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On the divisibility of class numbers of imaginary
quadratic fields whose discriminant has only two odd

prime factors

By

Akiko ITO*

Abstract

For a given positive integer n
,
there exist infinitely many imaginary quadratic fields whose

class number is divisible by n . In this paper, we show that there exist infinitely many imaginary
quadratic fields whose class number is divisible by 2n and whose discriminant has only two

odd prime divisors. This is an analogue of the result of D. Byeon and S. Lee [3].

§1. Introduction

For a given positive integer n
,

there are infinitely many imaginary quadratic fields

whose class number is divisible by n . Such results are obtained by T. Nagell [8],
N. C. Ankeny and S. Chowla [1], R. A. Mollin [7], etc. Similarly, for a given posi‐
tive integer n

,
there exist infinitely many real quadratic fields whose class number is

divisible by n . Y. Yamamoto [11], P. J. Weinberger [10], etc. obtained such results.

Their proofs were given by constructing such quadratic fields explicitly. We begin with

a result of Ankeny and Chowla.

Theorem 1.1 (Ankeny and Chowla, [1]). Let n be a positive even integer and

d be a square‐fr ee integer of the form 3^{n}-x^{2} ,
where x is an even integer such that

0<x<(2\cdot 3^{n-1})^{1/2} . Then

n|h(-d) ,

where h(d) denotes the class number of the quadratic field \mathbb{Q}(\sqrt{-d}) .
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Using this theorem, they proved that there are infinitely many imaginary quadratic
fields whose class number is divisible by a given positive integer. Mollin [7] gave a gen‐

eralization of Theorem 1.1. He studied the divisibility of the class numbers of imaginary

quadratic fields \mathbb{Q}(\sqrt{x^{2}-m^{n}}) and \mathbb{Q}(\sqrt{x^{2}-4m^{n}}) ,
where m and n are integers greater

than 1 and x is a positive integer. As a refinement of his result, K. Soundararajan

proved the following:

Theorem 1.2 (Soundararajan, [9]). Let n be an integer greater than 2. Suppose
that d\geq 63 is a square‐free integer such that t^{2}d=m^{n}-x^{2}

,
where t, m and x are positive

integers with \mathrm{g}\mathrm{c}\mathrm{d}(m, 2x)=1 and with m^{n}<(d+1)^{2} . Then,

n|h(-d) .

Using Theorem 1.2, he obtained the quantitative estimate of the number of imagi‐

nary quadratic fields whose class number is divisible by n . Many other results on the di‐

visibility of class numbers of imaginary quadratic fields \mathbb{Q}(\sqrt{x^{2}-m^{n}}) and \mathbb{Q}(\sqrt{x^{2}-4m^{n}})
are also known (cf. [4], [5], [6], [11], etc In this paper, we consider whether there

are infinitely many imaginary quadratic fields \mathbb{Q}(\sqrt{x^{2}-m^{n}}) and \mathbb{Q}(\sqrt{x^{2}-4m^{n}}) whose

class number is divisible by n and whose discriminant has only two odd prime divisors.

D. Byeon and S. Lee proved the following:

Theorem 1.3 (Byeon and Lee, [3]). Let n be an integer greater than 1. Then,
there are infinitely many imaginary quadratic fields whose class number is divisible by
2n and whose discriminant has only two odd prime divisors.

This theorem was proved by showing the following proposition.

Proposition 1.4. Let n be an integer greater than 1. Then,

]\{(p, q)|p, q : odd prime such that p\not\equiv q mod4 and 2n|h(-pq) . \}=\infty.
More precisely, in the proof of Theorem 1.3, they construct an infinite family of

imaginary quadratic fields satisfying the conditions from the fields \mathbb{Q}(\sqrt{x^{2}-4m^{2n}}) ,

where x is a positive odd integer and m is an integer greater than 1 such that \mathrm{g}\mathrm{c}\mathrm{d}(m, x)=
1 and 4m^{2n}>x^{2} . In this case, we have 4m^{2n}-x^{2}=pq\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4 . Then, p and q are

odd prime numbers such that p\not\equiv q mod4. The case where p\equiv q mod4 is not treated.

Therefore, we consider this case and obtain the following:

Theorem 1.5. Let n be an integer greater than 1. Then,

]\{(p, q)|p, q : odd prime such that p\equiv q mod4 and 2n|h(-pq) . \}=\infty.
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In fact, in Theorem 1.5, we prove that there exist infinitely many imaginary

quadratic fields \mathbb{Q}(\sqrt{x^{2}-m^{2n}}) satisfying the conditions, where x is a positive even

integer and m is an odd integer greater than 1 such that \mathrm{g}\mathrm{c}\mathrm{d}(m, x)=1 and m^{2n}>x^{2}.

