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Universality of composite functions

By

Antanas Laurinčikas *

Abstract

We modify and extend some results of [10] on the universality of composite functions of

the Riemann zeta‐function.

§1. Introduction

The famous Mergelyan theorem [15], see also [18], asserts that every function f(s)
of complex variable s= $\sigma$+it continuous on a compact subset K\subset \mathbb{C} and analytic in

the interior of K can be approximated uniformly on K by polynomials in s . Thus,for

every  $\epsilon$>0 ,
there exists a polynomial P(s) such that

\displaystyle \sup_{s\in K}|f(s)-p(s)|< $\epsilon$.
Examples show that the hypotheses on K and f(s) can�t be weakened. For example, K

can�t be a closed rectangle with an excluded disc. Thus, really the Mergelyan theorem

gives necessary and sufficient conditions for the approximation of analytic functions by

polynomials. The theorem is very important not only theoretically but also practically
because polynomials are rather simple entire functions.

Also, it is known that there exist so called universal functions whose shifts ap‐

proximate any analytic function. The first result in this direction belongs to Birkhoff

[3]. From his theorem, it follows that there exists an entire function g(s) such that, for

every entire function f(s) ,
a compact subset K\subset \mathbb{C} and arbitrary  $\epsilon$>0 ,

there exists a

number a\in \mathbb{C} such that

\displaystyle \sup_{s\in K}|g(s+a)-f(s)|< $\epsilon$.
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Unfortunately, the Birkhoff theorem is entirely non‐effective. It gives only the existence

of the function g(s) ,
and any example of g(s) is not given. The number a which depends,

obviously, on f(s) ,
K and  $\epsilon$ also can�t be effectively evaluated.

Only in 1975, the first example of functions  g(s) such that their shifts g(s+i $\tau$) ,

 $\tau$\in \mathbb{R} , approximate uniformly on some compact subsets every analytic function was

found. It turned out that the above property is due to the famous Riemann zeta‐

function  $\zeta$(s) which is defined, for  $\sigma$>1 , by

 $\zeta$(s)=\displaystyle \sum_{m=1}^{\infty}\frac{1}{m^{s}},
and by analytic continuation elsewhere, except for a simple pole at s=1 with residue 1.

Generalizing Bohr�s [5] and Bohr‐Courant�s [6] denseness results on value‐distribution

of  $\zeta$(s) , Voronin discovered [17] a remarkable property of  $\zeta$(s) which now is called

universality.

Theorem 1.1 ([17],[7]). Let 0<r<\displaystyle \frac{1}{4} . Suppose that f(s) is a continuous non‐

vanishing function on the disc |s|\leq r ,
and analytic for |s|<r . Then, for every  $\epsilon$>0,

there exists a real number  $\tau$= $\tau$( $\epsilon$) such that

(1.1) \displaystyle \max_{|s|\leq r}| $\zeta$(s+\frac{3}{4}+i $\tau$)-f(s)|< $\epsilon$.
As an important result, the Voronin theorem was observed by the mathematical

community. Many number theorists, among them Reich, Gonek, Bagchi, Kohji Mat‐

sumoto, Garunkštis, J. Steuding, R. Steuding, Sander, Schwarz, Mishou, Bauer, Naka‐

mura, Nagoshi, Kačinskait Macaitiene
\cdot

, Genys, Šiauči \overline{}‐nas, Kaczorowski, Pańkowski,

Lee, the author and others improved and generalized Theorem 1.1 for other zeta and

L‐functions, see survey papers [9],[14] and the monograph [16]. At the moment, we

know the following version of the Voronin theorem. Let D=\displaystyle \{s\in \mathbb{C} : \frac{1}{2}< $\sigma$<1\} ,
and

measA} denote the Lebesgue measure of a measurable set A\subset \mathbb{R}.

