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On joint universality for the zeta-functions of
newforms and periodic Hurwitz zeta-functions

By

Renata MACAITIENE *

Abstract

In the paper, a short survey on universality for zeta-functions both having and not having
Euler’s product is given. Also, a joint universality theorem for the zeta-function of newforms
and periodic Hurwitz zeta-functions is proved.

§1. Introduction

Let A be a vertical strip on the complex plane C. Denote by KC(A) the class of
compact subsets of the strip A with connected complements, for a compact set K, denote
by H(K) the class of continuous functions on K which are analytic in the interior of K,
and by Ho(K) the subclass of H(K) consisting of functions which are non-vanishing on
K.

It is well known, see [1], [5], [12], [14], [29], [36], [37], [38], that the Riemann
zeta-function ((s), s = o + it, which is defined, for o > 1, by

s) = 3 L = (1 - i) 1,
(s) mZ:l — 1;[ =
and is analytically continued to the whole complex plane, except for a simple pole at
s = 1, is universal in the sense that if K € K(D), D = {8 eC: % <o < 1}, and
f € Ho(K), then, for every € > 0,

1
lim inf —meas {7’ €[0,T] : sup |C(s +iT) — f(s)| < 6} > 0.
T—oo T seK
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Here and in the sequel, p denotes a prime number, and meas{ A} stands for the Lebesgue
measure of a measurable set A C R.

Now let a, 0 < v < 1, be a fixed parameter. Then the Hurwitz zeta-function ((s, @)
which is defined, for ¢ > 1, by

o 1
C(s7 a) - —7
2 Gy

and is analytically continued to the whole complex plane, except for a simple pole
at s = 1, is also in a similar sense universal. Namely, [1], [5], [21], [35] if « is a
transcendental or rational number # 1,1, K € K(D) and f € H(K), then, for every
e >0,

1
lim inf —meas {7’ € 0,77 : sup |[C(s +iT, ) — f(s)] < 6} > 0.
T—oo T seK

Since the cases a = 1 (¢(s,1) = ((s)) and @ = 3 ({(s,3) = (2° — 1){(s)) in the later
statement are excluded, the function ((s,«) has no Euler’s product over primes, and
this is reflected in its universality: the shifts {(s + i7, a) approximate every function
f € H(K), the restriction of the class Ho(K) is removed. Thus the universality of
((s, @) is more general than that of {(s), and is called a strong universality.

Note that the universality of ((s,«) with algebraic irrational parameter o remains
an open problem.

Mishou in [31] obtained a very interesting joint universality theorem for the func-

tions ((s) and ((s, a).

Theorem 1.1 ([31]).  Suppose that « is a transcendental number, Ky, Ko € K(D),
f1 € Ho(K) and fo € H(D). Then, for every € > 0,

1
lim inf —meas{T €10,7] : sup |((s+iT) — f1(s)| <€,
T—o00 T s€K1

sup [((s +i1,a) — fa(s)| < 6} > 0.
seEKo

Theorem 1.1 joins the universality and strong universality. We will call this type
of the joint universality a mixed universality.

The functions ((s) and ((s,«) have their generalizations. Suppose that a = {a,, :
m € N} and b = {b,, : m € Ny = N[J{0}} are two periodic sequences of complex
numbers with minimal periods k1 € N and ks € N, respectively. Then the functions

C(S;a)zza—”; and C(S,a;b)zzb—m o>1,
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are called the periodic zeta and periodic Hurwitz zeta-function, respectively. The equal-
ities i -
1 <« k 1 & k+a
C(s;a) = k_f kz::lakC(s, k—l), C(s,a;b) = k_g kZ:% bkC(s, k—2)
give for the functions ((s; a) and (s, a; b) meromorphic continuation to the whole com-
plex plane with possible simple pole at s = 1.

The universality of the function ((s;a) with multiplicative sequence a, has been
studied by Steuding [36], and Laurinéikas and Siaucitinas [28]. In a general case, the
problem was solved by Kaczorowski [10].

The strong universality of the function (s, a;b) with transcendental parameter «
has been obtained by Javtokas and Laurin¢ikas [7], [8]. Nakamura [34] studied ((s, a; b)
with a special bounded sequence.

