RIMS Kokytiroku Bessatsu
B33(2012), 97-109

Propagation of the analyticity for the solution to the
Euler equations with non-decaying initial velocity

Okihiro Sawada
Department of Mathematical and Design Engineering, Gifu University

Ryo Takada
Mathematical Institute, Tohoku University

1 Introduction

This note is a survey of our paper [12] on the initial value problems for the Euler equations in
R™ with n > 2, describing the motion of perfect incompressible fluids,

0
a—z:—l-(?pV)u—i—Vp:O in R™ x (0,7,
divu =0 inR” x (0,7), (E)
u(z,0) = ug(x) in R",
where the unknown functions u = u(z,t) = (u'(x,t),...,u"(x,t)) and p = p(z,t) denote the
velocity field and the pressure of the fluid, respectively, while vy = ug(z) = (uj(z),. .., un(x))

is the given initial velocity field satisfying the compatibility condition div ug = 0.

The main purpose of this note is to prove the propagation properties of the real analyticity
in spatial variables for the solution of (E) with non-decaying initial velocity. Let ./ (R™) be the
Schwartz class of all rapidly decreasing functions, and let . (R™) be the space of all tempered
distributions. We first recall the definition of the Littlewood-Paley operators. Let ® and ¢ be
the functions in . (R") satisfying the following properties :

supp® C {€ € R" | [¢] <5/6}, supp@ C {¢ € R"|3/5 < [¢] <5/3},

)+ 7)) =1, R,
=0
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where @;(z) = 2/"¢(2/z) and f denotes the Fourier transform of f € .%(R™) on R". Given
f € "(R"), we denote

b« f j=-1,
Nif =S p*f ]20, Sef =Y Aif, ke,

where * denotes the convolution operator. Then, we define the Besov spaces B, (R") by the
following definition.

Definition 1.1. For s € Rand 1 < p, ¢ < oo, the Besov space B;q(]R") is defined to be the set
of all tempered distributions f € .”/(R™) such that the following norm is finite :

15, = [ £27 123710} e

In the framework for decaying initial velocities, Kato [7] proved that for the given initial
velocity field uy € H™(R™)™ with m > n/2 + 1, there exist 7' = T'(||ug||g=) such that the
Euler equation (E) possesses a unique solution u in the class C'([0,7]; H™(R™)™). Alinhac
and Métivier [2] proved that Kato’s solution is real analytic in R" if the initial velocity is real
analytic. See also Bardos, Benachour and Zerner [3], Le Bail [9] and Levermore and Oliver
[10]. Kukavica and Vicol [8] considered the vorticity equations for (E) in H*(T?)3 with s > 7/2
and proved the propagation properties of the real analyticity. In particular, they improved the
estimate for the size of the radius of the convergence of the Taylor expansion for the solution to
the vorticity equations. On the other hand, in the framework for non-decaying initial velocities,
Pak and Park [11] proved that for the given initial velocity uy € Biql(]R")" with divuy = 0,
there existsaT' = T'(||ug||p2_,) > 0 such that the Euler equation (E) possesses a unique solution
w in the class C'([0, T7; B;ovl(yR”) ) with Vp = 377 V(—=A)~'9;u;0;u;. Note that the Besov
space B;OJ (R™) contains some non-decaying functions, for example, the trigonometric function
e™% with the wave vector a € R™. In [12], we prove the propagation of the analyticity for the
solution to (E) constructed by Pak and Park in [11]. In particular, we give an improvement for
the estimate for the size of the radius of convergence of Taylor’s expansion.

Before stating our result about the analyticity, we set some notation. Let Ny := N U {0},
where N is the set of all positive integers. For & € N, put

k!
C(k+ 1)%’

where c is a positive constant such that one has

«
> <5> MgMja—p| < Mial; @ € N,

|Zq'

mp =

0<B<a

«
Z (ﬁ)mw 1Ma—gl+1 < |almype, o € Ny \ {0}".
0<8<a

For example, it suffices to take ¢ < 1/16. For the detail, see Kahane [6] and Alinhac and
Métivier [1].
Our result on the propagation of the analyticity now reads:
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Theorem 1.2. Let ug € Bioyl(R")” be an initial velocity field satisfying divuy = 0, and let
u € C([0,T]; B, ;(R™)™) be the solution of (E). Suppose that ug € C*(R™)" in the following
sense : there exist positive constants Ky and pg such that

102 w0l , < Kopy“mya)

forall a € Njj. Then, u(-,t) € C*(R™)" for all t € [0, T] and satisfies the following estimate :
there exist positive constants K = K(n, Ky), L = L(n, Ko) and A = \(n) such that

—le t
[o8uC-#)lm,, < K (2) m|a|<1+t>max{'a'—1v°}exp{A|a| / ||u<-,f>||B;o,1dT} (1.D)
0

forall« € Ny and t € [0,T].

