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Rauzy fractals induced from automorphisms on the

free group of rank 2 related to continued fractions

By

Hiromi E1 *

Abstract

For a substitution satisfying the Pisot, irreducible, unimodular condition, a tiling substi‐

tution plays a key role in the construction of Rauzy fractals (see [15, 3 To try extending
techniques developed for substitutions to automorphisms, [6] gives the way to construct Rauzy
fractals by using tiling substitutions for automorphisms related to hyperbolic companion matri‐

ces of quadratic polynomials. This paper shows application to another class of automorphisms
related to continued fraction expansions.

§0. Introduction

After Rauzy introduced fractal, called Rauzy fractal, as a geometric representation
of substitutive dynamical system for a special Pisot, irreducible unimodular substitution

in [15], it has been extensively studied (e.g., [3, 11, 14]). In especial, Arnoux and Ito

[3] gave a method to construct Rauzy fractals by using tiling substitutions. After that,

Arnoux, Berthé, Hilion and Siegel [2] initiated the investigation into automorphisms
on free groups. They actually forcused on automorphisms whose iterations, applied
to letters, do not give rise to any cancellations of letters. An incidence matrix A_{ $\sigma$} is

a linear map associated to an automorphism  $\sigma$ by abelianization (for details, see the

next section). [6] is devoted to construct stepped surfaces and Rauzy fractals induced

from automorphisms on the free group  F_{2} of rank 2 whose incidence matrices are the

companion matrices of quadratic polynomials x^{2}-ax\mp 1 such that

(0.1) A_{\pm}=\left(\begin{array}{l}
0\pm 1\\
1a
\end{array}\right),
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and assume ((hyperbolicity� instead of the Pisot condition. Then there are four cases

corresponding to configurations of eigenvalues of the matrix (0.1). Let us consider one

case related to the matrix A_{-} whose eigenvalues satisfy  $\lambda$>1, 0<$\lambda$'<1 , concretely
the automorphism  $\sigma$ with  a=3 :

 $\sigma$ : \{21\rightarrow 21^{-1}22\rightarrow 2, A_{ $\sigma$}=\left(\begin{array}{ll}
0 & -1\\
1 & 3
\end{array}\right)
Then we encounter the following cancellation problem under the iteration of  $\sigma$ as follows:

 $\sigma$^{2}(2)= $\sigma$(21^{-1}22)=21^{-1}22\underline{2^{-1}2}122 2122 .

Such a cancellation never occurs for a substitution. The idea to solve such a problem is

to find a substitution  $\tau$ and an automorphism  $\delta$ such that

 $\sigma$=$\delta$^{-1}\circ $\tau$\circ $\delta$,

in other words,  $\sigma$ is conjugate to a substitution  $\tau$ . In fact, for the above example, we

can find

 $\tau$ : \left\{\begin{array}{l}
1\rightarrow 12\\
,  $\delta$:\\
2\rightarrow 212
\end{array}\right. \{21\rightarrow 2\rightarrow 21^{-1} ($\delta$^{-1} : \{21\rightarrow 2\rightarrow 1^{-1}2 )
Through the discussion on the classes of automorphisms related to the matrix (0.1), the

possibility to apply the method in [6] to another class of automorphisms was found. To

do it, it is necessary for  $\sigma$ to be decomposed as  $\sigma$=$\delta$^{-1}\circ $\tau$\circ $\delta$ with  $\delta$ and  $\tau$ satisfying
the following conditions:

1.  $\tau$ is a substitution or an alternating substitution, where an alternating substitution

is an endomorphism on the free group  F_{2} such that  $\tau$(i)(i=1,2) are words with

the alphabet \{1^{-1}, 2^{-1}\}.

2.  $\delta$ is an automorphism on  F_{2} such that both words $\delta$^{-1}(i)(i=1,2) are words with

one of the alphabets {1, 2}, \{1^{-1} ,
2 \}, \{ 1, 2^{-1}\} or \{1^{-1}, 2^{-1}\}.