In this case, we have m^{2n}-x^{2}=pq\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4 . Then, p and q are odd prime numbers

such that p\equiv q mod4.

This paper is organized as follows. In Section 2, we state the proof of Theorem 1.5.

Concerning Proposition 1.4 and Theorem 1.5, we also show that if \mathrm{g}\mathrm{c}\mathrm{d}(n, 3)=1 ,
there

exist infinitely many imaginary quadratic fields \mathbb{Q}(\sqrt{x^{2}-m^{2n}}) whose class number is

divisible by 2n and whose discriminant has only two odd prime divisors p and q such

that p\not\equiv q mod4, where x is a positive odd integer and m is a positive even integer
such that \mathrm{g}\mathrm{c}\mathrm{d}(m, x)=1 and m^{2n}>x^{2} . We state this result (Theorem 3.1) in Section

3.1 and prove this in Section 3.2. The method of the proofs of Theorems 1.5 and 3.1

are based on the one in [3]. We use the result of J. Brüdern, K. Kawada and T. D.

Wooley [2] on the number of integer values of the polynomial 2 $\Phi$(x) which are the sum

of two primes, where  $\Phi$(x)\in \mathbb{Z}[x] . We also state an application of Theorem 3.1 related

to large cyclic 2‐class groups in Section 3.3.

§2. Proof of Theorem 1.5

In this section, we state the proof of Theorem 1.5.

§2.1. Preliminary

To show Theorem 1.5, we use the result of Brüdern, Kawada and Wooley that

almost all integer values of the polynomial 2 $\Phi$(x)\in \mathbb{Z}[x] are the sum of two primes.

Theorem 2.1 (Brüdern, Kawada and Wooley, [2]). Let  $\Phi$(x)\in \mathbb{Z}[x] be a poly‐
nomial of degree k with positive leading coefficient and let S_{k}(N,  $\Phi$) be the number of
positive integers n with 1\leq n\leq N , for which the equation 2 $\Phi$(n)=p+q has no solution

in primes p and q . Then, there exists an absolute constant c>0 such that

S_{k}(N,  $\Phi$)\ll $\Phi$ N^{1-c/k}

Remark. In Theorem 2.1, S_{k}(N,  $\Phi$)\ll $\Phi$ N^{1-c/k} means that there is a constant

C which depends on  $\Phi$ and satisfies  S_{k}(N,  $\Phi$)<CN^{1-c/k} for sufficiently large N.

§2.2. Proof of Theorem 1.5

First, we consider the prime divisors of the discriminants of imaginary quadratic
fields. We use Theorem 2.1. Let n be an integer greater than 1. Define

 $\Phi$(x):=(4x+1)^{n}\in \mathbb{Z}[x].
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From Theorem 2.1, there are infinitely many positive integers m'
,
for which the equation

(2.1) 2 $\Phi$(m')=2(4m'+1)^{n}=p+q

has a solution in odd primes p and q . Since 2 $\Phi$(m')=2(4m'+1)^{n}\equiv 2\mathrm{m}\mathrm{o}\mathrm{d} 4 ,
the

prime numbers p and q satisfy one of the following conditions: (i) p\equiv q\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4 , (ii)
p\equiv q\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4 . We can assume p>q without loss of generality. For m', p and q

satisfying the equation (2.1), we put m:=4m'+1 and x:=\displaystyle \frac{p-q}{2} . From

(2.2) m^{2n}-x^{2}=(\displaystyle \frac{p+q}{2})^{2}-(\frac{p-q}{2})^{2}=pq,
we see that there are infinitely many distinct positive square‐free integers of the form

m^{2n}-x^{2} that has only two odd prime divisors, where m is an odd integer greater than

1 and x is a positive even integer.

