3}

One may have some improvements by this method, repeating and repeating.
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