Theorem 1.2. Suppose that K is a compact subset of the strip D with connected

complement, and f(s) is a continuous and non‐vanishing function on K
,

and analytic
in the interior of K. Then, for every  $\epsilon$>0,

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}| $\zeta$(s+i $\tau$)-f(s)|< $\epsilon$\}>0.
Proof of Theorem 1.2 is given, for example, in [8]. Thus, Theorem 1.2 once more

shows that the set of the values of  $\zeta$(s) is very dense, there are infinitely many shifts

 $\zeta$(s+i $\tau$) which approximate a given analytic function. This fact was already known to

Voronin. In the proof of Theorem 1.1, he obtains that the set of  $\tau$ satisfying inequality
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(1.1) has a positive lower density, however, this was not fixed in the statement of the

theorem.

From hypotheses of Theorem 1.2, one can easily see a relation with the Mergelyan
theorem.

The original Voronin�s proof of Theorem 1.1 is based on the approximation of

 $\zeta$(s) in the mean by a finite Euler�s product over primes, it also uses a version of

Riemann�s theorem on rearrangement of series in Hilbert space as well as the Kronecker

approximation theorem.

There exists another, probabilistic proof, of Theorem 1.2 proposed by Bagchi [1].
We recall shortly this proof because we will apply it later.

1. A limit theorem in the space of analytic functions for the function  $\zeta$(s) .

Denote by H(G) the space of analytic functions in the region G\subset \mathbb{C} equipped with

the topology of uniform convergence on compacta. Let \mathcal{B}(S) stand for the class of Borel

sets of the space S . Moreover, define

 $\Omega$=\displaystyle \prod_{p}$\gamma$_{p},
where $\gamma$_{p}=\{s\in \mathbb{C} : |s|=1\} for each prime p . By the Tikhonov theorem, the torus

 $\Omega$ with the product topology and pointwise multiplication is a compact topological
Abelian group. Thus, on ( $\Omega$, \mathcal{B}( $\Omega$)) ,

the probability Haar measure m_{H} exists, and we

have the probability space ( $\Omega$, \mathcal{B}( $\Omega$), m_{H}) . Let  $\omega$(p) denote the projection of  $\omega$\in $\Omega$

to the coordinate space  $\gamma$_{p} . Then, on the probability space ( $\Omega$, B( $\Omega$), m_{H}) ,
define the

H(D) ‐valued random element  $\zeta$(s,  $\omega$) by

 $\zeta$(s,  $\omega$)=\displaystyle \prod_{p}(1-\frac{ $\omega$(p)}{p^{s}})^{-1}
Note that the latter infinite product over primes, for almost all  $\omega$\in $\Omega$ , converges

uniformly on compact subsets of the strip  D
,

and define there a H(D) ‐valued random

element. Denote by P_{ $\zeta$} the distribution of the random element  $\zeta$(s,  $\omega$) , i.e., a probability
measure defined by

P_{ $\zeta$}(A)=m_{H}( $\omega$\in $\Omega$ :  $\zeta$(s,  $\omega$)\in A) , A\in \mathcal{B}(H(D)) .

Proposition 1.3. The probability measure

P_{T}(A)de=^{f}\displaystyle \frac{1}{T} meas  $\tau$\in[0, T]: $\zeta$(s+i $\tau$)\in A}, A\in B(H(D)) ,

converges weakly to P_{ $\zeta$} as T\rightarrow\infty.

2. The support of the measure P_{ $\zeta$} (or of the random element  $\zeta$(s,  $\omega$) ).
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The space H(D) is separable. Therefore, the support of the measure P_{ $\zeta$} is a minimal

closed set S_{P} such that P_{ $\zeta$}(S_{P_{ $\zeta$}})=1 . The set S_{P_{ $\zeta$}} consists of all elements g\in H(D)
such that, for each open neighbourhood G of g ,

the inequality P_{ $\zeta$}(G)>0 is satisfied.

An application of elements from the theory of Hilbert spaces and of entire functions

of exponential type leads to the following assertion.

Proposition 1.4. The support of the measure P_{ $\zeta$} is the set

Sde=^{f} {g\in H(D):g^{-1}(s)\in H(D) or g(s)\equiv 0 }.

Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of the Mergelyan

theorem, and Propositions 1.3 and 1.4. By the Mergelyan theorem, there exists a

polynomial p(s) such that

(1.2) \displaystyle \sup_{s\in K}|f(s)-\mathrm{e}^{p(s)}|<\frac{ $\epsilon$}{2}.
Define

G=\displaystyle \{g\in H(D):\sup_{s\in K}|g(s)-\mathrm{e}^{p(s)}|<\frac{ $\epsilon$}{2}\}
Since G is an open neighbourhood of the function \mathrm{e}^{p(s)} and, by Proposition 1.4, \mathrm{e}^{p(s)}

is an element of the support of the measure P_{ $\zeta$} ,
we obtain that P_{ $\zeta$}(G)>0 . Using

Proposition 1.4 and an equivalent of the weak convergence of probability measures in

terms of open sets, see Theorem 2.1 of [2], we find that

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}| $\zeta$(s+i $\tau$)-\mathrm{e}^{p(s)}|<\frac{ $\epsilon$}{2}\}\geq P_{ $\zeta$}(G)>0.
This together with (1.2) proves the theorem. \square 

Universality is a very important property of zeta and L‐functions, it has deep
theoretical and practical applications. For example, it is known [1] that the Riemann

hypothesis is equivalent to the assertion that, for every compact subset K\subset D with

connected complement and any  $\epsilon$>0,

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}| $\zeta$(s+i $\tau$)- $\zeta$(s)|< $\epsilon$\}>0.
This result was generalized by Steuding in [16]. Also, universality implies the functional

independence for zeta‐functions, can be used for estimation of the number of zeros

in some regions as well as in the moment problem of zeta‐functions. An example of

practical applications is given in [4]. Therefore, it is an important problem to extend

the class of universal functions.
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There exists the Linnik‐Ibragimov conjecture that all functions in some half‐plane

given by Dirichlet series, analytically continuable to the left of the absolute convergence

half‐plane and satisfying certain natural growth conditions are universal. It is a bit

strange because Voronin published his universality theorem in 1975 while Linnik died

in 1972. However, Voronin discovered the universality of  $\zeta$(s) earlier, his candidate

degree thesis (1972) contains the results close to the universality theorem, and Linnik

knew this. The theorem of 1975 has only a simplified short enough proof. Ibragimov
informed the author on Linnik�s conjecture in 1990, and said that he also supports this

conjecture. Thus, it is reasonable to call it the Linnik‐Ibragimov conjecture.
On the other hand, there exist non‐universal functions given by Dirichlet series.

For example, if

a_{m}=\left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} m=m_{0}^{k}, k\in \mathbb{N},\\
0 \mathrm{i}\mathrm{f} m\neq m_{0}^{k},
\end{array}\right.
where m_{0}\in \mathbb{N}\backslash \{1\} ,

then we have that, for  $\sigma$>0,

\displaystyle \sum_{m=1}^{\infty}\frac{a_{m}}{m^{s}}=\sum_{k=1}^{\infty}\frac{1}{m_{0}^{ks}}=\frac{1}{m_{0}^{s}-1}.
Then function (m_{0}^{s}-1)^{-1} is analytic in the whole complex plane, except for simple

poles lying on the line  $\sigma$=0 , however, obviously, is non‐universal.

§2. Universality of the logarithm

Define \log $\zeta$(s) in the strip D from \log $\zeta$(2)\in \mathbb{R} by continuous variation along the

line segments [2, 2+it] and [2+it,  $\sigma$+it] provided that the path does not pass a possible
zero of  $\zeta$(s) or pole s=1 . If this does, then we take

\displaystyle \log $\zeta$( $\sigma$+it)=\lim_{ $\epsilon$\rightarrow+0}\log $\zeta$( $\sigma$+i(t+ $\epsilon$
In [7], it is proved that the function \log $\zeta$(s) is also universal.

