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Universality of composite functions

By

Antanas LAURINCIKAS*

Abstract

We modify and extend some results of [10] on the universality of composite functions of
the Riemann zeta-function.

§1. Introduction

The famous Mergelyan theorem [15], see also [18], asserts that every function f(s)
of complex variable s = o + it continuous on a compact subset K C C and analytic in
the interior of K can be approximated uniformly on K by polynomials in s. Thus,for
every € > 0, there exists a polynomial P(s) such that

sup [f(s) —p(s)| <e.

seK
Examples show that the hypotheses on K and f(s) can’t be weakened. For example, K
can’t be a closed rectangle with an excluded disc. Thus, really the Mergelyan theorem
gives necessary and sufficient conditions for the approximation of analytic functions by
polynomials. The theorem is very important not only theoretically but also practically
because polynomials are rather simple entire functions.

Also, it is known that there exist so called universal functions whose shifts ap-
proximate any analytic function. The first result in this direction belongs to Birkhoff
[3]. From his theorem, it follows that there exists an entire function g(s) such that, for
every entire function f(s), a compact subset K C C and arbitrary ¢ > 0, there exists a
number a € C such that

sup |g(s +a) — f(s)] < e.
seK
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Unfortunately, the Birkhoff theorem is entirely non-effective. It gives only the existence
of the function ¢(s), and any example of g(s) is not given. The number a which depends,
obviously, on f(s), K and ¢ also can’t be effectively evaluated.

Only in 1975, the first example of functions g(s) such that their shifts g(s + i7),
7 € R, approximate uniformly on some compact subsets every analytic function was
found. It turned out that the above property is due to the famous Riemann zeta-
function ((s) which is defined, for o > 1, by

and by analytic continuation elsewhere, except for a simple pole at s = 1 with residue 1.
Generalizing Bohr’s [5] and Bohr-Courant’s [6] denseness results on value-distribution
of ((s), Voronin discovered [17] a remarkable property of ((s) which now is called
universality.

Theorem 1.1 ([17),[7]).  Let 0 <r < 1. Suppose that f(s) is a continuous non-
vanishing function on the disc |s| < r, and analytic for |s| < r. Then, for every e > 0,
there exists a real number T = 7(¢) such that

(1.1) max <e.

s|]<r

C(s—l—%—l—zﬁ') — f(s)

As an important result, the Voronin theorem was observed by the mathematical
community. Many number theorists, among them Reich, Gonek, Bagchi, Kohji Mat-
sumoto, Garunkstis, J. Steuding, R. Steuding, Sander, Schwarz, Mishou, Bauer, Naka-
mura, Nagoshi, Kac¢inskaiteé, Macaitiené, Genys, Siauc¢itinas, Kaczorowski, Parikowski,
Lee, the author and others improved and generalized Theorem 1.1 for other zeta and
L-functions, see survey papers [9],[14] and the monograph [16]. At the moment, we
know the following version of the Voronin theorem. Let D = {s € C: 3 < o < 1}, and
meas{ A} denote the Lebesgue measure of a measurable set A C R.

Theorem 1.2.  Suppose that K is a compact subset of the strip D with connected
complement, and f(s) is a continuous and non-vanishing function on K, and analytic
in the interior of K. Then, for every e > 0,

lim inf lmeas {7’ €[0,T] : sup [C(s+iT) — f(s)| < 8} > 0.
T—oco T scK

Proof of Theorem 1.2 is given, for example, in [8]. Thus, Theorem 1.2 once more

shows that the set of the values of ((s) is very dense, there are infinitely many shifts

((s +147) which approximate a given analytic function. This fact was already known to

Voronin. In the proof of Theorem 1.1, he obtains that the set of 7 satisfying inequality
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(1.1) has a positive lower density, however, this was not fixed in the statement of the
theorem.

From hypotheses of Theorem 1.2, one can easily see a relation with the Mergelyan
theorem.

The original Voronin’s proof of Theorem 1.1 is based on the approximation of
¢(s) in the mean by a finite Euler’s product over primes, it also uses a version of
Riemann’s theorem on rearrangement of series in Hilbert space as well as the Kronecker
approximation theorem.

