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A remark on the algebraic normal form method
applied to the Dirac-Klein-Gordon system
in two space dimensions

By

Masahiro IKEDAY Akihiro SHIMOMURA**and Hideaki SUNAGAWA***

Abstract

We consider the massive Dirac-Klein-Gordon system in two space dimensions. Under the
non-resonance mass condition, we show that the solution is asymptotically free if the initial
data are sufficiently small in a suitable weighted Sobolev space. In particular, it turns out that
the Dirac component of the DKG system tends to a solution of the free Dirac equation. Our
proof is based on the algebraic normal form method.

§1. Introduction

This paper is intended to give a remark on applications of the algebraic normal
form method developed by [8], [6], [7], [3], [10], [9], [4], etc. The model equation which
we focus on is the two-dimensional massive Dirac-Klein-Gordon system

1.1 R xR
4 { (B4 m?)¢ = g, B)ce, () € R x
with the initial condition

(1.2) (¢, ¢, 0:¢0)|t=0 = (Yo, Po, 1), z € R2.
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Here (1, ¢) is a C? x R-valued unknown function of (t,z) € R x R2. M, m are positive
constants, g is a real constant, 0 = 92 — A, A = §? + 03, 9; = 0/0x; (j = 1,2) and
(-,-)¢2 denotes the standard scalar product in C?, i.e., (u,v)c2 = ulv for u,v € C?
(regarded as column vectors), where u' is the complex conjugate transpose of u. The
Dirac operator Dy is defined by

DM :8t—|-06181 +06282+ZMB:8t+Oévx—|—’LMﬁ
with 2 x 2 hermitian matrices a1, as, B satisfying

2 2 2
Oé]_:OéQZB :I,

ayas + oy = a1 B+ Bay = B + Bag = 0.

We also set
Dy =0 — (- Vi +iMP),

then we can easily check that the following relations hold:
(1.3) DyDys = DD = (0 + M?)IL

This implies that the solution (1, ¢) of (1.1)—(1.2) also solves

(O + M?)¢p = igD(68¢), )
1.4 R xR
44 { O+ m2)p = g, pu)ca, 7 ERX
with the initial condition
(1.5) (Y, 00, ¢, 010)|1=0 = (Yo, Y1, do, P1), z € R?,

where 11 = —(a -V + iMB)1g + igpofibo. According to Theorem 6.1 of [9] (see also
[10], [4]), the solution of (1.4)-(1.5) exists globally in time if m # 2M and the data are

sufficiently small, smooth and decay fast as |z| — co. Moreover there exists a solution
(YF, ¢F) of the free Klein-Gorodon equation

(O + M?)yp= =0,
(O +m?)¢* =0,

such that
tim (197 (0t ) = 6= () m-s + 10 (9t ) = 65t Dlln-s ) = 0.

t—too 4
Jj=0

In this sense, the solution of (1.1)—(1.2) behaves like a solution of the free Klein-Gordon

equations in the large time if m # 2M. However, this does not directly imply that
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the solution is asymptotically free. What we emphasize here is that a solution u of
the free Klein-Gordon equation (O 4+ M?)u = 0 is not necessarily a solution of the free
Dirac equation Dpyu = 0 in general. So the following question arises: Does the Dirac
componet Y (t) of (1.1) tend to a solution of the free Dirac quation ast — too? As far
as the authors know, there are no previous papers which address this question in the
case of two space dimensions. There are several results in 3D case (see e.g., [1] and the
referances therein), however, those methods do not work well in 2D case because of the
insufficiency of expected decay rate with respect to t of the nonlinear terms. We will
give an affirmative answer to this question by using the algebraic normal form method.
To state the main result, let us introduce the weighted Sobolev space

H**(R?) = {u € L*(R?) : (1+[-[1)*?(1 - A)*u € L*(R?)}
equipped with the norm
laall e qzy = 1L+ |- P)R72(1 = A)* 2| 2 ).
As usual, we write H* = H*? and ||ul| g7+ = ||u|| gs.0. Our main result is as follows.