Theorem 2.1 ([7]). Let 0<r<\displaystyle \frac{1}{4} . Suppose that f(s) is a function continuous

on the disc |s|\leq r and analytic for |s|<r . Then, for every  $\epsilon$>0 ,
there exists a real

number  $\tau$= $\tau$( $\epsilon$) such that

\displaystyle \max_{|s|\leq r}|\log $\zeta$(s+\frac{3}{4}+i $\tau$)-f(s)|< $\epsilon$.
In [7], Theorem 1.1 is deduced from Theorem 2.1. However, we do not know

does Theorem 1.2 imply the universality of \log $\zeta$(s) . Indeed, let K\subset D be a compact

subset with connected complement, and let f(s) be a continuous function on K which
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is analytic in the interior of K . Clearly, \mathrm{e}^{f(s)}\neq 0 on K . Denote by M_{K}=\displaystyle \max_{s\in K}|\mathrm{e}^{-f(s)}|.
Then Theorem 1.2 implies that, for every  $\epsilon$>0,

(2.1) \displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}| $\zeta$(s+i $\tau$)-\mathrm{e}^{f(s)}|<\frac{ $\epsilon$}{2M_{K}}\}>0.
Suppose that  $\tau$\in \mathbb{R} satisfies the inequality

\displaystyle \sup_{s\in K}| $\zeta$(s+i $\tau$)-\mathrm{e}^{f(s)}|<\frac{ $\epsilon$}{2M_{K}}.
Then we have that, for such  $\tau$ and all  s\in K,

\mathrm{e}^{\log $\zeta$(s+i $\tau$)-f(s)}=1+ $\epsilon$(s) ,

where \displaystyle \sup_{s\in K}| $\epsilon$(s)|< \displaystyle \frac{ $\epsilon$}{2} . However, from this, it does not follow that the difference

|\log $\zeta$(s+i $\tau$)-f(s)| is small for all s\in K ,
therefore (2.1) does not imply the inequality

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}|\log $\zeta$(s+i $\tau$)-f(s)|< $\epsilon$\}>0.
I thank Professor Kohji Matsumoto who pointed out the above problem.

Theorem 2.1 shows that the composite function F( $\zeta$(s))=\log $\zeta$(s) is universal.

Also, it is known [1], that the derivative $\zeta$'(s) is universal, too. Thus, a problem arises

to describe classes of functions F such that the composite function F( $\zeta$(s)) preserve the

universality property. The first results in this direction were obtained in [10], and our

aim is to present them in a more precise and convenient form.

§3. Lipschitz class

A sufficiently wide class of functions F : H(D)\rightarrow H(D) with the universality

property for F( $\zeta$(s)) can be described as follows. We say that a function  F:H(D)\rightarrow
 H(D) belongs to the class Lip ( $\alpha$) if the following hypotheses are satisfied:

1^{0} For every polynomial p=p(s) and every compact subset K\subset D with connected

complement, there exists an element g\in F^{-1}\{p\}\subset H(D) such that g(s)\neq 0 on K ;

2^{0} For every compact subset K\subset D with connected complement, there exist

constants c>0 and  $\alpha$>0 ,
and a compact subset K_{1}\subset D with connected complement

such that

\displaystyle \sup_{s\in K}|F(g_{1}(s))-F(g_{2}(s))|\leq c\sup_{s\in K_{1}}|g_{1}(s)-g_{2}(s)|^{ $\alpha$}
for all g_{1}, g_{2}\in H(D) .

Hypothesis 2^{0} is an analogue of the classical Lipschitz condition with exponent  $\alpha$.
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We note that the function F:H(D)\rightarrow H(D) , F(g)=g' ,
is in the class Lip(1).

Obviously, hypothesis 1^{0} is satisfied. It remains to check hypothesis 2. Let K\subset D

be a compact subset with connected complement, G\supset K be an open set, and K_{1}\subset D

be a compact subset with connected complement such that G\subset K_{1} . We take a simple
closed contour l lying in K_{1}\backslash G and enclosing the set K . Then, by the Cauchy integral

formula, for g_{1}, g_{2}\in H(D) ,

F(g_{1}(s))-F(g_{2}(s))=\displaystyle \frac{1}{2 $\pi$ i}\int_{l}\frac{g_{1}(z)-g_{2}(z)}{(s-z)^{2}} dz .