There exists another, probabilistic proof, of Theorem 1.2 proposed by Bagchi [1].
We recall shortly this proof because we will apply it later.

1. A limit theorem in the space of analytic functions for the function ((s).

Denote by H(G) the space of analytic functions in the region G C C equipped with
the topology of uniform convergence on compacta. Let B(S) stand for the class of Borel
sets of the space S. Moreover, define

Q = H7p7
p

where v, = {s € C : |s| = 1} for each prime p. By the Tikhonov theorem, the torus
Q) with the product topology and pointwise multiplication is a compact topological
Abelian group. Thus, on (€2, B(2)), the probability Haar measure mp exists, and we
have the probability space (Q2,B(2),mp). Let w(p) denote the projection of w €
to the coordinate space 7,. Then, on the probability space (2, B(2), mp), define the
H(D)-valued random element ¢(s,w) by

Note that the latter infinite product over primes, for almost all w € 2, converges
uniformly on compact subsets of the strip D, and define there a H(D)-valued random
element. Denote by P the distribution of the random element ((s, w), i.e., a probability
measure defined by

P:(A)=mp(weQ:((s,w) € A), AeB(H(D)).
Proposition 1.3.  The probability measure

Pr(A) :f%meas {re€l]0,T]:¢((s+ir) € A}, AeB(H(D)),

converges weakly to P: as T — oo.

2. The support of the measure P¢ (or of the random element ((s,w)).
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The space H(D) is separable. Therefore, the support of the measure P, is a minimal
closed set Sp such that P;(Sp,) = 1. The set Sp, consists of all elements g € H(D)
such that, for each open neighbourhood G of g, the inequality P;(G) > 0 is satisfied.

An application of elements from the theory of Hilbert spaces and of entire functions
of exponential type leads to the following assertion.

Proposition 1.4.  The support of the measure P is the set

s g€ H(D):g *(s) € H(D) or g(s) =0} .

Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of the Mergelyan
theorem, and Propositions 1.3 and 1.4. By the Mergelyan theorem, there exists a
polynomial p(s) such that
(1.2) sup | f(s) — e?®)] < <.
seK 2

Define

G = {g € H(D) : sup |g(s) — eP®)| < E}.
seK 2

Since G is an open neighbourhood of the function e?(*) and, by Proposition 1.4, eP(*)
is an element of the support of the measure Py, we obtain that P:(G) > 0. Using
Proposition 1.4 and an equivalent of the weak convergence of probability measures in
terms of open sets, see Theorem 2.1 of [2], we find that

1
lim inf —meas {7’ € [0,T] : sup [C(s + i) —eP®)] < E} > P:(G) > 0.
T—oo 1 scK 2

This together with (1.2) proves the theorem. O

Universality is a very important property of zeta and L-functions, it has deep
theoretical and practical applications. For example, it is known [1] that the Riemann
hypothesis is equivalent to the assertion that, for every compact subset K C D with
connected complement and any € > 0,

lim inf lmea,s {7’ €[0,T] :sup |[((s+iT) — ((s)| < 6} > 0.
T—oo T seK

This result was generalized by Steuding in [16]. Also, universality implies the functional

independence for zeta-functions, can be used for estimation of the number of zeros

in some regions as well as in the moment problem of zeta-functions. An example of

practical applications is given in [4]. Therefore, it is an important problem to extend

the class of universal functions.
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There exists the Linnik-Ibragimov conjecture that all functions in some half-plane
given by Dirichlet series, analytically continuable to the left of the absolute convergence
half-plane and satisfying certain natural growth conditions are universal. It is a bit
strange because Voronin published his universality theorem in 1975 while Linnik died
in 1972. However, Voronin discovered the universality of ((s) earlier, his candidate
degree thesis (1972) contains the results close to the universality theorem, and Linnik
knew this. The theorem of 1975 has only a simplified short enough proof. Ibragimov
informed the author on Linnik’s conjecture in 1990, and said that he also supports this
conjecture. Thus, it is reasonable to call it the Linnik-Ibragimov conjecture.