Ito and Yasutomi [12] gives automorphisms which fix characteristic sequences C(x)
of quadratic irrational numbers x (see the next section). Namely, C(x) is a fixed point
of the following automorphism $\sigma$_{x} :

$\sigma$_{x}= ($\sigma$_{1,a_{1}}\circ$\sigma$_{2,a_{2}}\circ\cdot \cdot \cdot

\circ$\sigma$_{t_{N}} , a  N)\circ($\sigma$_{t_{N+1},a_{N+1}}\circ\cdot \cdot \cdot \circ$\sigma$_{t_{N+2K},a_{N+2K}})\circ($\sigma$_{t_{N},a_{N}}^{-1}\circ\cdot \cdot \cdot\circ$\sigma$_{1,a_{1}}^{-1}) ,

where [0, a_{1}, a_{2}, \cdots, a_{N}, \overline{a_{N+1},\cdots,a_{N+2K}}] is the continued fraction expansion of a quadratic
irrational number x\in[0 , 1), and $\sigma$_{1,a}, $\sigma$_{2,a} are substitutions defined by

$\sigma$_{1,a} : \left\{\begin{array}{l}
1\rightarrow 1^{a}2\\
2\rightarrow 1^{a-1}2' $\sigma$_{2,a}:
\end{array}\right. \left\{\begin{array}{l}
1\rightarrow 12^{a-1}\\
2\rightarrow 12^{a} '
\end{array}\right.
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t_{k}=\left\{\begin{array}{ll}
1 & \mathrm{i}\mathrm{f} k \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d}\\
2 & \mathrm{i}\mathrm{f} k \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\end{array}\right.
Note that a substitution is naturally extended to an endomorphism on the free group,

and $\sigma$_{1,a}, $\sigma$_{2,a} are invertible in this sense. Put

B_{a_{1},a_{2},\ldots,a_{n}}:=\left(\begin{array}{ll}
a_{1} & -1a_{1}\\
 & 11
\end{array}\right)\left(\begin{array}{ll}
a_{2} & -1a_{2}\\
 & 11
\end{array}\right)\cdots \left(\begin{array}{ll}
a_{n} & -1a_{n}\\
 & 11
\end{array}\right)
It is easy to check that the incidence matrices of automorphisms $\sigma$_{x} related to x=

[0, a_{1}, a_{2}, \cdots, a_{N}, \overline{a_{N+1},\cdots,a_{N+2K}}] are given by

A_{$\sigma$_{x}}=B_{a_{1},a_{2},\ldots,a_{N+2K}}B_{a_{1},a_{2},\ldots,a_{N}}^{-1},

which are different from (0.1). Since the automorphisms $\sigma$_{x} related to continued fraction

expansions satisfy the two conditions 1, 2 by taking  $\tau$=$\sigma$_{t_{N+1},a_{N+1}}0\cdots\circ$\sigma$_{t_{N+2K},a_{N+2K}}
and  $\delta$=$\sigma$_{t_{N},a_{N}}^{-1}\circ\cdots\circ$\sigma$_{1,a_{1}}^{-1} ,

we apply the method in [6] for this new class of automor‐

phisms.
In the next section, we recall results associated to characteristic sequences. In the

last section, we construct Rauzy fractals induced from automorphisms $\sigma$_{x} ,
and define

domain exchange transformations. The purpose of this paper is to find set equations
for Rauzy fractals by using a conjugacy  $\delta$ of an automorphism  $\sigma$_{x} in Theorem 2.6, and

show that the orbit of the origin point by the domain exchange transformation gives
the sequence C(x) in Corollary 2.10.

§1. Characteristic sequences and continued fraction expansions

For an endomorphism  $\sigma$ on the free group of rank 2 denoted by  F_{2} (resp. \mathrm{a}

substitution  $\sigma$ over the alphabet \mathcal{A}=\{1 ,
2 \} ), the incidence matrix A_{ $\sigma$} defined by

(\mathrm{f}( $\sigma$(1)), \mathrm{f}( $\sigma$(2))) satisfies the following commutative diagram:

F_{2}\rightarrow^{ $\sigma$}F_{2}

\mathbb{Z}\mathrm{f}\downarrow_{2}\rightarrow \mathbb{Z}A_{ $\sigma$}\downarrow_{2}\mathrm{f},
where \mathrm{f} : F_{2}\rightarrow \mathbb{Z}^{2} is a canonical homomorphism defined by \mathrm{f}( $\epsilon$)=0 and \mathrm{f}(i^{\pm 1})=
\pm e_{i}, i\in \mathcal{A} ,

and e_{j} are fundamental vectors. The characteristic polynomial of A_{ $\sigma$} is

denoted by $\Phi$_{ $\sigma$}(x) . For an endomorphism on F_{2} or a substitution, there are the following
four conditions:

\bullet (Pisot condition) The maximum root of $\Phi$_{ $\sigma$}(x) is Pisot number, that is, the dominant

eigenvalue of A_{ $\sigma$} is greater than one and the other has modulus less than one,
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\bullet (Irreducible condition) $\Phi$_{ $\sigma$}(x) is irreducible over \mathbb{Q},

\bullet (Unimodular condition) |\det A_{ $\sigma$}|=1,

\bullet (Primitive condition) the matrix  A_{ $\sigma$} is primitive.

