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The Takagi function and its properties

By

Jeffrey C. LAGARIAS *

Abstract

The Takagi function  $\tau$(x) is a continuous non‐differentiable function introduced by Teiji
Takagi in 1903. It has appeared in a surprising number of different mathematical contexts,

including mathematical analysis, probability theory and number theory. This paper surveys

properties of this function.

§1. Introduction

The Takagi function  $\tau$(x) was introduced by T.Takagi [81] in 1903 as an example
of an everywhere non‐differentiable function on [0 ,

1 ] . It can be defined on the unit

interval x\in[0 ,
1 ] by

(1.1)  $\tau$(x):=\displaystyle \sum_{n=0}^{\infty}\frac{1}{2^{n}}\langle\langle 2^{n}x\rangle\rangle
where \langle\langle x\rangle\rangle is the distance from  x to the nearest integer. Takagi defined it using binary

expansions, and showed that his definition was consistent for numbers having two binary

expansions (dyadic rationals). The function is pictured in Figure 1.

An immediate generalization of the Takagi function is to set, for integer r\geq 2,

(1.2) $\tau$_{r}(x):=\displaystyle \sum_{n=0}^{\infty}\frac{1}{r^{n}}\langle\langle r^{n}x\rangle\rangle.
In 1930 van der Waerden [85] studied the function $\tau$_{10} and proved its non‐differentiability.
In 1933 Hildebrandt [40] simplified his construction to rediscover the Takagi function.

Another rediscovery of the Takagi function was made by of de Rham [73] in 1957.
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Figure 1. Graph of the Takagi function  $\tau$(x) .

The Takagi function has appeared in a number of different mathematical contexts,

including analysis, probability theory and number theory. It is a prescient example of a

self‐similar construction. An important feature of this function is that it satisfies many

self‐similar functional equations, some of which are related to the dilation equations that

appear in wavelet theory. It serves as a kind of exactly solvable �toy model� representing
a solution to a discrete version of the Laplacian operator. It serves as an interesting
test case for determining various measures of irregularity of behavior of a function. It

also turns out to be related to a number of interesting singular functions.

This object of this paper is to survey properties of Takagi function across all these

fields. In Section 2 we present some history of work on the Takagi function. In Sections 3

and 4 we review basic analytic properties of the Takagi function. In Section 5 we discuss

its connection to dynamical systems. In Section 6 we treat its Fourier transform, and

in Section 7 we describe its relation with Bernoulli convolutions in probability theory.
Section 8 summarizes analytic results quantifying the local oscillatory behavior of the

Takagi function at different scales, which imply its non‐differentiabilty. Sections 9 and

10 present results related to number theory, connecting it with binary digit sums and

with the Riemann hypothesis, respectively. In Section 11 we describe properties of the

graph of the Takagi function. In Sections 12‐ 14 we present results concerning the

level sets of the Takagi function. These include results recently obtained jointly with

Z. Maddock ([56], [57]). Many of the results in these sections are based on properties

specific to the Takagi function. They exhibit its value as a �toy model�, where exact

calculations are possible.
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In this paper most results are given without proof. However we have included

proofs of several results not conveniently available, and some of these may not have

been noted before, e.g. Theorem 6.2 and Theorem 11.4. We also draw the reader�s

attention to another recent survey of results on the Takagi function given by Allaart

and Kawamura [6], which is somewhat complementary to this one.

§2. History

The Takagi function was introduced during a period when the general structure of

non‐differentiable functions was being actively explored. This started from Weierstrass�s

discovery of an everywhere non‐differentiable function, which he lectured on as early
as 1861, but which was first published (and attributed to Weierstrass) by Du Bois‐

Reymond [15] in 1875. Weierstrass�s example has no finite or infinite derivative at any

point. The example of Takagi is much simpler, and has no point with a finite derivative,
but it does have some points with a well‐defined infinite derivative, see Theorem 8.6

below. Pinkus [70] gives additional history on this problem.

In 1918 Knopp [50] studied many variants of non‐differentiable functions and re‐

viewed earlier work, including that of Faber [28], [29] and Hardy [36], among others. He

considered functions of the general form

(2.1) F(x) :=\displaystyle \sum_{n=0}^{\infty}a^{n} $\phi$(b^{n}x) ,

where  $\phi$(x) is a given periodic continuous function of period one, for real numbers

0<a<1 and b>1 . This general form includes the Takagi function as well as

functions in the Weierstrass non‐differentiable function family

W_{a,b}(x):=\displaystyle \sum_{n=0}^{\infty}a^{n}\cos( $\pi$ b^{n}x) .

Weierstrass showed this function has no finite or infinite derivative when 0<a<1 and

b is an odd integer with ab>1+\displaystyle \frac{3 $\pi$}{2} . In 1916 Hardy [36, Theorem 1.31] proved that the

Weierstrass function has no finite derivative for real a, b satisfying 0<a<1 and ab\geq 1.

For the special case where  $\phi$(x)=\langle\langle x\rangle\rangle ,
relevant to the Takagi function, Knopp proved

([50, p. 18]) the non‐differentiability for real  0<a<1 and b being an even integer
with ab>4 . The Takagi function has ab=1

,
so is not covered by Knopp�s result;

however a later result of Behrend [13, Theorem III] in 1948, applies to  $\phi$(x)=\langle\langle x\rangle\rangle and

establishes no finite derivative for integer  b and 0<a<1 , having ab\geq 1 ,
with some

specific exceptions.
In the 1930 �s there were significant developments in probability theory, including its

formalization in terms of measure theory. The expression of Lebesgue measure [0 ,
1 ] in



156 Jeffrey C. Lagarias

terms of the induced measure on the binary coefficients, reveals that these measures are

given by independent coin flips (Bernoulli trials). This measure density can be expressed
as an infinite product (Bernoulli convolution), see Kac [45] for a nice treatment. In 1934,
Lominicki and Ulam [59] studied related measures where biased coin flips are allowed.

These measures are generally singular with respect to Lebesgue measure. In 1984 Hata

and Yamaguti [38] noted a relation of the Takagi function to this family of measures,

stated below in Theorem 7.2.

There has been much further work studying properties of Bernoulli convolutions,
as well as more general infinite convolutions, and their associated measures. Additional

motivation comes from work of Jessen and Wintner [44] concerning the Riemann zeta

function, which is described at length in 1938 lecture notes of Wintner [86]. Peres,

Schlag and Solomyak [69] give a recent progress report on Bernoulli convolutions, and

Hilberdink [39] surveys connections of Bernoulli convolutions with analytic number the‐

ory.

In the 1950 �s Georges de Rham ([71], [72], [73]) considered self‐similar constructions

of geometric objects, again constructing a function equivalent to the Takagi function. In

this context Kahane [46] noted an important property of the Takagi function. Similar

constructions appear in the theory of splines, of functions iteratively constructed using
control points.

The Takagi function appeared in number theory in connection with the summatory
functions of various arithmetic functions associated to binary digits. The analysis of such

sums began with Mirsky [66] in 1949, but the connection with the Takagi function was

first observed by Trollope [83] in 1968. It was further explained in a very influential paper

of Delange [26] in 1975. A reformulation of the theory in terms of Mellin transforms

was given by Flajolet et al [31]. These results are discussed in Section 8.

The Takagi function can also be viewed in terms of a dynamical system, involving
iterations of the tent map. This viewpoint was taken in 1984 by Hata and Yamaguti

[38]. Here the Takagi function can be seen as a kind of fractal. For further information

on the fractal interpretation see Yamaguti, Hata and Kigami [90].
In the 1990 �s the construction of compactly‐supported wavelets led to the study

of dilation equations, which are functional equations which linearly relate functions

at two (or more) different scales, see Daubechies [22]. Basic results on the solution

of such equations appear in Daubechies and the author [23], [24]. These functions

can be described in terms of infinite products, which are generalizations of Bernoulli

convolutions (see [25]). The Takagi function appears in this general context because it

satisfies a non‐homogenous dilation equation, driven by an auxiliary function, which is

stated in Theorem 4.1. Related connections with de Rham�s functions were observed

by Berg and Krüppel [12] in 2000 and by Krüppel [55] in 2009.
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The Takagi function has appeared in additional contexts. In 1995 Frankl, Mat‐

sumoto, Rusza and Tokushige [32] gave a combinatorial application. For a family \mathcal{F} of

k‐element sets of the N‐element set [N]:=\{1, 2, N\} and for any \ell<k the shadow

\triangle_{l}(\mathcal{F}) of \mathcal{F} on P‐element sets is the set of all P‐element sets that are contained in some

set in \mathcal{F} . The Kruskal‐Katona theorem asserts that the minimal size of P‐shadows of

size m families \mathcal{F} of k‐element sets is attained by choosing the sets of \mathcal{F} as the first

m elements in the k‐element subsets of [N] ordered in the co‐lexicographic order. The

Kruskal‐Katona function gives this number, namely

K_{l}^{k}(m) :=\displaystyle \min{ \#\triangle\ell(\mathcal{F}) : \mathcal{F} consists of \mathrm{k}‐element sets, |\mathcal{F}|=m }.

This number is independent of the value of N
, requiring only that N be sufficiently large

that such families exist, i.e. that \left(\begin{array}{l}
N\\
k
\end{array}\right)\geq m . The shadow function S(x) is a normalized

version of the Kruskal‐Katona function, taking \ell=k-1
,

which is given by

S_{k}(x) :=\displaystyle \frac{k}{\left(\begin{array}{l}
2k-1\\
k
\end{array}\right)}K_{k-1}^{k}(\lfloor\left(2k & -1k\right)x\displaystyle \rfloor) , 0\leq x\leq 1.
Theorem 4 of [32] states that as  k\rightarrow\infty the shadow functions  S(x) uniformly converge

to the Takagi function  $\tau$(x) . The Takagi function also appears in models of diffusion‐

reaction processes ([35]) and in basins of attraction of dynamical systems ([87]).

§3. Basic Properties: Binary Expansions

Takagi�s definition of his function was in terms of binary expansions, which we write

(3.1)  x=\displaystyle \sum_{j=1}^{\infty}\frac{b_{j}}{2^{j}}=0.b_{1}b_{2}b_{3}\cdots ,
each  b_{j}\in\{0 ,

1 \}.