Remark 1.3. (i) Since K, L and A do not depend on 7', (1.1) gives a grow-rate estimate for
large time behavior of the higher order derivatives of Pak-Park’s solutions.

(i1) From (1.1), one can derive the estimate for the size of the uniform analyticity radius of
the solutions as follows :

a RS
lim inf 10z ut)llz~ >p—(1—i—t exp /||u |Bl dr
|| =00 al L

Moreover, since B§O,1 (R™) is continuously embedded in C'*(R™) (see Triebel [14]), we have by
(1.1) that

1
le% o " Tal
lim inf 19z rot u(t)ll >p—(1+t exp /||u ||31 dr
|a|—o0 al L

Recently, Kukavica and Vicol [8] considered the vorticity equations of (E) in H*(T?)? with
s > 7/2, and obtained the following estimate for uniform analyticity radius :

o o\ el
liminf(”a’”mtu(t)HL> > p(1+1%)" exp{ /||Vu ||Lood7'}

|or] =00 ol

with some p := p(r,rot ug) and A = A(r). Hence our result is an improvement of the previous
analyticity-rate in the sense that (1 +¢*)~! is replaced by (1+¢)~!, and clarifies that p = po/L.

In [12], we also consider the propagation properties of the almost periodicity with respect
to the spatial variables for the solution to the Euler equations (E). We recall the definition of the
almost periodicity in the sense of Bohr.

Definition 1.4. Let f be a bounded continuous function on R”. Put
={nf|€ERJ(CLYR), 7ef=f(+E).
Then, f is called almost periodic in R™ if ¥ is relatively compact in L*>°(R").

Our result on the propagation of the almost periodicity now reads:
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Theorem 1.5. Let ug € Bioyl(R")” be an initial velocity field satisfying divuy = 0, and let
u € C([0,T]; BL {(R™)™) be the solution of (E). Suppose that u is almost periodic in R™, then
the solution u(-, ) of (E) is almost periodic in R™ for all t € [0, T).

The same assertion is known for the solutions to the Navier-Stokes equations by Giga, Ma-
halov and Nicolaenko [5]. Recently, Taniuchi, Tashiro and Yoneda [13] proved the almost
periodicity of weak solutions to (E) in the whole plane R? when ug € L*(R?)2. On the other
hand, in the Theorem 1.5, we treat the classical solutions and all space-dimensions n > 2. The
proof of Theorem 1.5 is based on the argument given by [5]. The key of the proof is to use the
estimate concerning the continuity with respect to the initial velocities. The details are given in
[12].

This note is organized as follows. In Section 2, we recall the key lemmas which play impor-
tant roles in our proof. In Sections 3, we present the proof of Theorems 1.2.

2 Key Lemmas

In this section, we recall some key lemmas and prove a bilinear estimate in the Besov space
Bio,1(R")- We first prepare the commutator type estimates and the bilinear estimates in the
Besov space Bl | (R") for nonlinear terms of (E).

Lemma 2.1 (Pak-Park [11]). There exists a positive constant C' = C(n) such that

D 2 N(Sj2u- VA = Ai((u- V) Al e < Cllullpy, Ifll52

=/
holds for all (u, f) € Bl ,(R™)"*! with divu = 0.
Lemma 2.2. There exists a positive constant C = C(n) such that
Ifollen, < CULNlgllon, + o=l flss )
holds for all f, g € B ;(R").

Proof. For the proof, we use the Bony paraproduct formula [4]. Let us decompose fg as

co  j+2
fg—ZSJ 3fA]g+ZSJ S9N F Y0 Y Ajf .
j=2 j=1 k=j-2

Since supp .Z [p;] Nsupp F ;] = O if |j — j'| > 2, we see that
supp Z [Sj_sfA;g] C {£ € R™ | 2772 < ¢ < 2772}
and ‘
supp 7 [A; fArg] C {€ € R™ | [¢] < 2mxUb+2}
which yield that
Z Aj (Sy-3fDjg) + Z Aj (Sy-39A;f)

§'>2 jl>2
[5/—=31<3 |j’—j|<3
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+ D Y A (ApfAg)

max{j’,j"}>j—21j"—j'|<2

= Il +Ig+[3.