For a number x\in I:=[0 , 1), define the map C from I to \mathcal{A}^{\mathbb{N}} by

C(x) :=(C_{1}(x), C_{2}(x), \cdots, C_{n}(x), \cdots) ,

where C_{n}(x) :=\lfloor nx\rfloor-\lfloor(n-1)x\rfloor+1 ,
and means the floor function. Note that

C_{n}(x) :=\lfloor nx\rfloor \lfloor(n-1)x\rfloor when we use the alphabet \mathcal{A}=\{0 ,
1 \} . Put c(x)=

(C_{2}(x), C_{3}(x), \cdots, C_{n}(x), \cdots) . Since C_{1}(x)=1, C(x)=1c(x) ; and C(x) or c(x) are

called the characteristic sequence or the characteristic word of x (cf. [13]).
Is there a non‐trivial substitution  $\sigma$ for which  C(x) (resp. c(x) ) is invariant, that is,

C(x) (resp. c(x) ) is a fixed point of  $\sigma$ such that  $\sigma$(C(x))=C(x) (resp.  $\sigma$(c(x))=c(x) )?
Ito and Yasutomi [12] and Crisp, Moran, Pollington and Shiue [5] give the answer to

this question by using the continued fraction expansion of x.

Let us define the functions S:I\rightarrow I and a:I\rightarrow \mathbb{Z} by

 S(x):=\displaystyle \frac{1}{x}-\lfloor\frac{1}{x}\rfloor
 a(x):=\displaystyle \lfloor\frac{1}{x}\rfloor,

and the sequence \{a_{n}\}_{n=1}^{\infty} by a_{n}:=a(S^{n-1}(x)) ,
then we get the continued fraction

expansion of x denoted by [0, a_{1}, a_{2}, \cdots, a_{n}, ].

Remark 1. (1) A quadratic irrational number x is reduced, that is, 0<x<1

and \overline{x}<-1 ,
where \overline{x} means the algebraic conjugate of x

,
if and only if the continued

fraction expansion of x is purely periodic (see [17]).
(2) A number x is quadratic if and only if the continued fraction expansion of x is

eventually periodic.

Ito and Yasutomi give a substitution over \mathcal{A} or an automorphism on F_{2} for which

C(x) is invariant for a quadratic irrational number x\in I in the following theorem.

Theorem 1.1 (Theorem 2.4 in [12]). (1) If x\in I is a quadratic irrational and

reduced number, then $\gamma$_{x}(C(x))=C(x) ,
where [0, \overline{a_{1},a_{2},\cdots,a_{2K}}] is the continued frac‐

tion expansion of x
,

and $\gamma$_{x} is a substitution given by

$\gamma$_{x}=$\sigma$_{t_{1},a_{1}}\circ\cdots 0$\sigma$_{t_{2K},a_{2K}} .
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(2) If x\in I is a quadratic irrational number, then $\sigma$_{x}(C(x))=C(x) ,
where [0, a_{1}, a_{2}, \cdots,

a_{N}, \overline{a_{N+1},\cdots,a_{N+2K}}] is the continued fraction expansion of x
,

and $\sigma$_{x} is an automor‐

phism given by

$\sigma$_{x}=$\delta$_{x}^{-1}\circ$\tau$_{x}\circ$\delta$_{x},
where

$\tau$_{x}=$\sigma$_{t_{N+1},a_{N+1}}\circ\cdot \cdot \cdot\circ$\sigma$_{t_{N+2K},a_{N+2K}}

$\delta$_{x}=$\sigma$_{t_{N},a_{N}}^{-1}\circ\cdots\circ$\sigma$_{1,a_{1}}^{-1}.
In the case (1), the sequence C(x) is a fixed point of the substitution $\gamma$_{x} ,

and the

case boils down to the substitution case (cf. [3]). In the case (2), automorphisms $\sigma$_{x} are

conjugate to invertible substitutions $\tau$_{x} satisfying the Pisot, irreducible, unimodular,

primitive conditions.