The binary expansion of x is unique except for dyadic rationals x=\displaystyle \frac{k}{2^{n}} ,
which have two

possible expansions. For 0\leq x\leq 1 the distance to the nearest integer function \langle\langle x\rangle\rangle is

(3.2) \langle\langle x\rangle\rangle :=\left\{\begin{array}{l}
x \mathrm{i}\mathrm{f}0 \leq x<\frac{1}{2}, \mathrm{i}.\mathrm{e}. b_{1}=0\\
1-x \mathrm{i}\mathrm{f} \frac{1}{2}\leq x\leq 1, \mathrm{i}.\mathrm{e}. b_{1}=1.
\end{array}\right.
For n\geq 0 ,

we have

(3.3) \langle\langle 2^{n}x\rangle\rangle=\left\{\begin{array}{l}
0. b_{n+1}b_{n+2}b_{n+3}\ldots \mathrm{i}\mathrm{f} b_{n+1}=0\\
0. \overline{b}_{n+1}\overline{b}_{n+2}\overline{b}_{n+3}\ldots \mathrm{i}\mathrm{f} b_{n+1}=1,
\end{array}\right.
where we use the bar‐notation

(3.4) \overline{b}=1-b
,

for b=0 or 1,

to mean complementing a bit.
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Definition 3.1. Let x\in[0 ,
1 ] have binary expansion x=\displaystyle \sum_{j=1}^{\infty}\frac{b_{j}}{2^{j}}=0.b_{1}b_{2}b_{3}\ldots,

with each b_{j}\in\{0 ,
1 \} . For each j\geq 1 we define the following integer‐valued functions.

(1) The digit sum function N_{j}^{1}(x) is

(3.5) N_{j}^{1}(x) :=b_{1}+b_{2}+\cdots+b_{j}.

We also let N_{j}^{0}(x)=j-N_{j}^{1}(x) count the number of 0 �s in the first j binary digits of x.

(2) The deficient digit function D(x) is given by

(3.6) D_{j}(x) :=N_{j}^{0}(x)-N_{j}^{1}(x)=j-2N_{j}^{1}(x)=j-2(b_{1}+b_{2}+\cdots+b_{j}) .

Here we use the convention that x denotes a binary expansion; dyadic rationals have two

different binary expansions, and all functions N_{j}^{0}(x) , N_{j}^{1}(x) , D(x) depend on which

binary expansion is used. (The name �deficient digit function� reflects the fa ct that

D(x) counts the excess of binary digits b_{k}=0 over those with b_{k}=1 in the first j

digits, i.e. it is positive if there are more 0 �s than 1' s . )

Takagi�s original characterization of his function, which he used to establish non‐

differentiability, is as follows.

Theorem 3.2. (Takagi 1903) For  x=0.b_{1}b_{2}b_{3}\ldots the Ta kagi function is given

 by

(3.7)  $\tau$(x)=\displaystyle \sum_{m=1}^{\infty}\frac{p_{m}}{2^{m}},
in which 0\leq\ell_{m}=\ell_{m}(x)\leq m-1 is the integer

(3.8) \ell_{m}(x)=\#\{i:1\leq i<m, b_{i}\neq b_{m}\}.

In terms of the digit sum function N_{m}^{1}(x)=b_{1}+b_{2}+ +b_{m},

(3.9) l_{m+1}(x)=\left\{\begin{array}{l}
N_{m}^{1}(x) if b_{m+1}=0,\\
m-N_{m}^{1}(x) if b_{m+1}=1.
\end{array}\right.
Dyadic rationals x=\displaystyle \frac{k}{2^{m}} have two binary expansions, and in consequence the

formulas above give two expansions for  $\tau$(x) . Theorem 3.2 asserts that these expansions

give the same value; one may verify that  $\tau$(x) itself will then be another dyadic rational,
with the same or smaller denominator. See [56, Lemma 2.1] for a proof of this result.

We deduce some basic properties of the Takagi function from its definition.
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Theorem 3.3. (1) The Takagi function  $\tau$(x) maps rational numbers x to ra‐

tional numbers  $\tau$(x) .

(2) The values of the Ta kagi function satisfyy 0\displaystyle \leq $\tau$(x)\leq\frac{2}{3} . The minimal value

y=0 is attained only at x=0 ,
1. The maximal value y=\displaystyle \frac{2}{3} is also attained at some

rational x
,

in particular  $\tau$(\displaystyle \frac{1}{3})=\frac{2}{3}.

Proof. (1) This follows from (1.1) because for rational x the sequence \langle\langle 2^{n}x\rangle\rangle takes

rational values with bounded denominators, and becomes eventually periodic. Summing

geometric series then gives the rationality.

(2) The lower bound case is clear, and by inspection is attained for  x=0 ,
1 only.

The upper bound is proved by checking that \displaystyle \langle\langle x\rangle\rangle+\frac{1}{2}\langle\langle 2x\rangle\rangle\leq\frac{1}{2} holds for all x\in[0 ,
1 ],

and using this on successive pairs of terms in (1.1) to get  $\tau$(x)\displaystyle \leq\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\cdots=\frac{2}{3}.
One checks from (1.1) that  $\tau$(\displaystyle \frac{1}{3})=\frac{2}{3}. \square 

Remark. The set of values x having  $\tau$(x)=\displaystyle \frac{2}{3} is quite large; see Theorem 12.2.

Concerning the converse direction to Theorem 3.3 (1): It is not known which rationals

y with 0\displaystyle \leq y\leq\frac{2}{3} have the property that there is some rational x such that  $\tau$(x)=y.

The Takagi function  $\tau$(x) can be constructed as a limit of piecewise linear approx‐

imations. The partial Ta kagi function of level n is given by:

(3.10) $\tau$_{n}(x) :=\displaystyle \sum_{j=0}^{n-1}\frac{\langle\langle 2^{j}x\rangle\rangle}{2^{j}},
See Figure 2 for $\tau$_{2}(x) , $\tau$_{3}(x) and $\tau$_{4}(x) .

Theorem 3.4. The piecewise linear function $\tau$_{n}(x)=\displaystyle \sum_{j=0}^{n-1}\frac{\langle\langle 2^{j}x\rangle\rangle}{2^{j}} is linear on

each dyadic interval [\displaystyle \frac{k}{2^{n}}, \frac{k+1}{2^{n}}].
(1) On each such interval $\tau$_{n}(x) has integer slope between -n and n given by the

deficient digit function

D_{n}(x)=N_{n}^{0}(x)-N_{n}^{1}(x)=n-2(b_{1}+b_{2}+\cdots+b_{n}) ,

Here  x=0.b_{1}b_{2}b_{3}\ldots may be any interior point on the dyadic interval, and can also be

an endpoint provided the dyadic expansion ending in  0 �s is taken at the left endpoint \displaystyle \frac{k}{2^{n}}
and that ending in 1's is taken at the right endpoint \displaystyle \frac{k+1}{2^{n}}.

(2) The functions $\tau$_{n}(x) approximate the Ta kagi function monotonically fr om below

(3.11) $\tau$_{1}(x)\leq$\tau$_{2}(x)\leq$\tau$_{3}(x)\leq 

The values \{$\tau$_{n}(x):n\geq 1\} converge uniformly to  $\tau$(x) ,
with

(3.12) |$\tau$_{n}(x)- $\tau$(x)|\displaystyle \leq\frac{2}{3} \frac{1}{2^{n}}.
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(3) For a dyadic rational x=\displaystyle \frac{k}{2^{n}} , perfe ct approximation occurs at the n‐th step,
and

(3.13)  $\tau$(x)=$\tau$_{m}(x) , for all m\geq n.

Proof. All statements follow easily from the observation that each function f_{n}(x) :=

\displaystyle \frac{\langle\langle 2^{n}x\rangle\rangle}{2^{n}} is a piecewise linear sawtooth function, linear on dyadic intervals [\displaystyle \frac{k}{2^{n+1}}, \frac{k+1}{2^{n+1}}],
with slope having value +1 if the binary expansion of x has b_{n+1}=0 and slope having
value -1 if b_{n+1}=1 . The inequality in (3.12) also uses the fact that \displaystyle \max_{x\in[0,1]} $\tau$(x)=\frac{2}{3}.

\square 

Figure 2. Approximants to Takagi function: (left to right) $\tau$_{2}(x) , $\tau$_{3}(x) , $\tau$_{4}(x) . Slopes of

linear segments are labelled on graphs. A vertex (x, y) is marked by a solid point if and

only if x\in$\Omega$^{L} ,
as defined in (13.1).

The Takagi function itself can be directly expressed in terms of the deficient digit
function. The relation (3.6) compared with the definition (3.9) of \ell_{m}(x) yields

l_{m+1}(x)=\displaystyle \frac{m}{2}-\frac{1}{2}(-1)^{b_{m+1}}D_{m}(x) .

Substituting this in Takagi�s formula (3.7) and simplifying (noting that \ell_{1}(x)=D_{0}(x)=
0) yields the formula

(3.14)  $\tau$(x)=\displaystyle \frac{1}{2}-\frac{1}{4}(\sum_{m=1}^{\infty}(-1)^{b_{7m+1}}\frac{D_{m}(x)}{2^{m}})
§4. Basic Properties: Functional Equations and Self‐Affine Rescalings

We next recall two basic functional equations that the Takagi function satisfies.

These have been repeatedly found, see Kairies, Darslow and Frank [48] and Kairies [47].
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Theorem 4.1. (1) The Takagi function satisfies two functional equations, each

valid for
0\leq x\leq 1 ,

the reflection equation

(4.1)  $\tau$(x)= $\tau$(1-x) ,

and the dyadic self‐ similarity equation

(4.2)  $\tau$(\displaystyle \frac{x}{2})=\frac{1}{2}x+\frac{1}{2} $\tau$(x) .

(2) The Takagi function on [0 ,
1 ] is the unique continuous function on [0 ,

1 ] that

satisfies both these functional equations.

Proof. (1) Here (4.1) follows directly from (1.1), since \langle\langle kx \rangle\rangle =\langle\langle k(1-x for k\in \mathbb{Z}.