Theorem 1.1.  Let m # 2M. Assume that (Yo, ¢o, p1) € HSTLHS x H5THs x
H*3(R?) with s > 18. There exists a positive constant ¢ such that if

(1.6) [0l rs+1.sr2) + [[@oll zrs+rs (r2y + |01 s (r2) < €,

the Cauchy problem (1.1)—(1.2) admits a unique global solution (1, ¢) satisfying

1
¥ € C(R; H*H(R?)), ¢ [)C*([0,00); H T H(R?)).
k=0

Furthermore, there exist T € H*~Y(R?) and (¢, ¢T) € H*~' x H*2(R?) such that

t—too

1
lim [l(t,) ==t Yo =0 and tg;nwzonaz(asu,-)—¢>i<t,->>||Hs_1_j:o,
=

where YE and ¢F are the solutions to

Dup*=0 . [ (O+m)e* =0
E im0 = U (6%, 0:6%)|i=0 = (5, 67)

respectively.

Remark 1. The condition m # 2M is often called the non-resonance mass con-
dition. Difficulties appearing in the resonant case (m = 2M) are explained in [5].
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Remark 2. Recently, the first author considered the final value problem for (1.1)
in two space dimensions and succeeded in showing the existence of wave operators for
(1.1) under the non-resonance mass condition. See [2] for the detail.

The rest of this paper is organized as follows: In the next section, we give some
preliminaries mainly on the commuting vector fields and the null forms. In Section 3,
we recall and develop an algebraic normal form transformation. We will get an a
priori esimate of the solution in Section 4. After that, Theorem 1.1 will be proved in
Section 5. A few remarks will be given in the final section. Throughout this paper, we
will frequently use the following conventions on implicit constants:

o A< B (resp. A2 B) stands for A < CB (resp. A > CB) with a positive constant
C.

e The expression f = > c i 9= means that there exists a family {Cy } xcx of constants
such that f =5, Crgx.

Also, the notation (y) = (1 + |y|?)'/? will be used for y € RN with a positive integer N.

§2. Commuting vector fields and the null forms

In this section, we summarize basic properties of some vector fields associated
with the Klein-Gordon operators. We put xg = —t, x = (x1,%2), Qab = 40 — Tp0q,
0 S Cb,b S 2, 6 = (80,61,62) = (6,5,6361,6362) and

Z = (Zy,...,%Z5) = (90,01, 02,001, N2, Q12).
Note that the following commutation relations hold:

(2.1) O+m? 2] =0,
[Qaba 8c] = nbcaa - ncaaba
[Qaba ch] - nadec + nchad - nachd - nbanc
form e R, 1 <j<6,0<ab< 2 Here],-| denotes the commutator of linear

operators, and (7.p)o<a,p<2 = diag(—1,1,1). Note that O = — Zi,b:o Nap0aOp. For a
smooth function u of (t,z) € R'™2 and for a non-negative integer s, we define

ut, )]s = > |2 ult, z)|
v <s

and

lu®lls := D 12 u(t, ) z2me),

lv<s
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where v = (v1,...,v6) is a multi-index, Z¥ = Z7{* --- Zg® and |v| =11 + - - - + v6. Next
we introduce the null form @)y and the strong null forms @, as follows:

2
(2:2) Qol(u,v) = = > Nap(Daw) (9p0),
a,b=0
(2.3) Qap(u,v) = (Ogu)(Opv) — (Opu)(Oqv), 0<a,b<2.

We summarize well known properties on the strong null forms.

Lemma 2.1.  Let u, v be smooth functions of (t,z) € R*2. We have

1

|Qan(u,v)| < e

(lulr|ov] + |0ullv]1)

for 0 <a,b<2, and

ZYQap(u,v) = Z Z chZuZ“v)

¢,d=0 |A|+|p|<|v|

for any multi-index v.