A generalization of Theorem 1.1 for the functions ((s;a) and ((s, a; b) with multi-
plicative sequence a has been obtained in [11]. A joint universality theorem for periodic
zeta-functions with multiplicative coefficients satisfying a certain ”independence” con-
dition has been proved in [22]. The joint universality of Hurwitz zeta-functions by
different methods has been considered in [33] and [19]. A series of works [15]-[18] and
[9], [26], [27] are devoted to joint universality of periodic Hurwitz zeta-functions. A
mixed universality theorem for zeta-functions with periodic coefficients can be found in
[20].

In [24], Laurin¢ikas and Matsumoto observed that, for Lerch zeta-functions

0 eQﬂiAjm

L(A\j,a,8) = 5
Y mz::O(mJFOéj)s

o>1, j=1,..n

a more general setting of joint universality is possible. To each parameter «;, they
attached a collection of the parameters \;. For periodic Hurwitz zeta-functions, the
latter idea was applied by Laurincikas [18], and Laurin¢ikas and Skerstonaité [27]. We
will state the latter result. For j = 1,...,7, let [; € N, and, for j = 1,...,7 and | =
1,...,05, let bj; = {by;i : m € Ny} be a periodic sequence of complex numbers with
minimal period kj; € N, and ((s, a;;b;;) denotes the corresponding periodic Hurwitz
zeta-function. Moreover, let

L(ai,...,op) = {logm+a;) :meNy,j=1,...,7},
k; be the least common multiple of the periods kj1, ..., kji,, and
bljl b1j2 bljlj
b2j1 bajo ... baji;

Bj = , J=1..,r

bk; 1 biejj2 - - - bryju,
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Theorem 1.2 ([27]).  Suppose that the set L(aa, ..., ) is linearly independent
over the field of rational numbers Q, and that rank(B;) =1;, j=1,...,r. Forj=1,...,r
and 1l =1,...,1;, let K;; € K(D), and let f;;(s) € H(Kj;). Then, for every e > 0,

1
liminf —measq 7€ [0,T]: sup sup sup |((s+iT,a;;b5) — fu(s)] <ep >0.
T—oo T 1<j<r 1<I<l; s€Kj,

Note that in the latter theorem the information on the values of b,,;; related only
to a; is used.

In [4], a mixed universality theorem for the Riemann zeta-function and periodic
Hurwitz zeta-functions in the frame of Theorem 1.2 has been proved.

Theorem 1.3 ([4]).  Suppose that oy, ..., are algebraically independent over
Q, and that all hypotheses of Theorem 1.2 for by, Kj and fj; are satisfied. Moreover,
let K € K(D) and f(s) € Ho(K). Then, for every e > 0,

1
lim inf —mea,s{T € [0;T] : sup [((s +iT) — f(s)] <€,
T—oo T se€K

sup sup sup [((s+iT,a;;b5) — fu(s)] < 6} > 0.
1<<r 1<I<]; s€e K,

The aim of this paper is to replace the function ((s) in Theorem 1.3 by zeta-
functions of newforms. To state our result, we need some definitions and notation.

Let
ab
SLy(Z) = {( d) a,b,c,d € Z, ad—bc:l}
c

be the full modular group. For N € N, the subgroup of SLs(7Z)

To(N) = {(ZZ) € SLy(Z) : ¢ = O(modN)}

is called the Hecke subgroup or the congruence subgroup mod N. Suppose that F(z) is
a holomorphic function in the upper half-plane Sz > 0, and x € 2N. The function F(z)
is called a cusp form of weight x and level N if

F (“Z+b> = (cz+ d)"F(z) for all <a2> € To(NV),

cz+d c

and F(z) is holomorphic and vanishing at the cusps. In this case, F'(z) has the following

Fourier series expansion

F(z) = Z c(m)e?™m=,

m=1
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Denote by Sk (I'o(N)) the space of all cusp forms of weight x and level N. For every
d | N, the elements of S, (I'g(d)) also belong to S(I'o(N)). F € S.(I'o(N)) is called a
newform if F' is not a cusp form of level less than N, and F' is an eigenfunction of all
Hecke operators. Then we have that ¢(1) # 0, so we may assume that ¢(1) =1, i.e., F
is a normalized newform. To each cusp form we can attach the zeta-function

((s, F) = Z c(m).

mS

m=1

In view of the Deligne estimate [3]
(1.1) le(m)| <m* T d(m),

where d(m) denotes the divisor function, the series for ((s, F') converges absolutely for
o> ’“‘T“ In this region, ((s, F') also has a representation by Euler’s product. If F' is a
newform, then this representation is of the form

s ) =] (1 - @> - I1 (1 _dp) pzsjl_,@>_1-

S S
pIN p PIN p

Moreover, the function ((s, F') can by analytically continued to an entire function. These
and other facts of the theory of modular forms can be found, for example, in [6] and
[32].