To obtain (4.2), let  x=0.b_{1}b_{2}b_{3}\ldots and set  y:=\displaystyle \frac{x}{2}=0.0b_{1}b_{2}b_{3}\ldots . Then \langle\langle y\rangle\rangle=y ,
whence

(1.1) gives

2 $\tau$(y)=2\displaystyle \langle\langle y\rangle\rangle+2(\sum_{n=1}^{\infty}\frac{\langle\langle 2^{n}y\rangle\rangle}{2^{n}})=x+\sum_{m=0}^{\infty}\frac{\langle\langle 2^{m}x\rangle\rangle}{2^{m}}=x+ $\tau$(x) .

(2) The uniqueness result follows by showing that the functional equations deter‐

mine the value at all dyadic rationals. Indeed, the dyadic self‐similarity equation first

gives  $\tau$(0)=0 ,
whence  $\tau$(1)=0 by the reflection equation. Then  $\tau$(\displaystyle \frac{1}{2})=\frac{1}{2} by the

self‐similarity equation, and now we iterate to get all other dyadic rationals. Since the

dyadic rationals are dense, there is at most one continuous interpolation of the function.

The fact that a continuous interpolation exists follows from Theorem 3.4. (This result

was noted by Knuth [51, Exercise 82, solution p. 103]. \square 

The functional equations yield a self‐affine property of the Takagi function associ‐

ated to shifts by dyadic rationals x=\displaystyle \frac{k}{2^{n}}.

Theorem 4.2. For an arbitrary dyadic rational x_{0}=\displaystyle \frac{k}{2^{n}} then for  x\in [\displaystyle \frac{k}{2^{n}}, \frac{k+1}{2^{n}}]
given by x=x_{0}+\displaystyle \frac{y}{2^{n}} ,

there holds

(4.3)  $\tau$(x_{0}+\displaystyle \frac{y}{2^{n}})= $\tau$(x_{0})+\frac{1}{2^{n}}( $\tau$(y)+D_{n}(x_{0})y) , 0\underline{<}y\underline{<}1,
That is, the graph of  $\tau$(x) on [\displaystyle \frac{k}{2^{n}}, \frac{k+1}{2^{n}}] is a miniature version of the tilted Takagi function

 $\tau$(x)+D_{n}(x_{0})x ,
shrunk by a fa ctor \displaystyle \frac{1}{2^{n}} and vertically shift ed by  $\tau$(x_{0}) .
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Proof. By Theorem 3.4(1), we have $\tau$_{n}(x_{0}+\displaystyle \frac{y}{2^{n}})=$\tau$_{n}(x_{0})+D_{n}(x_{0}) \displaystyle \frac{y}{2^{n}} . Therefore,

by (1.1) it follows that

 $\tau$(x)=$\tau$_{n}(x)+\displaystyle \sum_{j=n}^{\infty}\frac{\langle\langle 2^{j}x\rangle\rangle}{2^{k}}
=$\tau$_{n}(x_{0})+D_{n}(x_{0}) \displaystyle \frac{y}{2^{n}}+\sum_{j=n}^{\infty}\frac{\langle\langle 2^{j}(\frac{y}{2^{n}})\rangle\rangle}{2j}
= $\tau$(x_{0})+\displaystyle \frac{1}{2^{n}}( $\tau$(y)+D_{n}(x_{0})y) . \square 

Theorem 4.2 simplifies in the special case of x_{0}=\displaystyle \frac{k}{2^{n}} having D_{n}(x_{0})=0 ,
which we

call a balanced dyadic rational; such dyadic rationals can only occur when n=2m is

even. The formula (4.3) then becomes

(4.4)  $\tau$(x_{0}+\displaystyle \frac{y}{2^{n}})= $\tau$(x_{0})+\frac{ $\tau$(y)}{2^{n}}, 0\leq y\leq 1,
which a shrinking of the Takagi function together with a vertical shift. Balanced dyadic
rationals play a special role in the analysis of the Takagi function.

As a final topic in this section, a convex function is characterized as one that

satisfies the condition

f(\displaystyle \frac{x+y}{2})\leq\frac{f(x)+f(y)}{2}.
The Takagi function is certainly very far from being a convex function. However one

can establish the following approximate mid‐convexity property of the Takagi function,
due to Boros [16].

Theorem 4.3. (Boros 2008) The Takagi function is (0, \displaystyle \frac{1}{2}) ‐midconvex. That is,
it satisfies the bound

 $\tau$(\displaystyle \frac{x+y}{2})\leq\frac{ $\tau$(x)+ $\tau$(y)}{2}+\frac{1}{2}|x-y|.
This result establishes the sharpness of general bounds for approximately midcon‐

vex functions established by Házy and Páles [37].

§5. The Takagi function and Iteration of the Tent Map

An alternate interpretation of the Takagi function involves iterations of the sym‐

metric tent map T:[0, 1]\rightarrow[0 ,
1 ] , given by

(5.1) T(x)=\left\{\begin{array}{l}
2x \mathrm{i}\mathrm{f} 0\leq x\leq\frac{1}{2},\\
2-2x \mathrm{i}\mathrm{f} \frac{1}{2}\leq x\leq 1.
\end{array}\right.
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This function extends to the whole real line by making it periodic with period 1, and

is then given by  T(x)=2\langle\langle x\rangle\rangle ,
and it satisfies the functional equation  T(x)=T(1-x) .

A key property concerns its behavior under iteration T^{\mathrm{o}n}(x) :=T(T^{\mathrm{o}(n-1)}(x))(n‐fold

composition of functions is here denoted on).
it satisfies the functional equation under composition

(5.2) T^{\mathrm{o}n}(x)=T(2^{n}x) .

The tent map T(x) under iteration is an extremely special map. It defines under

iteration a completely chaotic dynamical system, defined on the unit interval, whose

symbolic dynamics is the full shift on two letters. This map has Lebesgue measure on

[0 ,
1 ] as an invariant measure, and this measure is the maximal entropy measure among

all invariant Borel measures for T(x) .

As an immediate consequence of (5.2) we have the following formula for  $\tau$(x) ,
noted

by Hata and Yamaguti [38] in 1984.

Theorem 5.1. (Hata and Yamaguti 1984) The Ta kagi function is given by

(5.3)  $\tau$(x):=\displaystyle \sum_{n=1}^{\infty}\frac{1}{2^{n}}T^{\mathrm{o}n}(x) ,

where T^{\mathrm{o}n}(x) denotes the n‐th iterate of the tent map T(x) .

This result differs conceptually from the original definition (1.1) which produces

powers of 2 by a rescaling the variable in a fixed map, in that in (5.3) the powers of 2

are produced by iteration of a map.

Hata and Yamaguti [38] defined generalizations of the Takagi function based on

iteration of maps. They defined the Ta kagi class E_{T} to consist of those functions given

by

f(x)=\displaystyle \sum_{n=1}^{\infty}a_{n}T^{\mathrm{o}n}(x) .

where \displaystyle \sum_{n=1}^{\infty}|a_{n}|<\infty viewed as members of the Banach space of continuous functions

 C^{0}([0,1 under the \displaystyle \sup norm. This class contains some piecewise smooth functions,
for example

\displaystyle \sum_{n=1}^{\infty}\frac{1}{4^{n}}T^{\mathrm{o}n}(x)=x(1-x) .

Hata and Yamaguti showed that continuous functions in E_{T} can be characterized

in terms of their Faber‐Schauder expansions in C^{0}([0,1]) ,
and that the Takagi class E_{T}

is a closed subspace of C^{0}([0,1 The standard Faber‐Schauder functions, defined by
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Faber [30] in 1910 and generalized by Schauder [75, pp. 48‐49] in 1927, are 1, x and

\{S_{i,2^{j}}(x) : j\geq 0, 0\leq i\leq 2^{j}-1\} given by dyadically shrunken and shifted tent maps

S_{i,2^{j}}(x) :=2^{j}\displaystyle \{|x-\frac{i}{2^{j}}|+|x-\frac{i+1}{2^{j}}|-|2x-\frac{2i+1}{2^{j+1}}|\},
These functions form a Schauder basis of the Banach space C^{0}([0,1]) ,

in the \displaystyle \sup norm,

taking them in the order 1,  x
,
followed by the other functions in the order: S_{i,2^{j}} precedes

S_{i,2^{j'}} if j<j' or j=j' and i<i' . (For a discussion of Schauder bases see Megginson

[62, Sec. 4.1].) A function f(x) in C^{0}([0, 1]) has Faber‐Schauder expansion

(5.4) f(x)=a_{0}+a_{1}x+\displaystyle \sum_{j=0}^{\infty}\sum_{i=0}^{2^{j}-1}a_{i},{}_{j}S_{i,2^{j}}(x) ,

with coefficients a_{0}=f(0) , a(1)=f(1)-f(0) ,
and

a_{i,j}:=f(\displaystyle \frac{2i+1}{2j+1})-\frac{1}{2}(f(\frac{i}{2j})+f(\frac{i+1}{2j})) .

Functions in the Takagi class satisfy the restriction that a_{0}=a_{1}=0 and their Faber‐

Schauder coefficients \{a_{i,j}\} depend only on the level j.
Hata and Yamaguti [38, Theorem 3.3] proved the following converse result.

Theorem 5.2. (Hata and Yamaguti 1984) A function f(x)\in C^{0}([0,1]) belongs
to the Ta kagi class E_{T} if and only if its Faber‐Schauder expansion f(x)=a_{0}+a_{1}x+

\displaystyle \sum_{j=0}^{\infty}\sum_{i=0}^{2^{j}-1}a_{i},{}_{j}S_{i,2^{j}}(x) satisfies

1. The coefficients a_{0}=a_{1}=0 and

a_{0,j}=a_{i,j} for all j\geq 0, 0\leq i\leq 2^{j-1}

2. If we set c_{j}=a_{0,j} ,
then

\displaystyle \sum_{j=0}^{\infty}|c_{j}|<\infty.
Note that if the conditions 1, 2 above hold, then f(x) is given by the expansion

f(x)=\displaystyle \sum_{j=0}^{\infty}c_{j}T^{\mathrm{o}(j+1)}(x) .