On the other hand, there exist non-universal functions given by Dirichlet series.
For example, if

w 1if m=mk keN,
" 00 m# mE,

where mg € N\ {1}, then we have that, for o > 0,
s mEs  ms—1

Then function (mg — 1)~! is analytic in the whole complex plane, except for simple

poles lying on the line 0 = 0, however, obviously, is non-universal.

§ 2. Universality of the logarithm

Define log ((s) in the strip D from log ((2) € R by continuous variation along the
line segments [2,2+it] and [2+it, 0 +it] provided that the path does not pass a possible
zero of ((s) or pole s = 1. If this does, then we take

log ((o +it) = 111110 log ((o +i(t+¢€)).
e—
In [7], it is proved that the function log((s) is also universal.

Theorem 2.1 ([7]).  Let 0 < r < 3. Suppose that f(s) is a function continuous
on the disc |s| < r and analytic for |s| < r. Then, for every € > 0, there exists a real
number T = 7(¢) such that

3
|m|zéx log ((s + 2 +it) — f(s)| < e.

In [7], Theorem 1.1 is deduced from Theorem 2.1. However, we do not know
does Theorem 1.2 imply the universality of log((s). Indeed, let K C D be a compact
subset with connected complement, and let f(s) be a continuous function on K which
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is analytic in the interior of K. Clearly, e/(*) #£ 0 on K. Denote by Mg = max |e_f(s)|.
ElS
Then Theorem 1.2 implies that, for every ¢ > 0,

1
(2.1) lim inf —meas {7’ €[0,7] : sup ‘C(s +ir) — /)
T—oo T scK

<—1>0
2M g '
Suppose that 7 € R satisfies the inequality

9
2Mg’

sup ‘C(s +ir) — /)
seK

<

Then we have that, for such 7 and all s € K,

where sup |e(s)| < 5. However, from this, it does not follow that the difference
seK
llog ((s 4+ i1) — f(s)| is small for all s € K, therefore (2.1) does not imply the inequality

1
lim inf —meas {7’ € [0,7] : sup [log ((s +iT) — f(s)] < 6} > 0.
T—oo T scK

I thank Professor Kohji Matsumoto who pointed out the above problem.

Theorem 2.1 shows that the composite function F(((s)) = log((s) is universal.
Also, it is known [1], that the derivative ¢’(s) is universal, too. Thus, a problem arises
to describe classes of functions F' such that the composite function F'({(s)) preserve the
universality property. The first results in this direction were obtained in [10], and our
aim is to present them in a more precise and convenient form.

8§ 3. Lipschitz class

A sufficiently wide class of functions F' : H(D) — H(D) with the universality
property for F(((s)) can be described as follows. We say that a function F' : H(D) —
H (D) belongs to the class Lip(«) if the following hypotheses are satisfied:

1° For every polynomial p = p(s) and every compact subset K C D with connected
complement, there exists an element g € F~1{p} C H(D) such that g(s) # 0 on K;

20 For every compact subset K C D with connected complement, there exist
constants ¢ > 0 and a > 0, and a compact subset Ky C D with connected complement
such that

sup [F(g1(s)) — F(g2(s))| < ¢ sup |g1(s) — g2(s)|*
seK seK,

for all g1,92 € H(D).
Hypothesis 2° is an analogue of the classical Lipschitz condition with exponent .
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We note that the function F' : H(D) — H(D), F(g) = ¢/, is in the class Lip(1).
Obviously, hypothesis 1° is satisfied. It remains to check hypothesis 2°. Let K C D
be a compact subset with connected complement, G O K be an open set, and K1 C D
be a compact subset with connected complement such that G C K;. We take a simple
closed contour [ lying in K3 \ G and enclosing the set K. Then, by the Cauchy integral
formula, for g1, 92 € H(D),

zZ.

L [ a)-ai0),

Flor(s)) = Floa(s) = 5= [ 20— 5%

l

Thus, for all s € K,

|F'(g1(s)) — F(g2(s))| < esup 191(2) — g2(2)] < ¢ sup l91(s) — g2(s)]

with some ¢ > 0, and we obtain hypothesis 2° with a = 1.