Thus, for all s\in K,

|F(g_{1}(s))-F(g_{2}(s))|\displaystyle \leq c\sup_{z\in l}|g_{1}(z)-g_{2}(z)|\leq c\sup_{z\in K_{1}}|g_{1}(s)-g_{2}(s)|
with some c>0 ,

and we obtain hypothesis 2^{0} with  $\alpha$=1.

Theorem 3.1. Suppose that F\in \mathrm{L}\mathrm{i}\mathrm{p}( $\alpha$) . Let K\subset D be a compact subset with

connected complement, and f(s) be a continuous function on K and analytic in the

interior of K. Then, for every  $\epsilon$>0,

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}|F( $\zeta$(s+i $\tau$))-f(s)|< $\epsilon$\}>0.
Proof. By the Mergelyan theorem, there exists a polynomial p(s) such that

(3.1) \displaystyle \sup_{s\in K}|f(s)-p(s)|<\frac{ $\epsilon$}{2}.
In view of hypothesis 1^{0} of the class Lip ( $\alpha$) ,

we have that there exists  g\in F^{-1}\{p\}\subset
 H(D) and, moreover, g(s)\neq 0 on K . Let  $\tau$\in \mathbb{R} be such that

(3.2) \displaystyle \sup_{s\in K_{1}}| $\zeta$(s+i $\tau$)-g(s)|<c^{-\frac{1}{ $\alpha$}}(\frac{ $\epsilon$}{2})^{\frac{1}{ $\alpha$}},
where K_{1}\subset D is a compact subset with connected complement corresponding the set

K in hypothesis 2^{0} of the class Lip ( $\alpha$) . By hypothesis 2, for  $\tau$ satisfying (3.2),

\displaystyle \sup_{s\in K}|F( $\zeta$(s+i $\tau$))-p(s)|\leq c\sup_{s\in K_{1}}| $\zeta$(s+i $\tau$)-g(s)|^{ $\alpha$}<\frac{ $\epsilon$}{2}.
This and Theorem 1.2 show that

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}|F( $\zeta$(s+i $\tau$))-p(s)|<\frac{ $\epsilon$}{2}\}>0,
and by use of (3.1) the proof is complete.
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In [10], Theorem 3.1 in a bit different form was only mentioned without proof.

§4. Other universality classes

In [10], three classes of functions F such that the function F( $\zeta$(s)) is universal are

presented. We will remind and complement them. The set S is defined in Proposition
1.4.

Theorem 4.1 ([10]). Suppose that F:H(D)\rightarrow H(D) is a continuous function
such that, for every open set G\subset H(D) ,

the set (F^{-1}G)\cap S is non‐empty. Let K and

f(s) be the same as in Theorem 3.1. Then the same assertion as in Theorem 3.1 is

true.

The hypothesis of Theorem 4.1 that the set (F^{-1}G)\cap S is non‐empty for every

open set G\subset H(D) is very general, it is difficult to check it.

In the space H(G) ,
we can use the metric

 $\rho$(g_{1}, g_{2})=\displaystyle \sum^{\infty}2^{-m}\underline{\sup_{s\in K_{m}}|g_{1}(s)-g_{2}(s)|} g_{1}, g_{2}\in H(G) ,

1+ \displaystyle \sup |g_{1}(S)-g_{2}(S)|
�

m=1
s\in K_{m}

which induces the topology of uniform convergence on compacta. Here \{K_{m} : m\in \mathbb{N}\}
is a sequence of compact subsets of G such that

G=\displaystyle \bigcup_{m=1}^{\infty}K_{m},
K_{m}\subset K_{m+1} for all m\in \mathbb{N} ,

and if K\subset G is a compact subset, then K\subset K_{m} for

some m\in \mathbb{N} . Therefore, it is easily seen that the approximation in the space H(G)
reduces to that on the sets K_{m} with large enough m . If we consider the space H(D) ,

it

is possible to choose the sets K_{m} to be with connected complements. Thus, in view of

the Mergelyan theorem, we can involve polynomials in the approximation process. This

leads to the following version of Theorem 4.1.