The universality for zeta-functions of normalized Hecke eigen cusp forms was ob-
tained by Laurinc¢ikas and Matsumoto [23], and for zeta-functions of newforms by Lau-
rin¢ikas, Matsumoto and Steuding [25].

DenoteDK:{SEC:§<a<'§T“}.

Theorem 1.4 ([25]).  Suppose that F is a normalized newform of weight k and
level N, K € K(Dy) and f(s) € Ho(K). Then, for every e > 0,

liminf%meas{T €[0,7]: sup [((s+iT, F) — f(s)| < 6} > 0.

T—o0 seK

Our main result is the following theorem. It joins Theorem 1.2 with algebraically
independent numbers oy, ..., a,. over Q with Theorem 1.4.

Theorem 1.5.  Suppose that the numbers aq, ..., o, are algebraically independent
over Q, and that rank(B;) = l;, j = 1,...,r. Let K and f(s) be the same as in
Theorem 1.4, and Kj; and fj; be the same as in Theorem 1.2. Then, for every e > 0,

1
lim inf —mea,s{T €10,7] : sup [C(s +iT, F) — f(s)] <,
T—oco T seK

sup sup sup [((s+iT,a ;b5) — fiu(s)] < 6} > 0.
1<j<r 1<I<1l; s€ K}
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For the proof of Theorem 1.5, we will apply a modification of the probabilistic
method used in [4] which is based on a joint limit theorem in the space of analytic
functions. The case of Theorem 1.5 is more complicated because we deal with two
strips D, and D.

§ 2. Joint functional limit theorems

Let G be a region on C. Denote by H(G) the space of analytic functions on G
equipped with the topology of uniform convergence on compacta. For u =13 + --- + [,
and v =u+ 1, let

H"(Dy, D) = H(Dy) x H(D) x --- x H(D).

~~
u

Moreover, we set a = (aq,...,a,) and b = (by1,...,b17,, ..., by1, ..., by, ). This section is
devoted to a limit theorem in the space H”(D,, D) for the vector

C(8,8,050,F) = (C(8,F),¢(s, a15b11), .., ¢ (s, 013 b1, ), oy
C(S, Qr; brl); sy C(S, Q] brlr))-

Denote by B(S) the class of Borel sets of the space S, let v = {s € C: |s| = 1},
and define

Q:H’yp and Qzﬁ’ym,
P m=0

where 7y, = v for all primes p, and ~,, = 7y for all m € Ny. By the Tikhonov theorem,
the tori Q and Q with the product topology and pointwise multiplication are compact
topological Abelian groups. Therefore, on (Q,B(Q)) and (Q,B(Q2)) the probability
Haar measures my and mp, respectively, exist, and we have two probability spaces
(Q, B(), ) and (€, B(Q), mz). Moreover, let

2=0x]]9.
j=1
where €0; = Q) for all j = 1,...,r. Similarly as above, we obtain the probability space
(Q,B(2),my), where my; is the probability Haar measure on (£2,5(£2)). Denote by
&(p) the projection of & € ) to vp, and by w;(m) the projection of w; € Q; to v,,. Let
w = (&,w1,...,w,) be the elements of . On the probability space (2, B(2), my;), define
the H"(Dy, D)-valued random element ((3,s,a,w;b, F') by the formula

g(éa 87Q7£;b7 F) = (<(§7@7F)7<(870517w1; b11)7 "'7((870517(*]1; b1l1)7 L)
<(87 a'l")"‘)'l"; b?"l); ceey C(Sa arawr; b'r‘lr))a
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where

and

[e%s)
bjiw;(m)
C(S,Oéj,u)j;bjl): Z m, ]:1,...,7“, lZl,...,lj.

m=0
Denote by P the distribution of the random element ¢ (8,8,,w; b, F), ie., for A €
B(H"(Dy, D)),

Theorem 2.1.  Suppose that the numbers ay, ..., o, are algebraically independent
over Q. Then

o 1
pr(a) ¥ zmeas{7 € (0.7 : (4 +ir,s +iT. ;0. F) € A}, A€ B(H"(Dy, D)),

converges weakly to Pe as T — oo.