§2. Rauzy fractals and domain exchange transformations

In this section, we consider only the automorphisms $\sigma$_{x} in Theorem 1.1 (2) for

quadratic irrational numbers x\in I which are not reduced, and for simplicity, we use

notations  $\sigma$,  $\tau$,  $\delta$ instead of  $\sigma$_{x}, $\tau$_{x}, $\delta$_{x} ,
unless otherwise noted. Note that the sub‐

stitution  $\tau$ satisfies the Pisot, irreducible, unimodular, primitive conditions and it is

invertible. Results in this section are derived by applying the previous paper [6], so

brief proofs or ideas of proofs are explained.
Let us define the tiling substitution for a unimodular endomorphism on  F_{2} (see

[7, 16]).

Definition 2.2. The free \mathbb{Z}‐module \mathcal{G}^{*} is defined by

\mathcal{G}^{*} :=\displaystyle \{\sum_{k=1}^{l}n_{k}(x_{k}, i_{k}^{*})|n_{k}\in \mathbb{Z}, x_{k}\in \mathbb{Z}^{2}, i_{k}\in \mathcal{A} for any k, l<\infty\}
An arbitrary endomorphism  $\sigma$ on  F_{2} is written by

 $\sigma$(i)=w_{1}^{(i)}w_{2}^{(i)}\cdots w_{l(i)}^{(i)}, i\in \mathcal{A},
in reduced form, and define the k‐prefix P_{k}^{(i)} and k‐suffix S_{k}^{(i)}\in F_{2} for 0\leq k\leq l^{(i)} by

P_{k}^{(i)}:=w_{1}^{(i)}w_{2}^{(i)}\cdots w_{k-1}^{(i)}, S_{k}^{(i)}:=w_{k+1}^{(i)}w_{k+2}^{(i)}\cdots w_{l(i)}^{(i)}.
The tiling substitution $\sigma$^{*} on \mathcal{G}^{*} for a unimodular endomorphism  $\sigma$ on  F_{2} is defined by

$\sigma$^{*}(x, i^{*}):=

\displaystyle \sum_{j\in \mathcal{A}}\{\sum_{w_{k}^{(j)}=i}(A_{ $\sigma$}^{-1}(x+\mathrm{f}(S_{k}^{(j)})), j^{*})+\displaystyle \sum_{w_{k}^{(j)}=i-1}-(A_{ $\sigma$}^{-1}(x+\mathrm{f}(w_{k}^{(j)}S_{k}^{(j)})), j^{*})\}
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Identify (x, i^{*})\in \mathbb{Z}^{2}\times\{1^{*}, 2^{*}\} with the positive oriented unit segment spanned by
the fundamental vector e_{j} translated by x

,
where \{i, j\}=\{1 ,

2 \} ,
that is,

(x, 1^{*}) :=\{x+te_{2}|0\leq t\leq 1\}, (x, 2^{*}) :=\{x+te_{1}|0\leq t\leq 1\}.

 x| x\downarrow x\leftrightarrow x\leftarrow
(x, 1^{*}) -(x, 1^{*}) (x, 2^{*}) -(x, 2^{*})

Figure 1. The segments (x, 1^{*}) , (x, 2^{*}) with orientation

The element of \mathcal{G}^{*} is also identified with a union of oriented unit segments with their

multiplicity.
Since  $\tau$ is primitive and Pisot, the incidence matrix  A_{ $\tau$} has a positive column eigen‐

vector u_{ $\tau$} and a positive row eigenvector v_{ $\tau$} corresponding to the maximum eigenvalue
 $\lambda$>1 by Perron‐Frobenius Theorem. The matrix A_{ $\sigma$} has the same eigenvalue  $\lambda$

,
and a

column eigenvector  u_{ $\sigma$} and a row eigenvector v_{ $\sigma$} of A_{ $\sigma$} corresponding to the eigenvalue  $\lambda$

are respectively given by  u_{ $\sigma$}=A_{ $\delta$}^{-1}u_{ $\tau$} and v_{ $\sigma$}=v_{ $\tau$}A_{ $\delta$} by A_{ $\sigma$}=A_{ $\delta$}^{-1}A_{ $\tau$}A_{ $\delta$} ; and the con‐

tractive eigenspaces P_{ $\tau$} of A_{ $\tau$} and P_{ $\sigma$} of A_{ $\sigma$} are given by P_{ $\tau$}=\{x\in \mathbb{R}^{2}|<x, t_{v_{ $\tau$}}>=0\}
and P_{ $\sigma$}=\{x\in \mathbb{R}^{2}|<x, t_{v_{ $\sigma$}}>=0\} ,

where <., \cdot > means an inner product. The

projection from \mathbb{R}^{2} to P_{ $\tau$} (resp. P_{ $\sigma$} ) along the expanding column eigenvector u_{ $\tau$} (resp.
u_{ $\sigma$}) is denoted by $\pi$_{ $\tau$} (resp. $\pi$_{ $\sigma$} ). Note u_{ $\sigma$} is positive since the matrix A_{ $\delta$}^{-1} is positive,
but it is possible for v_{ $\sigma$} not to be positive (see Figure 2).