Theorem 3.1.  Suppose that F € Lip(a). Let K C D be a compact subset with
connected complement, and f(s) be a continuous function on K and analytic in the
interior of K. Then, for every e > 0,

lim inf lmea,s {7’ €[0,T]:sup |F(¢(s+i1)) — f(s)| < 6} > 0.
T seK

T—o00
Proof. By the Mergelyan theorem, there exists a polynomial p(s) such that

(3.1) sup [£(s) = p(s)| < 5.
seK

In view of hypothesis 1Y of the class Lip(a), we have that there exists g € F~{p} C
H(D) and, moreover, g(s) # 0 on K. Let 7 € R be such that

(3:2) sup [¢fs +im) —gls)| < ¥ (3)

where K71 C D is a compact subset with connected complement corresponding the set
K in hypothesis 2° of the class Lip(a). By hypothesis 2°, for 7 satisfying (3.2),
€

sup [F(C(s + 7)) — p(s)] < ¢ sup |¢(s +i7) — g(s)|* < 3
seK s€eK1

This and Theorem 1.2 show that

1
liminf —meas< 7 € [0,T] : sup |F({(s+1iT)) — p(s)| < b 0,
T—oo T seK 2

and by use of (3.1) the proof is complete. O
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In [10], Theorem 3.1 in a bit different form was only mentioned without proof.

§4. Other universality classes

In [10], three classes of functions F' such that the function F({(s)) is universal are
presented. We will remind and complement them. The set S is defined in Proposition
1.4.

Theorem 4.1 ([10]).  Suppose that F : H(D) — H(D) is a continuous function
such that, for every open set G C H(D), the set (F~1G)( S is non-empty. Let K and
f(s) be the same as in Theorem 3.1. Then the same assertion as in Theorem 3.1 is
true.

The hypothesis of Theorem 4.1 that the set (F~1G)[)S is non-empty for every
open set G C H(D) is very general, it is difficult to check it.
In the space H(G), we can use the metric

o sup 191(5) — g2(s)]
_ SEK
p(g1,92) = 2—m . 91,92 € H(G),
(o1:92) = 227" 7 up 91(5) ~ 9505 (©)
SEK

which induces the topology of uniform convergence on compacta. Here {K,, : m € N}
is a sequence of compact subsets of GG such that

e k.

K,, C K41 for all m € N, and if K C G is a compact subset, then K C K, for
some m € N. Therefore, it is easily seen that the approximation in the space H(G)
reduces to that on the sets K, with large enough m. If we consider the space H(D), it
is possible to choose the sets K,, to be with connected complements. Thus, in view of
the Mergelyan theorem, we can involve polynomials in the approximation process. This
leads to the following version of Theorem 4.1.

Theorem 4.2.  Suppose that F' : H(D) — H(D) is a continuous function such
that, for each polynomial p = p(s), the set (F~{p}) (S is non-empty. Let K and f(s)
be the same as in Theorem 3.1. Then the same assertion as in Theorem 3.1 is true.

Proof. Theorem 4.2 is not contained in [10], therefore we give its proof. First we
observe that Proposition 1.3, the continuity of F' and Theorem 5.1 of [2] imply the weak
convergence for

Prr(4) % %meas (r€[0,T]: F(C(s+i7) € A}, A€ B(H(D)),
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to the measure Pr r as T' — oo, where P¢ r is the distribution of the random element
F(¢(s,w)).

In the next step, we find the support of the measure Py . Let g be an arbitrary
element of H(D), and G be an any open neighbourhood of g. Since the function F' is
continuous, the set F~'G is open, too. Let K C D be an arbitrary compact subset with
connected complement. Then, by the Mergelyan theorem, for every § > 0, there exists
a polynomial p = p(s) such that

sup [g(s) — p(s)| < 6.
seK

Therefore, taking into account the above remark on the approximation in the space
H(D), we may assume that p € G, too. This and the hypothesis (F~1{p}) (S # 0 show
that the set (F~1G) () S is non-empty. So, we obtained the hypothesis of Theorem 4.1,
and we might finish the proof, however, for fullness, we continue it. From Proposition
1.4 and properties of the support, we deduce that

mp(weQ: F(((s,w) €G)=my(weN:{(s,w) € F'G) > 0.