Theorem 4.2. Suppose that F:H(D)\rightarrow H(D) is a continuous function such

that, for each polynomial p=p(s) ,
the set (F^{-1}\{p\})\cap S is non‐empty. Let K and f(s)

be the same as in Theorem 3.1. Then the same assertion as in Theorem 3.1 is true.

Proof. Theorem 4.2 is not contained in [10], therefore we give its proof. First we

observe that Proposition 1.3, the continuity of F and Theorem 5.1 of [2] imply the weak

convergence for

P_{T,F}() de=^{f}\displaystyle \frac{1}{T} meas \{ $\tau$\in[0, T] : F( $\zeta$(s+i $\tau$))\in A\}, A\in \mathcal{B}(H(D)) ,



Universality 0F composite functions 199

to the measure P_{ $\zeta$,F} as  T\rightarrow\infty
,

where  P_{ $\zeta$,F} is the distribution of the random element

F( $\zeta$(s,  $\omega$)) .

In the next step, we find the support of the measure P_{ $\zeta$,F} . Let g be an arbitrary
element of H(D) ,

and G be an any open neighbourhood of g . Since the function F is

continuous, the set F^{-1}G is open, too. Let \hat{K}\subset D be an arbitrary compact subset with

connected complement. Then, by the Mergelyan theorem, for every  $\delta$>0 ,
there exists

a polynomial p=p(s) such that

\displaystyle \sup_{s\in\hat{K}}|g(s)-p(s)|< $\delta$.
Therefore, taking into account the above remark on the approximation in the space

H(D) ,
we may assume that p\in G ,

too. This and the hypothesis (F^{-1}\{p\})\cap S\neq\emptyset show

that the set (F^{-1}G)\cap S is non‐empty. So, we obtained the hypothesis of Theorem 4.1,
and we might finish the proof, however, for fullness, we continue it. From Proposition
1.4 and properties of the support, we deduce that

m_{H}( $\omega$\in $\Omega$:F( $\zeta$(s,  $\omega$))\in G)=m_{H}( $\omega$\in $\Omega$: $\zeta$(s,  $\omega$)\in F^{-1}G)>0.

Since g and G are arbitrary, this shows that the support of the measure P_{ $\zeta$,F} is the

whole of H(D) .

Now it is easy to complete the proof. By the Mergelyan theorem again, there exists

a polynomial p(s) such that

(4.1) \displaystyle \sup_{s\in K}|f(s)-p(s)|<\frac{ $\epsilon$}{2}.
Define

G=\displaystyle \{g\in H(D):\sup_{s\in K}|g(s)-p(s)|<\frac{ $\epsilon$}{2}\}
Since the polynomial p(s) is an element of the support of P_{ $\zeta$,F} ,

and G is an open

neighbourhood of p(s) ,
we have that P_{ $\zeta$,F}(G)>0 . Therefore, using an equivalent of the

weak convergence of probability measures in terms of open sets, Theorem 2.1 of [2], we

obtain from the weak convergence of P_{T,F} that

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas  $\tau$\in[0, T] : F( $\zeta$(s+i $\tau$))\in G } \geq P_{ $\zeta$,F}(G)>0,

or, by the definition of G,

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}|F( $\zeta$(s+i $\tau$))-p(s)|<\frac{ $\epsilon$}{2}\}>0.
Combining this with (4.1) gives the theorem. \square 
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The main property of the set S is a non‐vanishing of functions g\in H(D) . As The‐

orem 4.2 shows, in the definition of the function F
,

we may use polynomials. However,
in the infinite strip D

,
it is difficult to derive some information on the non‐vanishing for

the functions from the pre‐image F^{-1}\{p\} of a given polynomial p=p(s) . Therefore, it

is more convenient to consider the space H(G) ,
where G is some bounded region. This

is discussed in Theorem 6 of [10].
For V>0 ,

let D_{V}=\displaystyle \{s\in \mathbb{C} : \frac{1}{2}< $\sigma$<1, |t|<V\} ,
and

S_{V}= { g\in H(D_{V}) : g^{-1}(s)\in H(D_{V}) or g(s)\equiv 0 }.