Secondly, we show 2n|h(-pq) . We can write

(m^{2n})=(x^{2}+pq)=(x+\sqrt{-pq})(x-\sqrt{-pq})

in \mathbb{Q}(\sqrt{-pq}) . We easily see that ideals (x+\sqrt{-pq}) and (x-\sqrt{-pq}) are coprime. Then,

(2.3) (x+\sqrt{-pq})=\mathcal{I}^{2n}

for some ideal \mathcal{I} of \mathcal{O}_{\mathbb{Q}(\sqrt{-pq})} . Assume that the ideal class containing \mathcal{I} has order r

less than 2n . From r|2n ,
we have r\leq n . Since -pq\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4 ,

we find \mathcal{O}_{\mathbb{Q}(\sqrt{-pq})}=
\mathbb{Z}[\sqrt{-pq}] . Then, we can write

\mathcal{I}^{r}=(u+v\sqrt{-pq})

for some integers u and v . Note that u and v are not zero. In fact, we see

(x+\sqrt{-pq})=\mathcal{I}^{2n}=(\mathcal{I}^{r})^{\frac{2n}{r}}=(u+v\sqrt{-pq})^{\frac{2n}{r}}

If u=0 or v=0 ,
the above equation does not hold. Since

\mathbb{Q}(\sqrt{-pq})\neq \mathbb{Q}(\sqrt{-1}) , \mathbb{Q}(\sqrt{-3}) ,

we have \mathcal{O}_{\mathbb{Q}(\sqrt{-pq})}^{\times}=\{\pm 1\} . Then,

x+\sqrt{-pq}=\pm(u+v\sqrt{-pq})^{\frac{2n}{r}}

Taking the norm of both sides of the equation (2.3), we have

m^{2n}=x^{2}+pq=N(\mathcal{I}^{r})^{\frac{2n}{r}}=(u^{2}+v^{2}pq)^{\frac{2n}{r}}
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Since u^{2}\geq 1, v^{2}\geq 1 and n/r\geq 1 hold, we see

m^{2n}=(u^{2}+v^{2}pq)^{\frac{2n}{r}}\geq(1+pq)^{2}

Then,

(2.4) m^{n}-1\geq pq.

From the equation (2.2), we have

(m^{n}+x)(m^{n}-x)=pq.

Since

m^{n}+x=\displaystyle \frac{p+q}{2}+\frac{p-q}{2}=p,
we find m^{n}+x=p and m^{n}-x=q . On the other hand, from the equation (2.4),

m^{n}+x>m^{n}-1\geq pq.

This is a contradiction. Then,
r=2n.

The proof of Theorem 1.5 is completed.

§3. Another proof of Proposition 1.4

In this section, we state another proof of Proposition 1.4. We construct another

infinite family of imaginary quadratic fields satisfying the condition. First, we state this

construction (Theorem 3.1) in Section 3.1. Secondly, we prove Theorem 3.1 in Section

3.2. Finally, we state an application of this theorem in Section 3.3.

§3.1. Result

Concerning Theorem 1.5, we obtain the following:

Theorem 3.1. Let n be an integer greater than 1 such that \mathrm{g}\mathrm{c}\mathrm{d}(n, 3)=1 . Then,
there exist infinitely many imaginary quadratic fields \mathbb{Q}(\sqrt{x^{2}-m^{2n}}) whose class number

is divisible by 2n and whose discriminant has only two odd prime divisors p and q such

that p\not\equiv q mod4, where x is a positive odd integer and m is a positive even integer such

that \mathrm{g}\mathrm{c}\mathrm{d}(m, x)=1 and m^{2n}>x^{2}.

This is another proof of Proposition 1.4 for the case where \mathrm{g}\mathrm{c}\mathrm{d}(n, 3)=1.
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§3.2. Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Although the method of the proof is based

on the one in Proposition 1.4 and Theorem 1.5, we need several changes.
Let n be an integer greater than 1 such that \mathrm{g}\mathrm{c}\mathrm{d}(n, 3)=1 . Define

 $\Phi$(x):=(4x+2)^{n}\in \mathbb{Z}[x].

From Theorem 2.1, there are infinitely many positive integers m'
,
for which the equation

(3.1) 2 $\Phi$(m')=2(4m'+2)^{n}=p+q

has a solution in odd primes p and q . Since 2 $\Phi$(m')=2(4m'+2)^{n}\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 4 ,
the prime

numbers p and q satisfy one of the following conditions: (i) p\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4, q\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4,

(ii) p\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4, q\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4 . We can assume p>q without loss of generality. For m',

p and q satisfying the equation (3.1), we put m:=4m'+2 and x:=\displaystyle \frac{p-q}{2} . From

(3.2) m^{2n}-x^{2}=(\displaystyle \frac{p+q}{2})^{2}-(\frac{p-q}{2})^{2}=pq,
we see that there are infinitely many distinct positive square‐free integers of the form

m^{2n}-x^{2} that has only two odd prime divisors, where m is a positive even integer and

x is a positive odd integer. Next, we show 2n|h(-pq) . We can write

(m^{2n})=(x^{2}+pq)=(x+\sqrt{-pq})(x-\sqrt{-pq})

in \mathbb{Q}(\sqrt{-pq}) . We easily see that ideals (x+\sqrt{-pq}) and (x-\sqrt{-pq}) are coprime. Then,