Since g and G are arbitrary, this shows that the support of the measure P r is the
whole of H(D).

Now it is easy to complete the proof. By the Mergelyan theorem again, there exists
a polynomial p(s) such that

(4.1) sup |£(s) = p(s)] < 5
seK
Define

6 —{ae D) suplols) - pio)l < 5 |

Since the polynomial p(s) is an element of the support of Pr p, and G is an open
neighbourhood of p(s), we have that Pr 7(G) > 0. Therefore, using an equivalent of the
weak convergence of probability measures in terms of open sets, Theorem 2.1 of [2], we
obtain from the weak convergence of Pr r that

lim inf %meas {r€[0,T]: F({(s+1ir)) € G} > P r(G) >0,

T—o00

or, by the definition of G,

1
lim inf —meas {7’ €[0,7] : sup |F(¢(s+ i) — p(s)| < f} > 0.
T—oo T seK 2

Combining this with (4.1) gives the theorem. O
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The main property of the set S is a non-vanishing of functions g € H(D). As The-
orem 4.2 shows, in the definition of the function F', we may use polynomials. However,
in the infinite strip D, it is difficult to derive some information on the non-vanishing for
the functions from the pre-image F~!{p} of a given polynomial p = p(s). Therefore, it
is more convenient to consider the space H(G), where G is some bounded region. This
is discussed in Theorem 6 of [10].

For V.>0,let Dy ={s€C: 3 <o <1,lt| <V}, and

Sy ={g€ H(Dy):g9 '(s) € HDy)org(s) =0} .

Theorem 4.3 ([10]).  Let K and f(s) be the same as in Theorem 3.1. Suppose
that V is such that K C Dy, and that F : H(Dy) — H(Dy) is a continuous function
such that, for each polynomial p = p(s), the set (F~1{p}) Sy is non-empty. Then the
same assertion as in Theorem 3.1 is true.

It is not difficult to show that, for some functions F', for each polynomial p = p(s),
there exists a polynomial ¢ = q(s), ¢ € F~1{p}, and ¢(s) # 0 for s € Dy . For example,
this holds for the function

F(g)=cig' + ... +¢c.g™, g€ HDv), eci,...,cr € C\{0}.

Thus, F(((s)) is universal in the sense of Theorem 3.1.

In Theorems 3.1-4.3, the shifts F'({(s + 7)) approximate any analytic function. If
to approximate analytic functions from some subset of H (D), it is possible to extend
the class of universal functions F'({(s)). This is implemented in the next theorem which
is a corrected and extended version of Theorem 7 from [10].

For ay,...,a, € C, let

Ha,...an(D)={g€ H(D): (g(s) —a;) " € HD), j=1,...,r} U{F(0)}.

Theorem 4.4.  Suppose that F' : H(D) — H(D) is a continuous function such
that F(S) D Ha,,. .0 .(D). If r =1, let K C D be a compact subset with connected
complement, and let f(s) be a continuous and # ay function on K which is analytic
in the interior of K. If r > 2, let K C D be an arbitrary compact subset, and f(s) €
Hg, ... a.(D). Then the same assertion as in Theorem 3.1 is true.

Proof. The proof in the case r = 1 is the same as in [10]. However, the case r = 2
in [10] is not correct because the function h, (s) in p. 2330 can take the value b.

In the case r > 2, the proof is very short. Let g be an arbitrary element of
Hg, .. . a.(D). Then there exists an element § € S such that F(§) = g. This, the
continuity of F' and Proposition 1.4 show that every open neighbourhood G of the
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element g has positive Pr p - measure: P p(G) > 0. Hence, g is an element of the
support of the measure Pr p. Therefore, the closure of Hy, . 4. (D) is a subset of the
support of P p.