By the Hausdorff-Young inequality and the Holder inequality, we have that

111l <C Y 173 fll e 1259

jl>2
I3 —31<3

<Ol D 1459l

j'>2
5/ —51<3

Similarly, it holds that
1ol < Cliglz= D 185/l e -

j'>2
15/ —31<3

Moreover, we see that

sl <C Do 18l 18509l

max{j’,j"} 25 -2 |7 —j'|<2

<Cliglhe= Y 185 Fll 1

24

Hence it follows from (2.1), (2.2), (2.3) and (2.4) that
1l , = S22 14,(£9) -

j€z

SOWMlle= Yo D 2 185glle +Cligle Do D0 2145 f ]

Jj=-1 4'>2 Jj=—1 j'>2
I3/ —51<3 |5/ —31<3

+Cllgllz= D > A

j=—1j'zj—4
=. J1 + JQ + Jg.

For the estimate of J;, we have that

I <O flle Z 27" Z 27N A4kl oo

k<3 j=—1
<Clflleligls .

Similarly, we have for I, that
I < Cliglleellfll s ;-
Concerning the estimate of /3, we have

I <Cllglle Y278 > 27 A fll e

k>—4 j=—1

101

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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< Cllgle=ll fllsn - 2.8)

Substituting (2.6), (2.7) and (2.8) into (2.5), we obtain that

1£glls, < CUfle<lgllsy, + lglz=lfllz,)-
This completes the proof of Lemma 2.2. U
Next, we give the estimate for the gradient of pressure 7 = Vp.

Lemma 2.3 (Pak-Park [11]). There exists a positive constant C = C(n) such that
(a0l < Cllullon, [0l
holds for all u,v € B (R")" with divu = divv = 0, where
m(u,v) = i V(=A) "0, ut 0y 07 = V(=A) " div {(u- V)v}.
k=1
Finally, we recall the Gronwall inequality.

Lemma 2.4 (The Gronwall inequality). Let A > 0, and let f, g and h be non-negative, contin-
uous functions on [0, T| satisfying

t 4
f(t) < A—I—/ g(s)ds+/ h(s)f(s)ds
0 0
forallt € [0,T]. Then it holds that
t
F(t) < AedoMm)dr / els MO g (5)ds
0

forallt € [0,T).

3 Proof of Theorem 1.2

Proof of Theorem 1.2. Let uy satisfy the assumption of Theorem 1.2. We first remark that u €
C([0,T]; B, ,(R™)") for all s > 1if ug € B3, ,(R")" for all s > 1. Hence u(-,t) € C*(R")"
for all ¢ € [0,7] by our assumption on the initial velocity uo and the embedding theorem.
Moreover, the time-interval in which the solution exists does not depend on s. Indeed, we can
choose T" such that T" > C/||ugl| g with some positive constant C' depending only on n by
the blow-up criterion, and the solution w satisfies

sup lu(t)||p , < Colluollp (3.1)
te[0,T] ’ :

with some positive constant Cy depending only on n.
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Now we discuss with the induction argument. In the case a = 0, (1.1) follows from (3.1)
with K = CyKy. Next, we consider the case |«| > 1. We first introduce some notation. For
[ e€Nand A\, L > 0, we put

Xi(t) == r|ng>l<||3?U(t)IIB;ol, t€[0,17,
{Mk(t)

my

X0,

AL
Y, =Y := max sup
ISkl 4efo,1]

where

=Xk [ lu(r dr
Mk(t) = Mk/:\:L(t) = p’éL_(k?—l)(]_ _I_ t)—(k—l)e fo ” ( )”Béo,l .

The similar notaion were used in [1] and [2]. In what follows, we shall show that Y},| < 2K
for all @ € N with |o] > 1 when X and L are sufficiently large. We now consider the case
|a| = 1. Let k be an integer with 1 < k& < n. Taking the differential operation 0,, to the first
equation of (E), we have

Ot (O 1) + (Opu - VYu+ (u - V)Op,u 4 Oy, m(u,u) = 0, (3.2)

where

Vp=m(uu) =Y V(=A)"0puf Oy’ = V(=A) " div{(u- V)u}.
jk=1
Applying the Littlewood-Paley operator A; and adding the term (S;_ou - V)A;(0,,u) to the
both sides of (3.2), we have
O (O, u) + (Sjat - V)A; (O, u)

— (St VYA (Ontt) — ;{1 V)Ots) — Ay (Ot - V) — Ay gy (). )