(3.3) (x+\sqrt{-pq})=\mathcal{I}^{2n}

for some ideal \mathcal{I} of \mathcal{O}_{\mathbb{Q}(\sqrt{-pq})} . Assume that the ideal class containing \mathcal{I} has order r

less than 2n . From r|2n ,
we have r\leq n . Since -pq\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} 4 ,

we find \mathcal{O}_{\mathbb{Q}(\sqrt{-pq})}=

\displaystyle \mathbb{Z}[\frac{1+\sqrt{-pq}}{2}] . Then, we can write

\displaystyle \mathcal{I}^{r}=(\frac{u+v\sqrt{-pq}}{2})
for some non‐zero integers u and v with u\equiv v mod2. Since

\mathbb{Q}(\sqrt{-pq})\neq \mathbb{Q}(\sqrt{-1}) , \mathbb{Q}(\sqrt{-3}) ,

we have \mathcal{O}_{\mathbb{Q}(\sqrt{-pq})}^{\times}=\{\pm 1\} . Then,

x+\displaystyle \sqrt{-pq}=\pm(\frac{u+v\sqrt{-pq}}{2})^{\frac{2n}{r}}
To check the parity of u and v

,
we need the following lemma:
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Lemma 3.2 (Kishi, [6, p. 190] and Ito, [4, pp. 384‐385]). (1) Let d be a positive

square‐fr ee integer such that d\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 8 . For any positive integer s,

(\displaystyle \frac{u_{1}+v_{1}\sqrt{-d}}{2})^{s}\in \mathbb{Z}[\sqrt{-d}]
if and only if

3|s,

where u_{1} and v_{1} are odd integers.

(2) Let d be a positive square‐fr ee integer such that d\equiv 7\mathrm{m}\mathrm{o}\mathrm{d} 8 . For any positive integer

s,

(\displaystyle \frac{u_{1}+v_{1}\sqrt{-d}}{2})^{s}\not\in \mathbb{Z}[\sqrt{-d}],
where u_{1} and v_{1} are odd integers.

By Lemma 3.2 and the assumption of Theorem 3.1, we have u\equiv v\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 2 . We

write u=2u' and v=2v' for some integers u' and v' . Taking the norm of both sides of

the equation (3.3), we have

m^{2n}=x^{2}+pq=N(\mathcal{I}^{r})^{\frac{2n}{r}}=(u^{\prime 2}+v^{\prime 2}pq)^{\frac{2n}{r}}

Since u^{\prime 2}\geq 1, v^{\prime 2}\geq 1 and n/r\geq 1 hold, we see

m^{2n}=(u^{\prime 2}+v^{\prime 2}pq)^{\frac{2n}{r}}\geq(1+pq)^{2}

Then,

(3.4) m^{n}-1\geq pq.

From the equation (3.2), we have

(m^{n}+x)(m^{n}-x)=pq.

Since

m^{n}+x=\displaystyle \frac{p+q}{2}+\frac{p-q}{2}=p,
we find m^{n}+x=p and m^{n}-x=q . On the other hand, from the equation (3.4),

m^{n}+x>m^{n}-1\geq pq.

This is a contradiction. Then,
r=2n.

The proof of Theorem 3.1 is completed.
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§3.3. Application of Theorem 3.1

In this section, we state an application of Theorem 3.1. As a classical problem, the

question whether there exist quadratic fields with arbitrarily large cyclic 2‐class group

is known. Combining Proposition 1.4 or Theorem 3.1 and genus theory of Gauss, we

have the following:

Corollary 3.3. Let t be a positive integer. Then, there are infinitely many imag‐

inary quadratic fields whose 2‐class group is a cyclic group of order divisible by 2.

We obtain this corollary by applying Proposition 1.4 or Theorem 3.1 to the case

where n=2^{t} . In [3], an infinite family of imaginary quadratic fields satisfying the

above condition is constructed from the fields \mathbb{Q}(\sqrt{x^{2}-4m^{2n}}) . On the other hand, we

construct such an infinite family from the fields \mathbb{Q}(\sqrt{x^{2}-m^{2n}}) . These facts imply that

for any given positive integer t there are infinitely many imaginary quadratic fields of

both forms \mathbb{Q}(\sqrt{x^{2}-4m^{2n}}) and \mathbb{Q}(\sqrt{x^{2}-m^{2n}}) whose 2‐class group is a cyclic group of

order divisible by 2.
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