Define

Gy — {g € H(D) : sup lg(s) — £(s)] < f}.

seK 2
Since the function f(s) € Hq,,.. q,.(D), it is an element of the support of Pr r. Thus,
Pr r(G2) > 0, and, using Proposition 1.3, we obtain that

lijgxlinf %meas {7’ €[0,T] : sup |[F({(s+1iT)) — f(s)] < 5} > P rp(Ga) > 0.
—00 seK

(]

For example, if » = 1 and a; = 0, we obtain the universality for the function ¢V (s),
N e N. If r =2 and a3 = —1, ag = 1, Theorem 4.4 gives the universality for the
functions sin {(s), cos((s), sinh {(s) and cosh ((s). For the later functions, we have to

check the inclusion F'(S) D H_1,1(D). Let F(g) = cosh(g). We consider the equation
e9(8) 4 o=9(s)
— I

which implies that
9(s) =log (f(s) £ V(5 1)
Therefore, if f(s) # —1 or 1, then there exists g(s) € S if we choose a suitable branch

of the logarithm.
Really, the following general theorem is valid.

Theorem 4.5.  Suppose that F : H(D) — H(D) is a continuous function, K C
D is a compact subset, and f(s) € F(S). Then the same assertion as in Theorem 3.1
18 true.

Proof. First we observe that f(s) is an element of the support of the measure
P¢ r. Indeed, if g is an arbitrary element of F'(S) and G is its any open neighbourhood,
then
mu (w € Q:((s,w) € F'G) > 0.

Hence,
(4.2) mpy (weQ: F(((s,w)) €G)>0.
Moreover, by Proposition 1.4,

mp(w e Q:F(((s,w)) € F(5)) =myg(we:((s,w)eS)=1.
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This, and (4.2) show that the closure of F(S) is a support of P¢ p.
The remainder part of the proof is the same as that in the case of Theorem 4.4,
the case r > 2. O

So, if we want to detect what analytic functions f(s) can be approximated by shifts
F({(s+1i7)), we have to solve the equation

(4.3) F(g(s)) = f(s)

in g(s) € S. If, for a given f(s), equation (4.3) has a solution, then f(s) uniformly on
compact subsets of the strip D is approximated by F({(s 4+ i7)).
Consider some examples. Suppose that

F(g(s) = ('(s))” + g(s)g" (s).

We have the equation

or
(9°())" = fa(s),
where fi(s) is an analytic function. Hence, g(s) = v/ f2(s), where

fg(s)z/fl(z)dz

with some so € D. So, if fa(s) # 0 on D, then the function f(s) € F(S) and can be
approximated by F(((s +iT)).
Now let

F(g(s)) = g°(s) + 4g(s) + 2.
Then from the equation
g°(s) + 4g(s) +2 = f(s)
we find that
g(s) = =2+ +/2+ f(s).

Thus, if f(s) # £2 on D, then the function g(s) is analytic and non-vanishing on D,
hence F'(S) D H_52(D) with F(0) = 2. Therefore, we have by Theorem 4.4 that any
function

f(s) € {g € H(D): (g(s) £2)' € HD) or g(s) = 2}

can be approximated by shifts F({(s +i7)).
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8§ 5. Generalizations

It is possible to prove analogies of the above theorems for other zeta and L-
functions. Analogous results for F({(s,F)), where ((s,F) is the zeta-function of nor-
malized Hecke eigen cusp form F, have been shown in [12]. In [13], universality theo-
rems for the function F(L(s, x1), ..., L(s, Xxr)), where L(s,x1), ..., L(s, xr) are Dirichlet
L-functions with pairwise non-equivalent characters x1, ..., X, are discussed. Composite
universal functions F'({(s, «)), where ((s, ) is the Hurwitz zeta-function with transcen-
dental parameter «, are considered in [11]. Also, generalizations of Theorems 3.1-4.5
for other zeta-functions are possible.

Acknowlegements. The paper was written during the author stay at RIMS in
Kyoto, supported by RIMS, Kyoto University. The author thank Professors Kohji Mat-
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