Example 2.3. For the quadratic number x with the continued fraction ex‐

pansion x=[0, 4, \overline{4,2}] ,
the automorphism  $\sigma$ is given by  $\sigma$(1)= 1(1112),  $\sigma$(2)=

(2111)212. And it is conjugate to the substitution  $\tau$ given by  $\tau$(1)=
(1222)2,  $\tau$(2)= (1222)2 with the conjugacy  $\delta$ given by  $\delta$(1)=12^{-1},  $\delta$(2)= (21)2.
The direction of P_{ $\sigma$} is not the same as in the substitutive case (see Figure 2).

Let us introduce Rauzy fractals induced from  $\tau$ and  $\sigma$ by using tiling substitutions.

Proposition 2.4. The following limit sets exist in the sense of Hausdorff metric

(cf. [3, 6

 X_{ $\tau$}:=\displaystyle \lim_{n\rightarrow\infty}A_{ $\tau$}^{n}$\pi$_{ $\tau$}$\tau$^{*n}(\mathcal{U}) ,

X_{ $\tau$}^{(i)}:=\displaystyle \lim_{n\rightarrow\infty}A_{ $\tau$}^{n}$\pi$_{ $\tau$}$\tau$^{*n}(e_{i}, i^{*}) , i\in \mathcal{A},
X_{ $\sigma$}:=\displaystyle \lim_{n\rightarrow\infty}A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\sigma$^{*n}(\mathcal{U}) ,

X_{ $\sigma$}^{(i)}:=\displaystyle \lim_{n\rightarrow\infty}A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\sigma$^{*n}(e_{i}, i^{*}) , i\in \mathcal{A},
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Figure 2. (e_{1},1^{*})+(e_{2},2^{*}) and $\sigma$^{*}((e_{1},1^{*})+(e_{2},2)) for x=[0, 4, \overline{4,2}]

where \mathcal{U}=(e_{1},1^{*})+(e_{2},2^{*})\in \mathcal{G}^{*}

These sets X_{ $\tau$}, X_{ $\tau$}^{(i)} (resp. X_{ $\sigma$}, X_{ $\sigma$}^{(i)} ) are called Rauzy fractals induced from  $\tau$ (resp.
 $\sigma$) (see Figure 2).

Proof. The existence of limit sets for a substitution is known (see [3]), so we

consider it for the automorphism  $\sigma$ . Put

 C_{i} :=\displaystyle \{\sum_{k=1}^{l}(x_{k}, j_{k}^{*})\in \mathcal{G}^{*}|$\sigma$^{*}(0, i^{*})\cap$\sigma$^{*}(x_{k}, j_{k}^{*})\neq\emptyset for any  k\},
where \displaystyle \sum_{k=1}^{l}(x_{k}, i_{k}^{*})\cap\sum_{t=1}^{m}(y_{t}, j_{t}^{*})\neq\emptyset means there exist  k, t such that (x_{k}, i_{k}^{*})=
(y_{t}, j_{t}^{*}) . For  $\gamma$\in C_{i} , put

$\pi$_{ $\sigma$}$\sigma$^{*}(0, i^{*})_{ $\gamma$}:=$\pi$_{ $\sigma$}$\sigma$^{*}(0, i^{*})\backslash ($\pi$_{ $\sigma$}$\sigma$^{*}(0, i^{*})\cap$\pi$_{ $\sigma$}$\sigma$^{*}( $\gamma$)) .