Hata and Yamaguti also viewed functions in the Takagi class as satisfying a differ‐

ence analogue of Laplace�s equation, using the scaled central second difference operators

\displaystyle \triangle_{i,2^{j}}(f):=f(\frac{i}{2^{j}})+f(\frac{i+1}{2^{j}})-2f(\frac{2i+1}{2^{j+1}}) ,

for 0\leq i\leq 2^{j}-1, j\geq 0 , along with Dirichlet boundary conditions. (The Faber‐

Schauder coefficients a_{i,j}=-\displaystyle \frac{1}{2}\triangle_{i,2^{j}}(f). ) They obtained the following existence and

uniqueness result ([38, Theorem 4.1]).
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Theorem 5.3. (Hata and Yamaguti 1984) Given data \{c_{j} : j\geq 0\} ,
the infinite

system of linear equations defined for

\triangle_{i,2j}(f)=c_{j}, j\geq 0, 0\leq i\leq 2^{j}-1,

has a continuous solution f(x)\in C^{0}([0,1]) satisfy ing Dirichlet boundary conditions

f(0)=f(1)=0 if and only if

\displaystyle \sum_{j=0}^{\infty}|c_{j}|<\infty.
In this case f(x)\in E_{T} ,

with

f(x)=-\displaystyle \frac{1}{2}\sum_{j=0}^{\infty}c_{j}T^{\mathrm{o}(j+1)}(x) .

There are interesting functions obtainable from the Takagi function by monotone

changes of variable. The tent map T(x) is real‐analytically conjugate on the interval

[0 ,
1 ] to a particular logistic map

(5.5) F(y):=4y(1-y) , 0\leq y\leq 1.

That is, F(y)=$\varphi$^{-1}\circ T\circ $\varphi$(y) for a monotone increasing real‐analytic function  $\varphi$(x) ,

which is

 $\varphi$(y)=\displaystyle \frac{2}{ $\pi$}\arcsin\sqrt{y},
with its functional inverse $\varphi$^{-1}(x) given by  $\varphi$(x) :=\sin^{2} (\displaystyle \frac{ $\pi$ x}{2}) . The dynamics under

iteration of the logistic map (5.5) has been much studied. It is a post‐critically finite

quadratic polynomial, and it is affinely conjugatel to the monic centered quadratic map

\tilde{F}(z)=z^{2}-2 ,
which specifies a boundary point of the Mandelbrot set.

Its n‐th iterate F^{\mathrm{o}n}(y) is a polynomial of degree 2, which is conjugate to the

Chebyshev polynomial T_{2^{n}}(x) . The analytic conjugacy above gives

 $\varphi$\circ F^{\mathrm{o}n}(y)=T^{\mathrm{o}n}\circ $\varphi$(y) ,
for n\geq 1.

The change of variable x= $\varphi$(y) applied to a function f(x)=\displaystyle \sum_{n=1}^{\infty}c_{n}T^{\mathrm{o}n}(x) in the

Takagi class yields the rescaled function

(5.6) g(y)=f( $\varphi$(y))=\displaystyle \sum_{n=1}^{\infty}c_{n} $\varphi$\circ F^{\mathrm{o}n}(y) ,

motivating the further study of maps of this form.

lThe conjugacy is y= $\psi$(z)=-\displaystyle \frac{1}{4}z+\frac{1}{2} with inverse z=$\psi$^{-1}(y)=-4y+2.



166 Jeffrey C. Lagarias

More generally, given a dynamical system obtained by iterating a map \tilde{T} : [0, 1]\rightarrow
[0 ,

1 ] of the interval, and a rescaling function  $\psi$ : [0, 1]\rightarrow \mathbb{C} ,
Hata and Yamaguti define

the generating function

F(t, x):=\displaystyle \sum_{n=0}^{\infty}t^{n} $\psi$\circ\tilde{T}^{\mathrm{o}n}(x) .

Here these functions, where t may vary, encode various statistical information about the

discrete dynamical system \tilde{T} . For more information on this viewpoint, see Yamaguti,
Hata and Kigami [90, Chap. 3].

§6. Fourier Series of the Takagi Function

The Takagi function defined by (1.1) extends to a continuous periodic function on

the real line with period 1, which comes with a Fourier series expansion. The functional

equation  $\tau$(x)= $\tau$(1-x) for 0\leq x\leq 1 implies that the extended function also satisfies

(6.1)  $\tau$(x)= $\tau$(-x) ,

so that it is an even function. As a consequence, its Fourier series only involves \cos(2 $\pi$ nx)
terms. It is easily computable from the known Fourier series of the symmetric tent map,

as follows.

Theorem 6.1. The Fourier series of the Takagi function is given by

(6.2)  $\tau$(x) :=\displaystyle \sum_{n\in \mathbb{Z}}c_{n}e^{2 $\pi$ inx},
in which

(6.3) c_{0}=\displaystyle \int_{0}^{1} $\tau$(x)dx=\frac{1}{2}
and forn>0 there holds

(6.4) c_{n}=c_{-n}=-\displaystyle \frac{1}{2^{m}(2k+1)^{2}$\pi$^{2}} ,
where n=2^{m}(2k+1) .

Proof. The even function  $\psi$(x)=\langle\langle x\rangle\rangle has Fourier series with real coefficients  b_{n}=

b_{-n} , given as

 $\psi$(x)=\displaystyle \sum_{n=-\infty}^{\infty}b_{n}e^{2 $\pi$ inx},
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with b_{-n}=\displaystyle \int_{-\frac{1}{2}}^{\frac{1}{2}}|x|e^{2 $\pi$ inx}dx . Clearly b_{0}=\displaystyle \frac{1}{4} and, integrating by parts,

\displaystyle \int_{0}^{\frac{1}{2}}xe^{2 $\pi$ inx}dx=[\frac{x}{2 $\pi$ in}e^{2 $\pi$ inx}]|_{x=}^{x=\frac{1}{02}}-\int_{0}^{\frac{1}{2}}\frac{1}{2 $\pi$ in}e^{2 $\pi$ inx}dx
=-\displaystyle \frac{1}{4 $\pi$ in}-[\frac{1}{(2 $\pi$ in)^{2}}e^{2 $\pi$ inx}]|_{x=}^{x=\frac{1}{02}}
=\{ -\displaystyle \frac{}{}-\frac{1}{4$\pi$_{1}in,4 $\pi$ in},-\frac{1}{2$\pi$^{2}n^{2}}, nn\mathrm{e}venodd.�

A similar calculation on the interval [- \displaystyle \frac{1}{2}, 0] gives the complex conjugate value, whence

b_{n}=b_{-n}=\{
‐ \displaystyle \frac{1}{$\pi$^{2}n^{2}} if n is odd,

0 if n\neq 0 is even.

Now  $\tau$(x)=\displaystyle \sum_{m=0}^{\infty}\frac{1}{2^{m}}\langle\langle 2^{m}x\rangle\rangle ,
and the Fourier coefficients of  $\psi$(2^{m}x) are b_{n}^{m}:=b_{n/2^{m}} if

2^{m}|n and 0 otherwise. By uniform convergence of the sum we obtain c_{0}=\displaystyle \sum_{n=0}^{\infty}\frac{1}{2^{n}}b_{0}=
\displaystyle \frac{1}{2} , and, for n=\pm 2^{m}(2k+1) ,

we obtain

c_{n}=\displaystyle \sum_{j=0}^{\infty}\frac{1}{2j}b_{n}^{j}=\sum_{j=0}^{m}\frac{1}{2j}b_{2^{7n-j}(2k+1)}=-\frac{1}{2^{m}(2k+1)^{2}$\pi$^{2}},
which is the result. \square 

Note that the decay of the Fourier coefficients as  n\rightarrow\infty has \displaystyle \lim\sup_{n\rightarrow\infty}n^{2}|c_{n}|>0.
This fact directly implies that  $\tau$(x) cannot be a C^{2} ‐function. However much more

about its oscillatory behavior, including its non‐differentiability, can be proved by other

methods.

As a direct consequence of this result, the Takagi function is obtainable as the real

part of the boundary value of a holomorphic function on the unit disk.

Theorem 6.2. Let \{c_{n}:n\in \mathbb{Z}\} be the Fourier coefficients of the Takagi func‐

tion, and define the power series

(6.5) f(z)=\displaystyle \frac{1}{2}c_{0}+\sum_{n=1}^{\infty}c_{n}z^{n}
This power series converges absolutely in the closed unit disk \{z:|z|\leq 1\} to define a

holomorphic function in its interior, and it has the unit circle as a natural boundary
to analytic continuation. It defines a continuous function on the boundary of the unit

disk, and its values there satisfy

(6.6) f(e^{2 $\pi$ i $\theta$})=\displaystyle \frac{1}{2}(X( $\theta$)+iY( $\theta$))
in which X( $\theta$)= $\tau$( $\theta$) is the Ta kagi function.
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Remark. The imaginary part of f(x) now defines a new function Y( $\theta$) which we call

the conjugate Takagi function. It is a periodic function with period 1 which is also an

odd function, so that Y( $\theta$)=-Y(- $\theta$)=-Y(1- $\theta$) . Its graph is pictured in Figure 3.

(This figure is courtesy of G. Alkauskas.)

0

0

0 0 0

\mathrm{x}

-0.1

-\mathrm{O}.2

0 0 1

Figure 3. Graph of the conjugate Takagi function Y( $\theta$) , 0\leq $\theta$\leq 1.

Proof. The Fourier coefficients of the Takagi function satisfy

\displaystyle \sum_{n=0}^{\infty}|c_{n}|=\frac{1}{2}+\sum_{m=0}^{\infty}\frac{1}{2^{m-1}}(\sum_{k=0}^{\infty}\frac{1}{(2k+1)^{2}$\pi$^{2}})=\frac{1}{2}+\frac{1}{2}<\infty
It follows that the power series for  f(z) converges absolutely on the unit circle, so is

continuous on the closed unit disk, and holomorphic in its interior. Since the Fourier

series for the Takagi function is even, by inspection

f(e^{2 $\pi$ i $\theta$})+f(e^{-2 $\pi$ i $\theta$})=2Re(F(e^{2 $\pi$ i $\theta$}))=X( $\theta$) .

This justifies (6.6), defining Y( $\theta$) by

f(e^{2 $\pi$ i $\theta$})-f(e^{-2 $\pi$ i $\theta$})=2iIm(F(e^{2 $\pi$ i $\theta$}))=iY( $\theta$) .