§3. Algebraic normal form transformation

This section is devoted to some decomposition of the nonlinear terms in (1.1).

Let v; and ¥; be smooth functions of (¢,z) € R12 (not necessarily scalar-valued),
and let my, my be real constants. We set h; = (8 + m3)v; and hy = (O + m3)v; for
7 =1,2. We write

F~G

if F — G can be written as a linear combination of Qqp(0vg, 8°71), (0"vi)(0" ),
(O"hy)(0¥0y) or hihy with |u|, |[v] < 1,0 < a,b < 2and 1 < k,l < 2. The follow-
ing lemma is important for our main purpose.

Lemma 3.1 ([9], [4]). Put ey = vg0;, €x = Qo(vk, V1) and L; = O -l-m?, where
Qo is given by (2.2). We have

(Liler) Lij(€r)) ~ (er €r)Ajr,

where

2

A m? — m% —mj Qm%ml2
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See Proposition 4.1 of [4] or Lemma 6.1 of [9] for the proof of this lemma. Remark
that the proof remains valid in the vector-valued case.
Now we focus our attention to the structure of the matrix A;z;. Since

det A = H (mj; + o1my + oamy),
o1,00€{£1}

we see that Aj197 and Asq; are invertible if mo # 2my. Moreover we have

_ - 1
v = (er1 €wr) <0>

= (er; €p)Ajm (%jkl>

Dkl
~ (Lj(er) L;(@Ewm)) (?f’“’>
Djki

= (0+m?) (pjklvk?jl +25jleo(Uk,5l))

Djki — 4L 1

for (j,k,1) = (1,2,1) or (2,1,1). By using the above formula with (my,ma,ve,v1) =
(M,m, ¢, B) or (my,ma,v1,01) = (M, m,T, ), we arrive at the following decompo-
sitions for the nonlinear terms in (1.1) :

with

Corollary 3.2.  Let (1, ¢) be a solution for (1.1) with m # 2M. We have

igpBv = Dar(DarAp) + Np + Rp,
g, Bb)c> = (B 4+ m*)Axe + Nka + Ria,

where

Ap= > (9"9)80"¢,

luls|v<1

A= 3 (9", 80")ce,

[ul,|lv|<1

2
No=3 3 Qul@e,80"y),

a,b=0|pul,|v|<1
2 /

Nika= Y. 3. Qa(d"¢',p0"),
a,b=0|ul,|v|<1

and Rp, Rixa are smooth functions of ((0M)|1<2, (0¥ ®)|v|<2) which vanish of cubic
order at (0,0).
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Remark 3.  Roughly saying, the above assertion tells us that the right-hand side
in (1.1) are splitted into two parts: The first one is the image of the corresponding linear
operator, and the second one consists of faster decaying terms which can be regarded
as harmless remainder when ¢t > 1. By pushing the first part into the left-hand side,
we can rewrite (1.1) as

(3.1) DM(¢—15MAD) = Np + Rp,
' (84 m?)(¢ — Aka) = Nka + Ria-

This is what we call the normal form transformation.

§4. A priori estimate

The goal of this section is to get some a priori estimate. From now on, we consider
only the forward Cauchy problem (i.e., t > 0) since the backward problem can be treated
in the same way. Let (¢, ¢) be a solution of (1.1)—(1.2) for ¢ € [0,T"). We define

E(T) = sup [<t>_5(llw(t)lls +H109(®)]ls + le@)]ls + 106(1)]]s)

0<t<T

190 o2 + 100(0) s + 16 |52 + [96(0)] >
+ sup {0+ L) (R0l + 16(2)]5-5)}

where s > 18 and 0 < § < 1. Then we have the following.

Proposition 4.1.  Let m # 2M. Assume that (1.6) is satisfied. Suppose that
E(T) < 1. There exists a positive constant Cy, which is independent of € and T, such
that

(4.1) E(T) < Co(e + E(T)?).