Let positive numbers c_{1}, c_{2} be

c_{1}=\displaystyle \max d_{H}($\pi$_{ $\sigma$}(0, i^{*}), A_{ $\sigma$}$\pi$_{ $\sigma$}$\sigma$^{*}i\in \mathcal{A}(0, i^{*})) ,

c_{2}=\displaystyle \max\max\{d_{H}(A_{ $\sigma$}$\pi$_{ $\sigma$}$\sigma$^{*}(0, i^{*}), A_{ $\sigma$}$\pi$_{ $\sigma$}$\sigma$^{*}(0, i^{*})_{ $\gamma$})\}i\in \mathcal{A} $\gamma$\in C_{i} �

where d_{H} is the Hausdorff metric. From the fact that for any compact sets A, B, C, D,

d_{H}(A\displaystyle \cup B, C\cup D)\leq\max(d_{H}(A, C), d_{H}(B, D)) ,

and the triangle inequality,

d_{H}($\pi$_{ $\sigma$}$\sigma$^{*n}(\mathcal{U}), A_{ $\sigma$}$\pi$_{ $\sigma$}$\sigma$^{*n+1}(\mathcal{U}))\leq c_{1}+c_{2}.
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So

d_{H}(A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\sigma$^{*n}(\mathcal{U}), A_{ $\sigma$}^{n+1}$\pi$_{ $\sigma$}$\sigma$^{*n+1}(\mathcal{U}))\leq(c_{1}+c_{2})$\lambda$^{\prime n},
where $\lambda$' is the other eigenvalue given by $\lambda$'=\displaystyle \frac{1}{ $\lambda$}<1 . Therefore the sequence A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\sigma$^{*n}(\mathcal{U})
is a Cauchy sequence in the space of all compact subsets on P_{ $\sigma$} ,

and it is convergent.
The existence of the limit set X_{ $\sigma$}^{(i)} is proved by the same way. \square 

Remark 2. The substitution  $\tau$ is Pisot, unimodular, irreducible, primitive and

invertible, thus Rauzy fractals  X_{ $\tau$}, X_{ $\tau$}^{(i)}, i\in \mathcal{A} are intervals, and moreover, we have

X_{ $\tau$}^{(i)}=$\pi$_{ $\tau$}(e_{i}, i^{*})+h

for some h\in P_{ $\tau$} (see [4]).

The following proposition and theorem show the set equation of X_{ $\tau$}^{(i)}, i\in \mathcal{A} and

the relations between Rauzy fractals X_{ $\tau$}^{(i)} and X_{ $\sigma$}^{(i)} induced from  $\tau$ and  $\sigma$.

Proposition 2.5 ([3]). The following equations hold:

A_{ $\tau$}^{-1}X_{ $\tau$}^{(i)}=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}(-A_{ $\tau$}^{-1}$\pi$_{ $\tau$}\mathrm{f}(P_{k}^{(j)})+X_{ $\tau$}^{(j)}) , i\in \mathcal{A},
where  $\tau$(i) is written as  $\tau$(i)=w_{1}^{(i)}\cdots w_{k}^{(i)}\cdots w_{l(i)}^{(i)}=P_{k}^{(i)}w_{k}^{(i)}S_{k}^{(i)}.

The sets (-A_{ $\tau$}^{-1}$\pi$_{ $\tau$}\mathrm{f}(P_{k}^{(j)})+X_{ $\tau$}^{(j)}) , j\in \mathcal{A} such that w_{k}^{(j)}=i are pairwise disjoint

up to a set of Lebesgue measure 0.

By noticing that $\delta$^{-1}=$\sigma$_{1,a_{1}}0$\sigma$_{2,a_{2}}\circ\cdots\circ$\sigma$_{t_{N},a_{N}} is an invertible substitution, we

have the following theorem:

Theorem 2.6 ([6]).

X_{ $\sigma$}^{(i)}=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}(-$\pi$_{ $\sigma$}\mathrm{f}(P_{k}^{(j)})+A_{ $\delta$}^{-1}X_{ $\tau$}^{(j)}) , i\in \mathcal{A},
where $\delta$^{-1}(i) is written as $\delta$^{-1}(i)=w_{1}^{(i)}\cdots w_{k}^{(i)}\cdots w_{l(i)}^{(i)}=P_{k}^{(i)}w_{k}^{(i)}S_{k}^{(i)}.

The sets (-$\pi$_{ $\sigma$}\mathrm{f}(P_{k}^{(j)})+A_{ $\delta$}^{-1}X_{ $\tau$}^{(j)}) , j\in \mathcal{A} such that w_{k}^{(j)}=i are pairwise disjoint

up to a set of Lebesgue measure 0 . Moreover,

A_{ $\delta$}X_{ $\sigma$}^{(i)}=$\pi$_{ $\tau$}(($\delta$^{-1})^{*}(e_{i}, i^{*}))+h

for some h\in P_{ $\tau$} . Thus, X_{ $\sigma$}^{(i)}, X_{ $\sigma$} are intervals.