Since the Takagi function is non‐differentiable everywhere, the function f(z) cannot

analytically continue across any arc of the unit circle, so that the unit circle is a natural

boundary for f(z) . \square 
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As mentioned in Section 5, the Takagi function can also be studied using its Faber‐

Schauder expansion, rather than a Fourier expansion. In 1988 Yamaguti and Kigami

[91] defined for p\geq 1 the Banach spaces

H_{p}:=\displaystyle \{f(x)=\sum_{i,j}c_{i,j}2^{-\frac{j}{2}+1}S_{i,2^{j}}(x)\},
defined using arescaled Schauder basis and the norm ||f||_{p}=(\displaystyle \sum_{i,j}|c_{i,j}|^{p})^{1/p} They
deduced using its Schauder expansion that the Takagi function belongs to the Banach

space H_{p} for all p>2 . (It does not belong to H_{2} ,
which is a Hilbert space coinciding with

a space denoted H^{1} in [91].) In 1989 Yamaguti [89] proposed a generalized Schauder

basis consisting of polynomials in x
,

in which to study the Takagi function and other

functions.

§7. The Takagi Function and Bernoulli Convolutions

The Takagi function also appears in the analysis of non‐symmetric Bernoulli con‐

volutions. Let

x=\displaystyle \sum_{j=1}^{\infty}$\epsilon$_{j}(\frac{1}{2})^{j},
in which the digits $\epsilon$_{j}\in\{0 ,

1 \} are drawn as independent (non‐symmetric) Bernoulli

random variables taking value 0 with probability  $\alpha$ and 1 with probability  1- $\alpha$ . Then

 x is a random real number in [0 ,
1 ] with cumulative distribution function

L_{ $\alpha$}(x)=$\mu$_{ $\alpha$}([0, x])=\displaystyle \int_{0}^{x}d$\mu$_{ $\alpha$},
in which $\mu$_{ $\alpha$} is a certain Borel measure on [0 ,

1 ] . These functions were introduced in

1934 by Lomnicki and Ulam [59, pp. 267‐269] with this interpretation. The measure

$\mu$_{ $\alpha$} is Lebesgue measure for  $\alpha$=\displaystyle \frac{1}{2} ,
and is a singular measure otherwise.

In 1943 R. Salem [74] gave a geometric construction of monotonic increasing sin‐

gular functions that includes these functions as a special case.

Theorem 7.1. (Salem 1943) The function L(x) has Fourier series  L_{ $\alpha$}(x)\sim
\displaystyle \sum_{n=1}^{\infty}c_{n}\cos 2 $\pi$ nx using the formula (for real t)

\displaystyle \int_{0}^{1}e^{2 $\pi$ itx}dL_{ $\alpha$}(x)=\prod_{k=1}^{\infty}( $\alpha$+(1- $\alpha$)e^{\frac{2 $\pi$ it}{2^{k}}}) .

The Fourier coefficients are given by infinite products

c_{n}=e^{- $\pi$ in}\displaystyle \prod_{k=1}^{\infty}(\cos\frac{ $\pi$ n}{2^{k}}+i(2 $\alpha$-1)\sin\frac{ $\pi$ n}{2^{k}})
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An interesting property of the Lomnicki‐Ulam function L(x) is that it satisfies a

two‐scale dilation equation

L_{ $\alpha$}(x)=\left\{\begin{array}{ll}
 $\alpha$ L(2x) & \mathrm{f}\mathrm{o}\mathrm{r} 0\leq x\leq\frac{1}{2},\\
(1- $\alpha$)L_{ $\alpha$}(2x-1)+ $\alpha$ & \mathrm{f}\mathrm{o}\mathrm{r} \frac{1}{2}\leq x\leq 1.
\end{array}\right.
In 1956 de Rham ([71], [72], [73]) studied such functional equations in detail. Dilation

equations are relevant to the construction of compactly supported wavelets, and general

properties of solutions to such equations were derived in Daubechies and Lagarias [24],
[25].

In 1984 Hata and Yamaguti [38, Theorem 4.6] made the following connection of

the Lomnicki‐Ulam functions L(x) to the Takagi function, cf. [38, p. 195].

Theorem 7.2. (Hata and Yamaguti 1984) For fixed x the function g_{x}( $\alpha$) :=

L_{ $\alpha$}(x) , initially defined for  $\alpha$\in[0 ,
1 ] ,

extends to an analytic function of  $\alpha$ on the lens‐

shaped region

 D=\{ $\alpha$\in \mathbb{C} : | $\alpha$|<1 and |1- $\alpha$|<1\}.

The Ta kagi function appears as the derivative of these functions at the central point

 $\alpha$=\displaystyle \frac{1}{2} :

(7.1) \displaystyle \frac{d}{d $\alpha$}L_{ $\alpha$}(x)|_{ $\alpha$=\frac{1}{2}}=2 $\tau$(x) .

This result permits an interpretation of the Takagi function as a generating function

of a chaotic dynamical system (Yamaguti et al. [90, Chapter 3]). This result was

generalized further by Sekiguchi and Shiota [76].

§8. Oscillatory Behavior of the Takagi Function

The main feature of the Takagi function is that it is non‐differentiable everywhere.

Takagi [81] showed the function has no two‐sided finite derivatives at any point. In

1984 Cater [20] showed that the Takagi function has no one‐sided finite derivative at

any point. However it does have well‐defined (two‐sided) improper derivatives equal to

+\infty (resp. -\infty ) at some points, see Theorem 8.6.

The non‐differentiability of the Takagi function is bound up with its increasing

oscillatory behavior as the scale decreases. Letting  0<h<1 measure a scale size,
we have the following elementary estimate bounding the maximal size of oscillations at

scale h.

Theorem 8.1. For 0\leq x\leq x+h\leq 1 ,
the Ta kagi function satisfies

(8.1) | $\tau$(x+h)- $\tau$(x)|\displaystyle \leq 2h\log_{2}\frac{1}{h}.
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Proof. Suppose 2^{-n}\leq h\leq 2^{-n+1} ,
so that n\displaystyle \leq\log_{2}\frac{1}{h} . Theorem 3.4 gives the

estimate that | $\tau$(x)-$\tau$_{n}(x)|\displaystyle \leq\frac{2}{3}\frac{1}{2^{n}} ,
and we know $\tau$_{n}(x) has everywhere slope between

-n and n . It follows that

| $\tau$(x+h)- $\tau$(x)|\displaystyle \leq\frac{2}{3}(\frac{1}{2^{n}})+nh\leq h(n+\frac{2}{3})\leq 2h\log_{2}\frac{1}{h}.
as required. \square .

Theorem 8.1 is sharp to within a multiplicative factor of 2, since for h=2^{-n},

 $\tau$(h)- $\tau$(0)= $\tau$(2^{-n})=\displaystyle \frac{n}{2^{n}}=h\log_{2}\frac{1}{h},
In fact the multiplicative factor of 2 can be decreased to 1 as the scale decreases, in the

following sense (Kôno [52, Theorem 4]).

Theorem 8.2. (Kôno 1987) Let $\sigma$_{u}(h)=\displaystyle \log_{2}\frac{1}{h} . Then there holds

\displaystyle \lim_{|x-y|}\sup_{\rightarrow 0^{+}}\frac{ $\tau$(x)- $\tau$(y)}{|x-y|$\sigma$_{u}(|x-y|)}=1.
and

\displaystyle \lim_{|x-y|\rightarrow}\inf_{0^{+}}\frac{ $\tau$(x)- $\tau$(y)}{|x-y|$\sigma$_{u}(|x-y|)}=-1.
The average size of extreme fluctuations for most x is of the smaller order

h\sqrt{\log_{2}\frac{1}{h}}\sqrt{2}logloglog2 \displaystyle \frac{1}{h} ,
as given in the following result. (Kôno [52, Theorem 5

Theorem 8.3. (Kôno 1987) Let $\sigma$_{l}(h)=\sqrt{\log_{2}\frac{1}{h}} . Then for almost all x\in[0 ,
1 ]

there holds

\displaystyle \lim_{h\rightarrow}\sup_{0^{+}}\frac{ $\tau$(x+h)- $\tau$(x)}{h$\sigma$_{l}(h)\sqrt{2\log\log$\sigma$_{l}(h)}}=1,
and

\displaystyle \lim_{h\rightarrow 0}\inf_{+}\frac{ $\tau$(x+h)- $\tau$(x)}{h$\sigma$_{l}(h)\sqrt{2\log\log$\sigma$_{l}(h)}}=-1.
Kôno used expansions of  $\tau$(x) in terms of Rademacher functions to obtain his

results.

Finally, if one scales the oscillations by the factor h\sqrt{\log_{2}\frac{1}{h}} on the scale size h then

one obtains a Gaussian limit distribution of the maximal oscillation sizes at scale h as

h\rightarrow 0^{+} ,
in the following sense (Gamkrelidze[34, Theorem 1]).

Theorem 8.4. (Gamkrelidze 1990) Let $\sigma$_{l}(h)=\sqrt{\log_{2}\frac{1}{h}} . Then for each real y,

(8.2) \displaystyle \lim_{h\rightarrow 0^{+}} Measx : \displaystyle \frac{ $\tau$(x+h)- $\tau$(x)}{h$\sigma$_{l}(h)}\leq y } =\displaystyle \frac{1}{\sqrt{2 $\pi$}}\int_{-\infty}^{y}e^{-\frac{1}{2}t^{2}}dt.
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Gamkrelidze also observes that Theorem 8.3 can be derived as a consequence of this

result. Namely, in this context Theorem 8.3 is interpretable as analogous to the law of

the iterated logarithm in probability theory.

The oscillatory behavior of the Takagi function has also been studied in the Hölder

sense. We define on [0 ,
1 ] the class C^{0} of continuous functions, the class C^{1} of con‐

tinuously differentiable functions (with one‐sided derivatives at the endpoints) and, for

0< $\alpha$\leq 1 ,
the (intermediate) Lipschitz classes

(8.3)
Lip^{ $\alpha$}:= { f\in C^{0} : there exists K>0 with |f(x)-f(y)|<K|x-y|^{ $\alpha$}, x, y\in[0 , 1]}.