We omit the proof of this proposition because it is exactly the same as that of the
previous works ([3], [9], [4], etc.). The point is that Corollary 3.2 and the commutation
relation (2.1) imply

(O 4+ M?2)Z2¥ () — DyAp) = Z'Da(Np + Rp),
(O+m?)Z2%(¢ — Akc) = Z¥(Nke + Rie)

with

| Z7 A (t, )| S Juluy/2141 (Ul ) + 10ul)y)),
|Z"R.(t, %) S |u|[2|V|/2]—|—2(|u||V|+l + |3U||u|+1),
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and
v 1
|Z N*(tax)l 5 <t+—|x|>|u|[|u|/2]+2(|u||v|+l + |au||1/|+l)a

where u = (1, ¢), and x stands for “D” or “KG”. Remark that the restriction s > 18
comes from the relation [(s +1) —2]/2+2 < s—8.

§5. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. First we examine the global existence
part of the theorem. The inequality (4.1) implies that there exists a constant p > 0,
which does not depend on 7', such that

E(T) <p

if we choose ¢ sufficiently small. The unique global existence of the solution for (1.1)-
(1.2) is an immediate consequence of this a priori bound and the classical local existence
theorem.

Next we turn to the proof of the existence of the scattering state. Remember that

D () — DayAp) = Np + Rp
with

I(Np + Rp)(t, ) e S (6) 7,
IDyAD () e-s S ()

Now we set
U = o — (Darhp)leeo + / Up(—7)(Np + Rp)(r)dr
0

and ¥t (t) = Up(t)yg, where Up(t) = exp(—t(a - V. +iMB3)). Since the Duhamel
formula yields

¥(t) — DaAp(t) = Up(t) (o — (DarAp)limo) + /O Up(t —7)(Np + Rp)(7)dr

= ¢h(t) - /OO Up(t —7)(Np + Rp)(7)dr,
we have

[ (t) = " (@)l g < I DuAp ()]l + /too I(Np + Bp)(7)|lge-rd7

()~ 4 / h (1) "2 Hodr

< (.

N
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As for the Klein-Gordon component, we just have to set
> sin (—7Q,,)

Q (Nk¢ + Rig)(T,)dT,

o5 = do — AKG|t:0 +/0
6 = 01— ihical,y + [ (cos(—780) (Nico + Rica)(7,
0

with Q,, = (m? — A)Y/2, O

§6. Additional Remarks

We add a few remarks concerning the arguments in the preceding sections. After
submitting the first version of this paper, the authors are informed by the referee that
the following argument gives an alternative proof of Theorem 1.1: “Suppose that we
already know

1

(6.1) tlggoz 16 (¥ (t) = ¢ ()l 25 =0
j=0

with

(6.2) (O+ M*yT =0.

Then, since

1Dar(@t (1) = ()2 S D N02((r) = & (7)) | s
j=0

and
1D (T)llz2 S M) [lpee [(7)[ 22 S p*(7) 7
we have
IDa™ ()22 < D™ (1) = ()2 + [Dartp(7) |2 — 0
as T — 00. On the other hand, because of the L?-conservation law for the equation
Dyu = 0, it follows from (6.2) and (1.3) that

IDar™ (O)llz2 = 1Dat ™ (7)1

for any ¢, 7 € R. This implies Dp¢p™ = 0.” The above argument does not require (3.1)
explicitly. However, it should be remembered that the proof of (6.1)—(6.2) relies heavily
on the normal form transformation for the reduced Klein-Gordon system in the previous
paper [9]. In contrast, our proof of Theorem 1.1 avoids the use of (6.1)—(6.2); we only
use (3.1) and show directly that ¢(t) tends to a solution to the free Dirac equation.
What is important in our approach is to apply the normal form transformation for the
original system (1.1), not for the reduced system (1.4).
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