Proof. The idea of the proof is mentioned here (for details, see [6]). By  $\sigma$=

 $\delta$^{-1}\circ $\tau$\circ $\delta$ and according to properties of a tiling substitution (see [7]), we have

 $\sigma$^{*}=$\delta$^{*}\circ$\tau$^{*}\circ($\delta$^{-1})^{*},
A_{ $\delta$}^{-1}$\pi$_{ $\tau$}x=$\pi$_{ $\sigma$}A_{ $\delta$}^{-1}x for x\in \mathbb{R}^{2}.
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Therefore,

X_{ $\sigma$}^{(i)}=\displaystyle \lim_{n\rightarrow\infty}A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\sigma$^{*n}(e_{i}, i^{*})
=\displaystyle \lim_{n\rightarrow\infty}A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\delta$^{*}\circ$\tau$^{*n}\circ($\delta$^{-1})^{*}(e_{i}, i^{*})
=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}\lim_{n\rightarrow\infty}A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}$\delta$^{*}$\tau$^{*n}(e_{j}-A_{ $\delta$}\mathrm{f}(P_{k}^{(j)}), j^{*})
=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}\lim_{n\rightarrow\infty}A_{ $\sigma$}^{n}$\pi$_{ $\sigma$}A_{ $\delta$}^{-1}$\tau$^{*n}(e_{j}-A_{ $\delta$}\mathrm{f}(P_{k}^{(j)}), j^{*})
=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}\lim_{n\rightarrow\infty}A_{ $\delta$}^{-1}A_{ $\tau$}^{n}$\pi$_{ $\tau$}$\tau$^{*n}(e_{j}-A_{ $\delta$}\mathrm{f}(P_{k}^{(j)}), j^{*})
=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}(-$\pi$_{ $\sigma$}\mathrm{f}(P_{k}^{(j)})+A_{ $\delta$}^{-1}X_{ $\tau$}^{(j)}) ,

for the equality of the fourth line, see [6].
Disjointness and the property X_{ $\sigma$} and X_{ $\sigma$}^{(i)} are intervals derive from Remark 3 as

follows.

A_{ $\delta$}X_{ $\sigma$}^{(i)}=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}(-$\pi$_{ $\tau$}A_{ $\delta$}\mathrm{f}(P_{k}^{(j)})+X_{ $\tau$}^{(j)})
=\displaystyle \bigcup_{j\in \mathcal{A}}\bigcup_{w_{k}^{(j)}=i}$\pi$_{ $\tau$}(-A_{ $\delta$}\mathrm{f}(P_{k}^{(j)})+e_{j}, j^{*})+h
=$\pi$_{ $\tau$}($\delta$^{-1})^{*}(e_{i}, i^{*})+h

for some h\in P_{ $\tau$} . Recall that if a substitution  $\beta$ is invertible, then  $\beta$^{*}(0, i^{*}) , i\in \mathcal{A} are

connected (see [8]). Since $\delta$^{-1} is invertible substitution, the remaining part is proved. \square 

Remark 3. Theorem 2.6 shows the role played by $\delta$^{-1} : the tiling substitution

($\delta$^{-1})^{*} is used to get Rauzy fractals X_{ $\sigma$}^{(i)}(i\in \mathcal{A}) from X_{ $\tau$}^{(j)}(j\in \mathcal{A}) . On the other

hand, in the paper [6],  $\delta$ is used to get the stepped surface of  P_{ $\sigma$} ,
which is a discrete

approximation of P_{ $\sigma$} ,
from the one of P_{ $\tau$}.

Definition 2.7. The domain exchange transformations T_{ $\tau$}, T_{ $\sigma$} on X_{ $\tau$}, X_{ $\sigma$} for a

quadratic irrational number x\in X ,
are defined by

T_{ $\tau$}:X_{ $\tau$}\rightarrow X_{ $\tau$}

T_{ $\tau$}(x)=x-$\pi$_{ $\tau$}\mathrm{f}(i) if x\in X_{ $\tau$}^{(i)},
and

T_{ $\sigma$}:X_{ $\sigma$}\rightarrow X_{ $\sigma$}

T_{ $\sigma$}(x)=x-$\pi$_{ $\sigma$}\mathrm{f}(\mathrm{i}) if x\in X_{ $\sigma$}^{(i)}.
The domain exchange transformations T_{ $\tau$}, T_{ $\sigma$} are well‐defined from the definitions

of X_{ $\tau$} and X_{ $\sigma$} (see Figure 3) (cf. [3, 6]).