Theorem 4.3 ([10]). Let K and f(s) be the same as in Theorem 3.1. Suppose
that V is such that K\subset D_{V} ,

and that F:H(D_{V})\rightarrow H(D_{V}) is a continuous function
such that, for each polynomial p=p(s) ,

the set (F^{-1}\{p\})\cap S_{V} is non‐empty. Then the

same assertion as in Theorem 3.1 is true.

It is not difficult to show that, for some functions F
,

for each polynomial p=p(s) ,

there exists a polynomial q=q(s) , q\in F^{-1}\{p\} ,
and q(s)\neq 0 for s\in D_{V} . For example,

this holds for the function

F(g)=c_{1}g'+ +c_{r}g^{(r)}, g\in H(D_{V}) , c_{1}, c_{r}\in \mathbb{C}\backslash \{0\}.

Thus, F( $\zeta$(s)) is universal in the sense of Theorem 3.1.

In Theorems 3.14.3, the shifts F( $\zeta$(s+i $\tau$)) approximate any analytic function. If

to approximate analytic functions from some subset of H(D) ,
it is possible to extend

the class of universal functions F( $\zeta$(s)) . This is implemented in the next theorem which

is a corrected and extended version of Theorem 7 from [10].
For a_{1}, a_{r}\in \mathbb{C} ,

let

H_{a_{1},\ldots,a_{r}}(D)=\{g\in H(D) : (g(s)-a_{j})^{-1}\in H(D), j=1, r\}\cup\{F(0)\}.

Theorem 4.4. Suppose that F:H(D)\rightarrow H(D) is a continuous function such

that F(S)\supset H_{a_{1},\ldots,a_{r}}(D) . If r=1
,

let K\subset D be a compact subset with connected

complement, and let f(s) be a continuous and\neq a_{1} function on K which is analytic
in the interior of K. If r\geq 2 ,

let K\subset D be an arbitrary compact subset, and  f(s)\in
 H_{a_{1},\ldots,a_{r}}(D) . Then the same assertion as in Theorem 3.1 is true.

Proof. The proof in the case r=1 is the same as in [10]. However, the case r=2

in [10] is not correct because the function h_{a,b}(s) in p. 2330 can take the value b.

In the case r\geq 2 ,
the proof is very short. Let g be an arbitrary element of

H_{a_{1},\ldots,a_{r}}(D) . Then there exists an element \hat{g}\in S such that F(\hat{g})=g . This, the

continuity of F and Proposition 1.4 show that every open neighbourhood G of the
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element g has positive P_{ $\zeta$,F}- measure: P_{ $\zeta$,F}(G)>0 . Hence, g is an element of the

support of the measure P_{ $\zeta$,F} . Therefore, the closure of H_{a_{1},\ldots,a_{r}}(D) is a subset of the

support of P_{ $\zeta$,F}.
Define

G_{2}=\displaystyle \{g\in H(D):\sup_{s\in K}|g(s)-f(s)|<\frac{ $\epsilon$}{2}\}
Since the function f(s)\in H_{a_{1},\ldots,a_{r}}(D) ,

it is an element of the support of P_{ $\zeta$,F} . Thus,

P_{ $\zeta$,F}(G_{2})>0 , and, using Proposition 1.3, we obtain that

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} meas \{ $\tau$\in[0, T] : \displaystyle \sup_{s\in K}|F( $\zeta$(s+i $\tau$))-f(s)|< $\epsilon$\}\geq P_{ $\zeta$,F}(G_{2})>0.
\square 

For example, if r=1 and a_{1}=0 ,
we obtain the universality for the function $\zeta$^{N}(s) ,

N\in \mathbb{N} . If r=2 and a_{1}=-1, a_{2}=1 ,
Theorem 4.4 gives the universality for the

functions \sin $\zeta$(s) , \cos $\zeta$(s) , \sinh $\zeta$(s) and \cosh $\zeta$(s) . For the later functions, we have to

check the inclusion F(S)\supset H_{-1,1}(D) . Let F(g)=\cosh(g) . We consider the equation

\displaystyle \frac{\mathrm{e}^{g(s)}+\mathrm{e}^{-g(s)}}{2}=f(s) ,

which implies that

g(s)=\log(f(s)\pm\sqrt{f^{2}(s)-1})
Therefore, if f(s)\neq-1 or 1, then there exists g(s)\in S if we choose a suitable branch

of the logarithm.