The proof of Theorem 2.1 is similar to that Theorem 4 of [4], therefore, we will give
only its sketch.
Let 01 > % be a fixed number, and

vp(m) = exp {— (m)al}, m,n € N,

n
m4+o;\ 7
vn(m,w):exp{—( J) }, m,ne€Ny, j=1,..r
J n—+ a;
Define
e C(m)vn(m)
Cn(S’F) - Z ms
m=1
and
= Dyjivn (M, @)
Cn(s, ;b)) = UL AL =, J=Lagr, I=1,.10;
VR mzz:o (m-l—Oéj) J

By a standard method involving an application of the Mellin formula can be proved
that the series for ¢, (8, F) and (,(s,a;;bjy;) are absolutely convergent for %5 > § and
o> %, respectively.

The formula

w(m) = H Wi(p), meN,

ptlim
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where p! || m means that a power p! occurs precisely in the canonical representation of
m, extends the functions &(p) to the set N. Define

and

> by jiw; (m)vy ( ,
ol gy byg) = 3 miea(menmag) oy
jr W53 0 2 (m +a)

the series being absolutely convergent for s > ¢ and o > 1
we set

5, respectively. Moreover,
b
2n

C (§787Q; 7F) = (Cn(§7F)7<n(Saal; bll))"'aCn(Saal; blll)a"w
and

C’n(sa Q] b'rl)a veey Cn(‘S) Qo brlT))
¢ (8,8a

w:
S>n )

Ea F) = (Cn(gad)aF)aCn(Saalawl; bll)a-"7Cn(87al>wl; blll)a ey

Cn(sa Ay Wi brl)a ooy Cn(sa Ay Wy brl,«))-
The first step in the proof of Theorem 2.1 is the following statement.

Lemma 2.2.  Suppose that the numbers aq, ..., a, are algebraically independent
over Q. Then the probability measures
def 1
Pr,(A) =

—meas {7’ €[0,7T]: gn(é +ir, s +it, a5, F) € A}
and

de 1
Pro.(4) ¥

= —meas {7’ €[0,77]: gn(.§ +iT,s+iT,a,w; b, F) € A} ,

A € B(HY(Dy, D)), both converge weakly, for any fired w € Q, to the same probability
measure P, on (H(D,,D),B(H"(D,D))) as T — cc.

Lemma 2.2 is a result of the application of Theorem 5.1 from [2] and a limit theorem
on the torus £ which is contained in the next lemma obtained in [4], Lemma 1. Let P
be the set of all prime numbers.

Lemma 2.3.
over Q. Then

Suppose that the numbers aq, ..., are algebraically independent

—meas {7’ €0,7]: ((p_” :peP), ((m + Oéj)_iT :m € Np,j =1, ...,r)) € A} ,

A€ B(9Q),

converges weakly to the Haar measure my as T — oo.
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The next step of the proof of Theorem 2.1 contains the results which allow to
pass from the vector gn(é,s,g; b, F) to ((8,s,;b, F). For this, we need a metric on
H*(D,, D).

It is well known that there exist a sequence {K’m : m € N} of compact subsets of
Dy, and a sequence {K,, : m € N} of D such that

0 0
D, = UKm and D = UKm.

m=1 m=1

Moreover, the sets K’m and K, can be chosen to satisfy K’m C K’mﬂ, K,, C Ky,4 for
all m € N, and, for every compact subsets KcD,and KCD , there exists m, m € N
such that K ¢ K,;, and K C K,,. For g1, s € H(D,;) and g1, 92 € H(D), define

sup [g1(s) — g2(s)|

o0 A~
o . _ SGKm
pgr,g2) = > 27" ; j
( mzzl 14 sup [gi1(s) — g2(s)|
SeKm

and
. sup |91(s) — g2(s)]
’ _ 2_m S m .
p(gl 92) Z 1+ sup |gl(8) - 92(3)|

seK,,

m=1

Then p and p are the metrics on H(D,;) and H (D), respectively, inducing the topology

of uniform convergence on compacta. For

~

i = (f)flla "'7fll17"'7f1‘17"'7f1‘lr)7 g= (gaglla"'791117"'7gT17"'7ngr) € HU(D:‘HD)?

let
po(f. g) = max (f»(f,g), max max P(fjlagjl)) |

1<5<r 1<I<I;

Then p, is a metric on the space H"(D,;, D) which induces its topology.
Now we are able to approximate ((5,s,a;b, F') by gn(é, s,a; b, F') in the mean.