Here we consider the family of trajectory flows { Z;(y, t) } defined by the solution of the ordinary
differential equations

0

5721 (W:t) = Sj-2u(Z;(y, 1), 1),

Zi(y,0) =y.
Note that Z; € C'(R™ x [0, T])", and div S;_ou = 0 implies that each y — Z;(y, t) is a volume
preserving mapping from R"™ onto itself. From (3.3) and (3.4), we see that

_ % (8;(0n ) (Zi (5, 1), D)}

(3.4)

01D (Og,u) + (Sj—ou - V)A;(0y,u)

(z,t)=(Z;(y:t)t)

which yields that
A (Do) (25 (5,£),8) = 2, (D) (y) — / Ay (O~ V) (Zy(y. ). 5)ds
" / ((S)at - V) (D) — (- V)00 0)} (Z3(0, 5), 8)ds

_/0 A (O, 7 (u,w))(Zi(y, 8), 8)ds.
(3.5)
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Since the map y — Z;(y, t) is bijective and volume-preserving for all ¢ € [0, T, by taking the
L*°-norm with respect to y to both sides of (3.5), we have

18500 < 18Ot + [ 18500 Fyu)(s) s
i / 140521 - V) (00 0) — Ay((u-V)Dg)} ()], ds (B.6)

n / 18 (B (1, 0)) ()] el

Multiplying both sides of (3.6) by 27 and then taking the ¢!-norm in j, we obtain that
t t
w10l gy, + [ @y Vo)l s+ [ o mwu))l ds
’ 0 0

v S (St 00) = (0 T} (9
=L+ 1+ I3+ 1. 3.7
It follows from the assumption on u that
I < Kopy tmy. (3.8)
From Lemma 2.2, we see that

t
L <C [ I9u@)~ I Tuls)l, ds
’ (3.9)

t
<cC / ()l X (s)ds.
0 |

where we used the continuous embedding B;OJ(]R") < C'(R™). For the pressure term I3, it
follow from Lemma 2.3 that

t
<2 [ (@ 0)o) s, ds
0 |

. (3.10)
<C [ s, Xis)ds.
0 ,
For the estimate of I, we have from Lemma 2.1 that
t
L<C [ o)l 10wl ds
0 (3.11)

t
<C / ()12 X1 (s)ds.
0 |

Substituting (3.8), (3.9), (3.10) and (3.11) into (3.7), we have

t
102, u(®) | 1, , < Kopg 'ma + 01/ lu(s)l|p, , X1(s)ds (3.12)
0
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with some positive constant C; depending only on n. Since k& € {1,...,n} is arbitrary, it
follows from (3.12) that

t
Xa(0) < Ko 'mi + G [ u(s) o, X:(5)ds,
0 |

which implies by Lemma 2.4 that

C1Ji a1 dr

X1 (t) < Kopp* (3.13)
By choosing A > (', we obtain from (3.13) that
My (t C1— Elur T
1 )Xl(t) < Koo OV RIMONpy dr e
ma
which yields that
Y; < K. (3.14)
Next, we consider the case |«| > 2. Let a be a multi-index with |«| > 2. Taking the
differential operation 02 to the first equation of (E), we have
0(05u) + > (g) (0%u - V)02 Pu + 007 (u, u) = 0. (3.15)

0<p<a

Applying the Littlewood-Paley operator A; and adding the term (.S;_su-V)A;(0%u) to the both
sides of (3.15), we have
0N (05 u) + (Sj—2u - V)A;(05u)
= (Sj—2u-V)A;(07u) — Aj((u- V)9 u)

(3.16)
- X ()0 o) - g0t
0<B<a
Similarly to the case of |a| = 1, we have from (3.16) that
18;(87u) (Bl e < [[A;(07uo) [ Lo
> (5 >/ 18 (0% 9)322u) (3)] . ds
0<B<a
(3.17)

" / 1A (@ () (3)]] o i
n / (S att - VYA (020) — Aj((u- V)w)} (3)]] o ds.