Theorem 8.5. (de Vito 1985; Brown and Kozlowski 2003)
(1) The Ta kagi function  $\tau$ belongs to the function class

(8.4)  $\tau$\displaystyle \in\bigcap_{0< $\alpha$<1}Lip^{ $\alpha$}
(2) The Ta kagi function  $\tau$ does not agree with any function  g\in C^{1} on any set of

positive measure. In fact, if M is a subset of [0 ,
1 ] with positive measure then the set

(8.5) D( $\tau$, M):=\displaystyle \{\frac{ $\tau$(y)- $\tau$(x)}{y-x} : x, y\in M with x\neq y\}

is unbounded.

Proof. (1) This was shown by de Vito [84] in 1958. He showed moreover, that for

0< $\alpha$<1 and 0\leq x, y\leq 1 ,
there holds

| $\tau$(x)- $\tau$(y)|\displaystyle \leq\frac{2^{ $\alpha$-1}}{1-2^{ $\alpha$-1}}|x-y|^{ $\alpha$}
Another proof of (8.4) was given by Shidfar and Sabetfakhri [77]. An extension to $\tau$_{r}

for all even r\geq 2 in (1.2) follows from results in Shidfar and Sabetfakhri [78].
(2) A proof establishing this and (8.5) was given by Brown and Kozlowski [17] in

2003. \square 

Concerning the non‐differentiability of the Takagi function, Takagi established there

is no finite derivative at any point of [0 ,
1 ] . However the Takagi function does have some

points where it has a well‐defined (two‐sided) infinite deriviative. These points were

recently classified by Allaart and Kawamura [5], who proved the following result ([5,
Corollary 3.9]).

Theorem 8.6. (Allaart and Kawamura 2010) The set of points where the Taak‐

agi function has a well‐defined two‐sided derivative $\tau$'(x)=+\infty ,
and the set of points

where it has $\tau$'(x)=-\infty both are dense in [0 ,
1 ] and have Hausdorff dimension 1.
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There has been much further work studying oscillatory behavior of the Takagi
function in various metrics. We mention the work of Buczolich [18] and of Allaart and

Kawamura [4], [5]. In addition Allaart [1] has proved analogues of many results above

for a wider class of functions in the Takagi class.

§9. The Takagi function and Binary Digit Sums

The Takagi function appears in the analysis of binary digit sums. More generally,
let A(x) denote the sum of the base r digits of all integers below x

,
so that

(9.1) A_{r}(x):=\displaystyle \sum_{j=1}^{[x]}S_{r}(j) ,

in which S(j) denotes the sum of the digits in the base r expansion of j . In 1949

Mirsky [66] observed that

A_{r}(x)=\displaystyle \frac{1}{2}(r-1)x\log_{r}x-E(x)
with remainder term E_{r}(x)=O(x) . In 1968 Trollope [83] observed that, for r=2

,
this

remainder term has an explicit formula given in terms of the Takagi function.

Theorem 9.1. (Trollope 1968) If the integer n satisfies 2^{m}\leq n<2^{m+1} ,
and if

we write n=2^{m}(1+x) for a rational number 0\leq x<1 ,
with x=\displaystyle \frac{n}{2^{m}}-1 ,

then

E_{2}(n)=2^{m-1}((1+x)\log_{2}(1+x)-2x+ $\tau$(x)) .

This was generalized in a very influential paper of Delange [26], who observed the

following result.

Theorem 9.2. (Delange 1975) One can write the rescaled error term E_{r}(n) for
base r digit sums at integer values n as

\displaystyle \frac{1}{n}E_{r}(n)=\frac{1}{2}\log_{r}n+F_{r}(\log_{r}n) ,

in which F(t) is a continuous function which is periodic of period 1. The Fourier series

of the function F(t) is given by

F_{r}(t)=\displaystyle \sum_{k\in \mathbb{Z}}c_{k}(r)e^{2 $\pi$ ikt},
The Fourier coefficients c(r) involve the values of the Riemann zeta function  $\zeta$(s) at

the points \displaystyle \frac{2 $\pi$ ki}{\log r} on the imaginary axis.
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In view of Trollope�s result, in the case r=2 the Takagi function  $\tau$(x) appears in

the function F_{2}(t) , namely this function is

(9.2) F_{2}(t)=\displaystyle \frac{1}{2}(1+\lfloor t\rfloor-t)+2^{1+\lfloor t\rfloor-t} $\tau$(2^{t-\lfloor t\rfloor-1}) .

Also for r=2
,

and k\neq 0 ,
the Fourier coefficients of F(t) are

c_{k}=\displaystyle \frac{}{1+\frac{2k $\pi$ i}{\log 2}} $\zeta$(\frac{2k $\pi$ i}{\log 2})\frac{i}{2k $\pi$},
and for k=0,

c_{0}=\displaystyle \frac{\mathrm{l}}{2\log 2}(\log 2 $\pi$-1)-\frac{3}{4}.
Results on k‐th powers of binary digit sums were given in 1977 by Stolarsky [80],

who also provides a summary of earlier literature. A connection of these sums with a

series of more complicated oscillatory functions was obtained in 1986 in Coquet [21].
Further work was done by Okada, Sekiguchi and Shiota [67] in 1995. Recently Krüppel

[54] gave another derivation of these results and further extended them.

For a related treatment of similar functions, using Mellin transforms, see Flajolet
et al [31]. A general survey of dynamical systems in numeration, including these topics,
is given by Barat, Berthé, Liardet and Thuswaldner [11].

§10. The Takagi Function and the Riemann Hypothesis

The Riemann hypothesis can be formulated purely in terms of the Takagi function,
as was observed by Kanemitsu and Yoshimoto [49, Corollary to Theorem 5]. Their

encoding of the Riemann hypothesis concerns the values of the function restricted to

the Farey fractions \mathcal{F}_{N}.

The Farey series of level N consists of all reduced rational fractions 0\displaystyle \leq\frac{p}{q}<1
having denominator at most N

,
their number being |\displaystyle \mathcal{F}_{N}|=\frac{3}{$\pi$^{2}}N^{2}+O(N\log N) . The

connection of the approximately uniform spacing of Farey fractions and the Riemann

hypothesis starts with Franel�s theorem, cf. Franel [33], proved in 1924. (cf. Huxley

[41, p. 36]). Since that time many variants of Franel�s result have been established. \mathrm{A}

particular version of Franel�s theorem that is relevant here was given by Mikolas [63],
[64], [65].

Uniformity of distribution of a set of points (here the Farey fractions) can be

measured in terms of the efficiency of numerical integration of functions on the unit

interval obtained by sampling their values at these points. This is the framework taken

in the result of Kanemitsu and Yoshimoto. The particular interest of their result is that

it applies to the numerical integration of continuous functions that are not necessarily
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differentiable, but which belong to the Lipschitz class Lip^{1- $\epsilon$} for each  $\dagger$>0 . The role

of the Takagi function here is to be a particularly interesting example to which their

general theorem applies.

Theorem 10.1. (Kanemitsu and Yoshimoto 2000) The Riemann hypothesis is

equivalent to the statement that for each  $\epsilon$>0 there holds, for the Farey sequence \mathcal{F}_{N},

(10.1) \displaystyle \sum_{ $\rho$\in \mathcal{F}_{N}} $\tau$( $\rho$)-|\mathcal{F}_{N}|\int_{0}^{1} $\tau$(x)dx=O(N^{\frac{1}{2}+ $\epsilon$})
as N\rightarrow\infty.

Proof. This result was announced in Kanemitsu and Yoshimoto [49, Corollary to

Theorem 5], and a detailed proof was given in 2006 in Balasubramanian, Kanemitsu

and Yoshimoto [10]. According to the Principle stated in [10, p. 4], the exponent \displaystyle \frac{1}{2}+ $\epsilon$
in the remainder term in (10.1) depends on the fact that the Takagi function is in the

Lipschitz class  Lip^{ $\alpha$} for any  $\alpha$<1 ,
see Theorem 12.4 below. (Note that in [10, Sec. 2.2]

their Takagi function T(x) is defined by a Fourier series, which when compared with

Theorem 6.1 suggests it needs a rescaling plus a constant term added to agree with

 $\tau$(x) ; this does not affect the general argument.) \square 

An interesting feature of this result is that for each N the left side of (10.1) is a

rational number. This follows since the Takagi function takes rational values at rational

numbers, and because with our scaling of the Takagi function we have \displaystyle \int_{0}^{1} $\tau$(x)dx=\frac{1}{2}.

§11. Graph of the Takagi Function

We next consider properties of the graph of the Takagi function

\mathcal{G}( $\tau$):=\{(x,  $\tau$(x)):0\leq x\leq 1\}.

The local extreme points of the graph of the Takagi function were determined by
Kahane [46].

Theorem 11.1. (Kahane 1959)
(1) The set of local minima of the Takagi function are exactly the set of all dyadic

rational numbers in [0 ,
1 ].

(2) The set of local maxima of the Ta kagi function are exactly those points x such

that the binary expansion of x have deficient digit function D_{2n}(x)=0 for all sufficiently

large n.
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Proof. This is shown in [46, Sec. 1]. Kahane states condition (2) as requiring that

the binary expansion of x have b_{1}+b_{2}+\cdots+b_{2n}=n holding for all sufficiently large
n. \square 

There are uncountably many x that satisfy condition (2) above. It is easy to deduce

from this result that the graph of the Takagi function contains a dense set of local minima

and local maxima, viewed from either of the abscissa or ordinate directions. Allaaert

and Kawamura [4] further study the extreme values of functions related to the Takagi
function.

The Hausdorff dimension of the graph of the Takagi function was determined by
Mauldin and Williams [61].

Theorem 11.2. (Mauldin and Williams 1986) The graph \mathcal{G}( $\tau$) of the Takagi

function has Hausdorff dimension 1 as a subset of \mathbb{R}^{2}.

Proof. This result is given as [61, Theorem 7]. \square 

Mauldin and Williams [61] raised the question of whether the graph of the Takagi
function is  $\sigma$‐finite. This was answered in the affirmative by Anderson and Pitt [8].