Really, the following general theorem is valid.

Theorem 4.5. Suppose that F:H(D)\rightarrow H(D) is a continuous function,  K\subset

 D is a compact subset, and f(s)\in F(S) . Then the same assertion as in Theorem 3.1

is true.

Proof. First we observe that f(s) is an element of the support of the measure

P_{ $\zeta$,F} . Indeed, if g is an arbitrary element of F(S) and G is its any open neighbourhood,
then

m_{H}( $\omega$\in $\Omega$: $\zeta$(s,  $\omega$)\in F^{-1}G)>0.
Hence,

(4.2) m_{H}( $\omega$\in $\Omega$:F( $\zeta$(s,  $\omega$))\in G)>0.

Moreover, by Proposition 1.4,

m_{H} ( $\omega$\in $\Omega$ : F( $\zeta$(s,  $\omega$))\in F(S))=m_{H}( $\omega$\in $\Omega$ :  $\zeta$(s,  $\omega$)\in S)=1.
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This, and (4.2) show that the closure of F(S) is a support of P_{ $\zeta$,F}.
The remainder part of the proof is the same as that in the case of Theorem 4.4,

the case r\geq 2. \square 

So, if we want to detect what analytic functions f(s) can be approximated by shifts

F( $\zeta$(s+i $\tau$)) ,
we have to solve the equation

(4.3) F(g(s))=f(s)

in g(s)\in S . If, for a given f(s) , equation (4.3) has a solution, then f(s) uniformly on

compact subsets of the strip D is approximated by F( $\zeta$(s+i $\tau$)) .

Consider some examples. Suppose that

F(g(s))=(g'(s))^{2}+g(s)g''(s) .

We have the equation

(g(s)g'(s))'=f(s) ,

or

(g^{2}(s))'=f_{1}(s) ,

where f(s) is an analytic function. Hence, g(s)=\sqrt{f_{2}(s)} ,
where

f_{2}(s)=\displaystyle \int_{s_{0}}^{s}f(z)dz
with some s_{0}\in D . So, if f_{2}(s)\neq 0 on D

,
then the function f(s)\in F(S) and can be

approximated by F( $\zeta$(s+i $\tau$)) .

Now let

F(g(s))=g^{2}(s)+4g(s)+2.

Then from the equation

g^{2}(s)+4g(s)+2=f(s)

we find that

g(s)=-2\pm\sqrt{2+f(s)}.

Thus, if f(s)\neq\pm 2 on D
,

then the function g(s) is analytic and non‐vanishing on D,
hence F(S)\supset H(D) with F(0)=2 . Therefore, we have by Theorem 4.4 that any

function

 f(s)\in {  g\in H(D):(g(s)\pm 2)^{-1}\in H(D) or g(s)\equiv 2 }
can be approximated by shifts F( $\zeta$(s+i $\tau$)) .
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§5. Generalizations

It is possible to prove analogies of the above theorems for other zeta and L‐

functions. Analogous results for F( $\zeta$(s, \mathcal{F})) ,
where  $\zeta$(s, \mathcal{F}) is the zeta‐function of nor‐

malized Hecke eigen cusp form \mathcal{F} , have been shown in [12]. In [13], universality theo‐

rems for the function F(L(s, $\chi$_{1}), L(s, $\chi$_{r})) ,
where L(s, $\chi$_{1}) , L(s, $\chi$_{r}) are Dirichlet

L‐functions with pairwise non‐equivalent characters $\chi$_{1}, $\chi$_{r} ,
are discussed. Composite

universal functions F( $\zeta$(s,  $\alpha$)) ,
where  $\zeta$(s,  $\alpha$) is the Hurwitz zeta‐function with transcen‐

dental parameter  $\alpha$
,

are considered in [11]. Also, generalizations of Theorems 3.14.5

for other zeta‐functions are possible.
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