Multiplying both sides of (3.17) by 27 and then taking the ¢!-norm in j, we obtain that

107 u®) 5y, < 107 uoll 51,
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> (4) [ o vz a4
0<B<a

+ [ 102 ) b
/ D2 [{(Sjmau - V)A(@5w) — Aj((u- V)u)} (5)]] o ds

JEZ
=. Jl +J2+J3+J4. (318)
It follows from the assumption on u that

Ty < Kopy “myg.- (3.19)

For the estimate of .J;, we have from Lemma 2.2 and the continuous embedding that

t
<0 % (5) [ (102190 g, + 1902 Pu(o)i 020t )

<<

t
« .
:Cz<e-)/ 02, u() =190~ u(o)] 3y ds
j=1 J 0
t
a —
ro () [ 1omsives u s, s

0<B<
18122

t
+C [ Vul= 10205 ds
0

t
(8%
r0 5 (5) [ 1o 10 oy o

0<B<a
t
C’|0‘|/ [|u(s ||B1 X|a| s)ds+ C Z (g)/o Xig-1(5)Xja—g|+1(s)ds
Sy
¢
+o Y (g) / Xi51(5) Xja_p) (5)ds. (3.20)
0<B<a 0

For the pressure term .J3, from Lemma 2.3, we have

J3 < ( ) |7(8%u, 0% Pu) (s)]| s KE
0<B<a / BOOY
5 (4) [ 102 102t
(g) /O X51(8) Xjarp) ()ds. (3.21)

0<B<a

c/ ()]l 52, Xial(s)ds +C >

0< <
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For the estimate of J,, it follows from Lemma 2.1 that
/ lu(r 102u(s) 5, ds

c / ()l Xiai(5)ds

Substituting (3.19), (3.20), (3.21) and (3.22) to (3.18), we have

(3.22)

logu(®)llps,, < Kopy' m|a|+0|a|/ [u(s) 51, , Xjai(s)ds

+C > (ﬁ) /O Xip1-1(8)Xja—pl+1(s)ds (3.23)

0<B<L
181>2

+0 50 (4) [ Xl Xiatoris

0<fB<a

Furthermore, for the third term of the right-hand side of (3.23), we see that

2. (g) /Ot Xi1-1(8) Xja—gi11(s)ds

0<B<a
8122

a\ [* Mg 1(s) Mo _pj41(5) Mgl 1 Mapls1
- B s (s) e ds
Z <5> o MgtV 1(s) Mapitr g (s )M|ﬁ|—1(8) Mia—gj+1(8)

0<B<
18122

fa— t S
E Z a|— Y, _9 Al u(T dr

0<B<a 6
18122

t s
< Jafmia oy L2 (Yigo1)? /0 (14 s)li=2 N e, g (3.24)

Similarly, for the fourth term of the right hand side of (3.23), we have

5 (2) [ 5 0

0<B<a (3.25)

Aa [g [lu(r dr
< Mooy LI (Vg 1) /0 (1 4 s)lal-2 Nl 1eay a0

Substituting (3.24) and (3.25) to (3.23), we have

02O, < Ko v+ Clal [ )l X3

A iy d
jal-2 Ml 5 Il dr

+ Ol 202 [ (149) ds,
0
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which implies that

t
Xioi) < Kopg oy +Cla] [ u(s) X (5)ds
° , _ ) (3.26)
+Cla|m|a|pg'“'L'°"—2(Y|a|_1)2/ (14 5)el-2¢ ol 3 Il 7
0

By Lemma 2.4, we obtain from (3.26) that

ol Colal Il g1 dr ol 7ol
Xia)(£) < Kopy “mygre 000" 4 Colalmygpy L2 (Vo1 )?

t t s
_o Cala] [ llu(T)llg1  dr+Xlal [§ llu(m)] g1 dr
x/(l—l—s)'“' %e oo 0 Poor ™ ds
0

with some positive constant Cs depending only on n. By choosing A > C5 and L > 1, we thus
have

My (2)

= (laf=) (Com el o Il o
Mol

Xjo(t) < KoL (1 4 ¢

t Co—Nlel [E|u(r dr
+ ClalL (4 N0 [ (1t S
0

t
< Ko+ Cyla|L7YH(1 + t)‘(|“|‘1)(Y|a|_1)2/ (1 + s)l=2ds
0

20!
< Ko+ TQ(Y|O¢|—1)2-

The above estimate with (3.14) implies that

2C:
Yo < Ko+~ (Yaj)? (3.27)

for all @« € Nj with |a| > 2. From (3.14) and (3.27), we obtain by the standard inductive
argument that
Yo < 2K, (3.28)

for all « € N with || > 1, provided A > max{C}, Cy} and L > max{1, 8CyKy}. Therefore,
it follows from (3.28) that

2K —|a o [Flu(r 1 T
[, < =7° (%) i (1 4 el Mo Ol 329)
forall £ € [0, 7] and o € N with || > 1. From (3.1) and (3.29) with K = K, max{Cy, 2/L},
we complete the proof of Theorem 1.2. U
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