Theorem 11.3. (Anderson and Pitt 1989) The graph \mathcal{G}( $\tau$) of the Takagi func‐
tion has  $\sigma$ ‐finite linear measure.

Proof. This result is given as [8, Thm. 6.4, and Remark p. 588]. \square 

In the opposite direction, one can show the graph of the Takagi function has infinite

length. We have the following result.

Theorem 11.4. The graph \mathcal{G}( $\tau$) has infinite length locally. That it, it has

infinite length over any nonempty open interval x_{1}<x<x_{2} in [0 ,
1 ].

Proof. This is proved using the piecewise linear approximations $\tau$_{n}(x) to the Takagi
function. This function has control points at x=\displaystyle \frac{k}{2^{n}} where it takes values agreeing with

 $\tau$(x) . It suffices to show that the length of $\tau$_{n}(x) becomes unbounded as  n\rightarrow\infty . This

shows the whole graph has infinite length. The self‐similar functional equation then

implies that any little piece of the graph over the interval  x_{1}\leq x\leq x_{2} also has infinite

length.
To show the unboundedness of the length of $\tau$_{n}(x) ,

as  n\rightarrow\infty
,

it suffices to show

that the average size of the (absolute value) of the slope of $\tau$_{n}(x) becomes unbounded.

To do this we note that the subdivision from level n to level n+1 replaces each slope
m with two intervals of slopes m+1 and m-1 . These do not change the average value

of the (absolute value) of slope, except when m=0 . Such slopes occur only on even
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levels 2n and there are \left(\begin{array}{l}
2n\\
n
\end{array}\right) of them (they are the balanced dyadic rationals at that

level). Consequently the average value of the slope at level 2n (resp. 2n+1 ) obeys the

recursion: a_{2n}=a_{2n-1} and a_{2n+1}=a_{2n}+\displaystyle \frac{1}{2^{2n}}\left(\begin{array}{l}
2n\\
n
\end{array}\right) . Since

\displaystyle \frac{1}{2^{2n}}\left(\begin{array}{l}
2n\\
n
\end{array}\right)\sim\frac{1}{\sqrt{4 $\pi$ n}}
and \displaystyle \sum_{n=1}^{\infty}\frac{1}{\sqrt{4 $\pi$ n}} diverges, we have  a_{n}\rightarrow\infty as  n\rightarrow\infty

, proving the result. \square .

In 1997 Tricot [82] defined the notion of irregularity degree of a function f to be

the Hausdorff dimension of its graph \mathcal{G}(f) . He introduces a two‐parameter family of

norms \triangle^{ $\alpha,\ \beta$} to measure oscillatory behavior. As an example, he computes these values

for the Takagi function and its relatives ([82, Cor. 6.5, Cor. 6.7])

§12. Level Sets of the Takagi Function

We next consider properties of level sets of the Takagi function. For y\displaystyle \in[0, \frac{2}{3}] we

denote the level set at level y by

L(y) :=\{x: $\tau$(x)=y, 0\leq x\leq 1\}.

The level sets have a complicated and interesting structure.

Theorem 12.1. (1) The Takagi function has level sets L(y) that take a finite
number of values, resp. a countably infinite set of values, resp. an uncountably infinite
set of values. Specificially, the level set L(0)=\{0 ,

1 \} takes two values, the level set

L(\displaystyle \frac{1}{2}) takes a countably infinite set of values, and the level set L(\displaystyle \frac{2}{3}) takes an uncountably

infinite set of values.

(2) The set of levels y such that L(y) is finite, resp. countably infinite, resp un‐

countably infinite, are each dense in [0, \displaystyle \frac{2}{3}].

Proof. (1) It is clear that L(0)=\{0 ,
1 \} is a finite level set. A finite example given

by Knuth [51] is L(\displaystyle \frac{1}{5})=\{x, 1-x\} with x=\displaystyle \frac{83581}{87040} . Knuth [51, pp. 20‐21, 3233] also

showed that certain dyadic rationals x=\displaystyle \frac{m}{2^{k}} have countably infinite level sets; these

include x=\displaystyle \frac{1}{2} . The author and Maddock [56, Theorem 7.1] also show that L(\displaystyle \frac{1}{2}) is

countably infinite. For uncountably infinite level sets, Baba [9] showed that L(\displaystyle \frac{2}{3}) has

positive Hausdorff dimension, which implies it is uncountable.

(2) For uncountably infinite sets, this follows from the self‐similarity relation in

Theorem 4.2. For countably infinite case it follows from Knuth�s results, see also Allaart

[3]. For the finite case, it follows from Theorem 12.4 below. \square .

We next consider bounds on the Hausdorff dimension of level sets.
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Theorem 12.2. (Baba 1985; de Amo et al 2011)
(1) The maximal level set L(\displaystyle \frac{2}{3}) has Hausdorff dimension \displaystyle \frac{1}{2} . The set of levels having

level set of Hausdorff dimension \displaystyle \frac{1}{2} is dense in [0, \displaystyle \frac{2}{3}].

(2) Every level set L(y) of the Takagi function has Hausdorff dimension at most \displaystyle \frac{1}{2}.

Proof. (1) In 1984 Baba [9] showed that L(\displaystyle \frac{2}{3}) has Hausdorff dimension \displaystyle \frac{1}{2} . Using the

self‐similarity Theorem 4.2 for balanced dyadic rationals, the same holds for y= $\tau$(x)
such that x has a binary expansion whose purely periodic part is (01), and whose

preperiodic part has an equal number of zeros and ones. The set of such x is dense in

[0 ,
1 ] ,

so their image values y are dense in [0, \displaystyle \frac{2}{3}].
(2) An upper bound on the Hausdorff dimension of 0.699 was established in 2010

by Maddock [60]. Recently de Amo, Bhouri, Díaz Carrillo and Fernándex‐Sánchez [7]
improved on his argument to establish the optimal upper bound of \displaystyle \frac{1}{2} on the Hausdorff

dimension. \square .

We next consider the nature of �generic level sets�, considered in two different

senses. The first is, to draw a abscissa value x at random in [0 ,
1 ] with respect to

Lebesgue measure, and to ask about the nature of the level set L( $\tau$(x)) . The second is,
to draw an ordinate value y at random in [0, \displaystyle \frac{2}{3}] ,

and ask what is the nature of the level

set L(y) . Figure 4 illustrates the two senses.

Figure 4. Ordinate level set L(y) at y=0.5 and abscissa level set L( $\tau$(x)) at x=0.3.

For sampling random abscissa values the result is as follows.

Theorem 12.3. For a full Lebesgue measure set of abscissa points x\in[0 ,
1 ] the

level set L( $\tau$(x)) contains an uncountable Cantor set.
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Proof. This is a corollary of a result of the author and Maddock [56, Theorem 1.4],
The latter result concerns local level sets, discussed below in Section 13. \square .

For sampling random ordinate values the corresponding result is quite different.

Theorem 12.4. (Buczolich 2008) For a full Lebesgue measure set of ordinate

points y\displaystyle \in[0, \frac{2}{3}] the level set L(y) is a finite set.

Proof. This result was proved by Buczolich [19] in 2008. \square 

A refinement of the ordinates result is as follows.

Theorem 12.5. Letting |L(y)| denote the number of elements in L(y) , if finite,
and setting |L(y)|=0 otherwise, one has \displaystyle \int_{0}^{\frac{2}{3}}|L(y)|dy=+\infty . That is, the expected
number of elements in |L(y)| for y\displaystyle \in[0, \frac{2}{3}] drawn uniformly, is infinite.

Proof. This result was obtained in [56, Theorem 6.3]. A simplified proof was given

by Allaart [2]. \square 

The ordinate and abscissa results on the size of level sets are not contradictory;

sampling a point x on the abscissa will tend to pick level sets which are �large�. In

order for these two results to hold it appears necessary that the Takagi function must

(in some imprecise sense) have �infinite slope� over part of its domain.

The following result goes some way towards reconciling these two results, by show‐

ing that the set of large �ordinate� level sets has full Hausdorff dimension.

Theorem 12.6. Let $\Gamma$_{H}^{ord} be set of ordinates y\displaystyle \in[0, \frac{2}{3}] such that the Takagi

function level set L(y) has positive Hausdorff dimension, i.e.

$\Gamma$_{H}^{ord}:=\{y: \dim_{H}(L(y))>0\}.

Then $\Gamma$_{H}^{ord} has full Hausdorff dimension, i.e.

(12.1) \dim_{H}($\Gamma$_{H}^{ord})=1.

It also has Lebesgue measure zero.

Proof. The Hausdorff dimension 1 property is shown by the author and Maddock

[57, Theorem 1.5]). The Lebesgue measure zero property follows from Theorem 12.4(1).
\square .

There is potentially a multifractal formalism connected to the Hausdoff dimensions

of the sets $\Gamma$_{H}^{ord}( $\alpha$) :=\{y: \dim_{H}(L(y))> $\alpha$\} ,
see [57, Sec. 1.2], and for multifractal

formalism see Jaffard [42], [43].
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Theorem 12.4 asserts that almost all level sets in the ordinate sense are finite. The

finite level sets have an intricate structure, which is analyzed by Allaart [3]. Finite level

sets must have even cardinality, and all even values occur.

§13. Local Level Sets of the Takagi Function

The notion of local level set of the Takagi function was recently introduced by the

author and Maddock [56]. These sets are closed subsets of level sets that are directly
constructible from the binary expansions of any one of their members.

Local level sets are defined by equivalence relation on elements x\in[0 ,
1 ] based

on properties of their binary expansion:  x=.b_{1}b_{2}b_{3}\cdots . Recall that in Section 2 we

defined the deficient digit function

 D_{j}(x) :=j-2(b_{1}+b_{2}+\cdots+b_{j}) .

The quantity D(x) counts the excess of binary digits b_{k}=0 over those with b_{k}=1 in

the first j digits. We then associate to any x the sequence of ((breakpoints� j at which

tie‐values D_{j}(x)=0 occur, setting

Z(x):=\{c_{m}: D_{c_{m}}(x)=0\}.

where we define c_{0}=c_{0}(x)=0 and set c_{0}(x)<c_{1}(x)<c_{2}(x)< This sequence

of tie‐values may be finite or infinite, and if it is finite, ending in c_{n}(x) ,
we make the

convention to adjoin a final �breakpoint�  c_{n+1}(x)=+\infty . We call a �block� a set of

digits between two consecutive tie‐values,

 B_{k}(x):=\{b_{j}:c_{k}(x)<j\leq c_{k+1}(x)\}.