Definition 2.8. Let (X, T,  $\mu$) be a measure‐theoretical dynamical system,  $\sigma$ an

arbitrary substitution over the alphabet \mathcal{A} such that

 $\sigma$(i)=w_{1}w_{2} . . .

w_{l(i)},
(i) (i) (i)
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X_{ $\sigma$}^{(1)} X_{ $\sigma$}^{(2)}
\backslash 

\backslash \backslash 
\backslash \backslash 

\backslash \backslash 
\backslash \backslash 

\backslash \backslash 
\backslash \backslash 

\backslash \backslash 
\backslash \backslash 

\backslash \backslash 
\backslash \backslash 

\backslash \backslash 

\Downarrow \mathrm{t}\mathrm{h}\mathrm{e} domain exchange
transformation T_{ $\sigma$}

Figure 3. The domain exchange transformation T_{ $\sigma$} for x=[0, 4, \overline{4,2}]

\{X^{(i)}|i\in \mathcal{A}\} a measurable partition of X
,

and \{A^{(i)}|i\in \mathcal{A}\} a measurable partition of

a subset A of X . We say that the transformation T has  $\sigma$‐structure with respect to the

pair of partitions \{X(i)\}, \{A^{(i)}\} if the following conditions hold up to a set of measure

0 :

T^{k}A^{(i)}\subset X^{(w_{k+1}^{(i)}}) for all i\in \mathcal{A}, k=0 , 1, \cdots, l^{(i)}-1

 T^{k}A^{(i)}\cap A=\emptyset for all  i\in \mathcal{A}, 0<k<l^{(i)}

T^{l^{(i)}}A^{(i)}\subset A for all i\in \mathcal{A}

X=\displaystyle \bigcup_{i\in \mathcal{A}}\bigcup_{0\leq k\leq l-1}(i)T^{k}A^{(i)} (non—overlapping)

From Proposition 2.5 and Theorem 2.6, we have the following theorem.

Theorem 2.9. For a quadratic irrational number x \in X ,
the measure‐theoretical

dynamical system (X_{ $\sigma$}, T_{ $\sigma$},  $\mu$) with Lebesgue measure  $\mu$ has  $\delta$^{-1} ‐structure with respect
to the pair of partitions \{X_{ $\sigma$}^{(i)}|i\in \mathcal{A}\}, \{A_{ $\delta$}^{-1}X_{ $\tau$}^{(i)}|i\in \mathcal{A}\} . Moreover, (X_{ $\sigma$}, T_{ $\sigma$},  $\mu$) has

$\delta$^{-1}$\tau$^{n} ‐structure with respect to the pair of partitions \{X_{ $\sigma$}^{(i)}|i\in \mathcal{A}\}, \{A_{ $\delta$}^{-1}A_{ $\tau$}^{n}X_{ $\tau$}^{(i)}|i\in \mathcal{A}\}
for any positive integer n.

Recall that the sequence C(x)=(c_{1}(x), c_{2}(x), \cdots, c_{n}(x), \cdots) is a fixed point of  $\sigma$,

thus it is given by \displaystyle \lim_{n\rightarrow\infty}$\delta$^{-1}$\tau$^{n}(1) with the product topology. We have  0\in$\pi$_{ $\tau$}(\mathcal{U})\subset
$\pi$_{ $\tau$}$\tau$^{*}(e_{1},1^{*}) and 0\in X_{ $\tau$}^{(1)} ,

since  $\tau$(1)= $\tau$(2)=1 . From the theorem we obtain the

following corollary:

Corollary 2.10. For a quadratic irrational number x,

 T_{ $\sigma$}^{(k-1)}(0)\in X_{ $\sigma$}^{(c_{k}(x))}, k=1, 2, \cdots

Since  X_{ $\sigma$}, X_{ $\sigma$}^{(i)}, i\in \mathcal{A} are intervals by Theorem 2.6, the domain exchange trans‐

formation T_{ $\sigma$} is just a two interval exchange transformation; and the orbit of the origin

point by T_{ $\sigma$} gives the characteristic sequence C(x) .
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There are algorithms corresponding to the continued fraction algorithm in the

higher dimensional case (cf. [10]), and it is expected for the strategy developed in

the paper to work well. We consider automorphisms of rank 2 in the paper, and some of

results may seem obvious. But as Rauzy fractals have fractal boundaries in the higher
dimensional case, the discussion is more complicated in general, and the generalization
of the strategy should be important.

Acknowledgement: I would like to express my deep gratitude to the referee for
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