Two blocks are called equivalent, written B_{k}(x)\sim B_{k'}(x') ,
if their endpoints agree

(c_{k}(x)=c_{k'}(x') and c_{k+1}(x)=c_{k'+1}(x') ) and either B_{k}(x)=B_{k'}(x') or B_{k}(x)=
\overline{B}_{k'}(x') ,

where the bar operation flips all the digits in the block, i.e.

b_{j}\mapsto b_{\acute{j}}:=1-b_{j}, c_{k}<j\leq c_{k+1}.

Finally, we define the equivalence relation on binary expansions x\sim x' to mean that

Z(x)\equiv Z(x') ,
and furthermore every block B_{k}(x)\sim B_{k}(x') for k\geq 0 . We define the

local level set L_{x}^{loc} associated to x to be the set of equivalent points,

L_{x}^{loc}:=\{x': x'\sim x\}.

It is easy to show using Takagi�s formula (Theorem 3.2) that the relation x\sim x' implies
that  $\tau$(x)= $\tau$(x') so that x and x' are in the same level set of the Takagi function.
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Each local level set L_{x}^{loc} is a closed set, and is either a finite set if Z(x) is finite,
or else is a perfect totally disconnected set (Cantor set) if Z(x) is infinite. The case of

dyadic rationals x=\displaystyle \frac{k}{2^{n}} is exceptional, since they have two binary expansions, and we

remove this ambiguity by taking the binary expansion for x that ends in zeros.

The definition implies that each level set L(y) partitions into a disjoint union of

local level sets L_{x}^{loc} . A priori this union may be finite, countable or uncountable. Finite

and countable examples are given by the author and Maddock [57]. For the uncountable

case, see Theorem 13.5 below. Note that all countably infinite level sets necessarily are

a countable union of finite local level sets. The only level sets currently known to be

countably infinite are certain dyadic rational levels, including x=\displaystyle \frac{1}{2}.
The paper [56] characterizes the size of a �random� local level set sampled by ran‐

domly drawing an abscissa value x
,

as follows; this result immediately implies Theorem

12.1.

Theorem 13.1. For a full Lebesgue measure set of abscissa points x\in[0 ,
1 ] the

local level set L_{x}^{loc} is a Cantor set of Hausdorff dimension 0.

Proof. This is shown in [56, Theorem 1.4]. \square .

In order to analyze local level sets in the ordinate space 0\displaystyle \leq y\leq\frac{2}{3} ,
we label each

local level set by its leftmost endpoint. We define the deficient digit set $\Omega$^{L} by the

condition

(13.1) $\Omega$^{L}:=\{x\in[0 ,
1 ] :  x=0.b_{1}b_{2}b_{3}\ldots such that  D_{j}(x)\geq 0, j=1 , 2, 3,

This set turns out to be quite important for understanding the Takagi function.

Theorem 13.2. (1) The deficient digit set $\Omega$^{L} is the set of left most endpoints

of all local level sets.

(2) The set $\Omega$^{L} is a closed, perfe ct set (Cantor set). It has Lebesgue measure 0.

(3) The set $\Omega$^{L} has Hausdorff dimension 1.

Proof. (1) and (2) are shown in [56, Theorem 4.6].
(3) This was shown in [57, Theorem 6.1]. \square 

We show that the Takagi function restricted to the set $\Omega$^{L} is quite nicely behaved,
as given in the following result.

Theorem 13.3. The function $\tau$^{S}(x) defined by $\tau$^{S}(x)= $\tau$(x)+x for x\in$\Omega$^{L} is

a nondecreasing function on $\Omega$^{L} . Define its extension to all x\in[0 ,
1 ] by

$\tau$^{S}(x) :=\displaystyle \sup\{$\tau$^{S}(x_{1}):x_{1}\leq x with x_{1}\in$\Omega$^{L}\}.
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Then the function $\tau$^{S}(x) is a monotone singular function. That is, it is a nondecreasing
continuous function having $\tau$^{S}(0)=0, $\tau$^{S}(1)=1 ,

which has derivative zero at (Lebesgue)
almost all points of [0 ,

1 ] . The closure of the set of points of increase of $\tau$^{S}(x) is the

deficient digit set $\Omega$^{L}.

Proof. This is shown in [56, Theorem 1.5]. \square .

Figure 5. Graph of Takagi singular function $\tau$^{S}(x)

We call the function $\tau$^{S}(x) : [0, 1]\rightarrow[0 ,
1 ] the Ta kagi singular function; it is pictured

in Figure 5. Using the functional equation  $\tau$(\displaystyle \frac{1}{2}x)=\frac{1}{2}( $\tau$(x)+x) given in Theorem 4.1(1),
we deduce that the function \displaystyle \frac{1}{2}$\tau$^{S}(x) agrees with  $\tau$(x) on the set \displaystyle \frac{1}{2}$\Omega$^{L} . This shows that

the Takagi function is strictly increasing when restricted to the domain \displaystyle \frac{1}{2}$\Omega$^{L}.
Associated to the Takagi singular function is a nonnegative Radon measure d$\mu$_{S},

which we call the Takagi singular measure, such that

(13.2) $\tau$^{S}(x)=\displaystyle \int_{0}^{x}d$\mu$_{S}.
It is singular with respect to Lebesgue measure and defines an interesting probability
measure on [0 ,

1 ] . The Takagi singular measure is not translation‐invariant, but it has

certain self‐similarity properties under dyadic rescalings, compatible with the functional

equations of the Takagi function. These are useful in explicitly computing the measure

of various interesting subsets of $\Omega$^{L}
,

see [57]. One may compare its properties with those

of the Cantor function, see Dovghoshey et al [27, Sect. 5]. A major difference is that its

support $\Omega$^{L} has full Hausdorff dimension, while the Cantor set has Hausdorff dimension

\log_{3}(2)\approx 0.63092.

By an application of the co‐area formula of geometric measure theory for functions

of bounded variation (in the version in Leoni [58, Theorem 7.2 and Theorem 13.25]) to

a relative of the Takagi singular function, the author with Maddock [56] determined the

average number of local level sets on a random level.
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Theorem 13.4. For a full Lebesgue measure set of ordinate points y\displaystyle \in[0, \frac{2}{3}] the

number N^{loc}(y) of local level sets at level y is finite. Furthermore

\displaystyle \int_{0}^{\frac{2}{3}}N^{loc}(y)dy=1.
That is, the expected number of local level sets at a uniformly drawn random level in

[0, \displaystyle \frac{2}{3}] is exactly \displaystyle \frac{3}{2}.

Proof. This is shown in [56, Theorem 6.3]. A different derivation is given in [2], that

avoids the co‐area formula. \square 

One can easily derive both parts of Theorem 12.4 from this result. This result fails

to give any information about the multiplicity of local level sets on those levels having
an uncountable level set, because the set of such levels y has Lebesgue measure 0.

Recently Allaart [2] established the following result about the multiplicities of local

level sets in a level set.

Theorem 13.5. (Allaart 2011) There exist levels y such that the level set L(y)
contains uncountably many distinct local level sets. The set of such levels is dense in

[0, \displaystyle \frac{2}{3}].

Allaart ([2], [3]) has obtained further information on the structure of level sets and

local level sets, classifying the values giving different types of level sets in terms of the

Borel hierarchy of descriptive set theory. Some of these sets are complicated enough
that they apparently live in the third level of the Borel hierarchy.

§14. Level Sets at Rational Levels

In 2005 Knuth [51, Problem 83, p. 32] raised the question of determining which

rational levels y=\displaystyle \frac{r}{s} have level sets have L(\displaystyle \frac{r}{s}) that are uncountable.

The author with Maddock [56] answered the much easier question of determining
when certain rational numbers x give uncountable local level sets L_{x}^{loc}\subset L( $\tau$(x)) .

Theorem 14.1. (1) A rational number x=\displaystyle \frac{p}{q}\in[0 ,
1 ] has an uncountable local

level set L_{\frac{l_{op}}{q}}^{c} if and only if its binary expansion has a pre‐periodic part with an equal
number of zeros and ones, and if also its purely periodic part has an equal number of
zeros and ones.

(2) If a rational x has L_{x}^{loc} uncountable, then L_{x}^{loc} contains a countably infinite set

of rational numbers.
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This criterion implies that dyadic rationals x=\displaystyle \frac{m}{2^{n}} must have finite local level sets.

For such values y= $\tau$(\displaystyle \frac{k}{2^{l}}) is also a dyadic rational. Concerning dyadic rational levels,
Allaart [3] obtains the following much stronger result.

Theorem 14.2. (Allaart 2011) Let y=\displaystyle \frac{k}{2^{7m}} be a dyadic rational with 0\displaystyle \leq y\leq\frac{2}{3}.
Then the level set L(y) is either finite or countably infinite.

The examples y=0 and y=\displaystyle \frac{1}{2} given above show that both alternatives in this

result occur. Furthermore all elements on the given dyadic rational level are rational.

However if the set is countably infinite then these elements need not all be dyadic
rationals. For example  $\tau$(\displaystyle \frac{1}{6})=\frac{1}{2} ,

cf. [56, Theorem 7.1].

§15. Open Problems

There remain many open questions about the Takagi function. We mention a few

of them.

1. Determine analytic and other properties of the conjugate Takagi function Y(x)
defined in Theorem 6.2.

2. Consider the set of all x such that the abscissa level set L( $\tau$(x)) has Hausdorff

dimension zero. Does this set have full Lebesgue measure in [0 ,
1 ] ?

3. Is there a continuous function on the interval for which the Takagi singular measure

is a �natural� invariant probability measure?

4. Determine the dimension spectrum function

f_{ $\tau$}( $\alpha$):=\dim_{H}(\{y: \dim_{H}(L(y))\geq $\alpha$\}.

(Some bounds on f_{ $\tau$}( $\alpha$) are given in [57].)

5. Knuth�s problem ([51, 7.2.1.3, Prob. 83]): Find a direct characterization of the set

of rational y which have an uncountable level set.
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