Lemma 2.4. We have

no0 oo -

T
1
lim limsupf/pv (£(§+ir,s+ir,g;b,F),C (§+iT,S+iT,g;§,F)) dr = 0.
0

As it was observed in [25], the zeta-functions associated to newforms constitute a
subclass of Matsumoto zeta-functions. Therefore, the lemma follows from the relation

n—oo T—00

T
1
lim limsupT/ﬁ(C@—l—iT,F),Cn(§—|—iT,F))dT:O
0
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which is a corollary of Lemma 8 from [13], and from the equalities

1
lim limsupf/p(C(s+i7', a;;bj1), Co(s +i1,05;05))dr =0,

n—oo T—00

which are deduced from formula (3) of [18].
An analogue of Lemma 2.4 is also true for g(é, s,a,w; b, F') and gn(§, s,a,w;b, F),

where
£(§7 S, &, Wi bv F) = (C(gvd)a F)7 C(sa a1, Wi; b11)7 ey C(S7 a1, Wi; blll)v ey
C(S, Oy, Wrs brl)a ) C(S, Oy, Wr; brlr))-
Lemma 2.5.  Suppose that the numbers oy, ..., . are algebraically independent

over Q. Then, for almost all w € 2, we have

1
lim limsupf/pv (£(§—|—i7,s—|—i7,g,g;ﬁ, F),¢ (8 +ir,s+iT,a,w;b, F)) dr = 0.

no0 Toeo

Proof. Lemma 11 of [13], for almost all & € (), implies the relation

(2.1) lim lim sup — /p (5§ +i1,w),Cu(§ +iT,w))dr = 0.

n—oo T—00

Let

pullog) = max max p(fji, gjt).

Denote by m,, the Haar measure on (Q,B(Q)), where @ =y X --- X Q. Then, for

almost all w € Q,

1
(2.2) lim limsup T /pu (g(s +iT,a,w; b),¢ (s +1iT,a,w; b)) dr =0,

n—oo T—00

see formula (2.5) of [4]. Here ((s, a, w; b) andC (s,,w; b) are obtained from ((3, s, @, w;

b, F) and ¢ (5,s,a,w; b, F) by removing ¢(§, o ,F) and (,(8,w, F), respectively. Since
the measure my; is the product of the measures my and m - the lemma follows from
(2.1), (2.2), and the definition of p,,. O

We can deduce from Lemmas 2.2 and 2.4 the weak convergence for the measure Pr,
as T — oo. However, the identification of the limit measure requires the next lemma.
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Lemma 2.6.  Suppose that the numbers aq, ..., . are algebraically independent
over Q. Then the probability measures Py and

1
Jmeas {rel0,T]:¢(8+ir,s+ir,a,w;b,F) € A}, A€ B(H"(D,,D)),

both converge weakly, for almost all w € 2, to the same probability measure P on
(H"(Dy,D),B(H"(Dy,D))) as T — c.

Proof. We omit the details which are similar to those of [4]. Let 6 be a random
variable defined on a certain probability space (20, B(€),P) and uniformly distributed
on [0,1]. On the later probability space, define the H"(D,;, D)-valued random element
X, by the formula

XT XTnll() XTnlll() Xanl() Xanl())

= (X7
C( z@Ts—I—zQTabF)

. =
def

Then, denoting by P, the convergence in distribution, we have, by Lemma 2.2, that

(2.3) Xpa(3,8) = X, (3,),

T—o00

where X (8, s) is the HY(D,, D)-valued random element with the distribution P, (P,
is the limit measure in Lemma 2.2). Our first task is to prove the tightness of the family
{P, :n e N}

In view of the Deligne estimate (1.1), the well-known properties of the mean square
of Dirichlet series and Cauchy integral formula show that, for all n € N,

Nl

(2.4) lim sup — / sup |Cn (8 + i1, F)|dr <, ( k20m> , meN,

T—o0 s€EK.,

with some C,, > 0 and &, > 5. Similarly, for all n € N,

o 2
b
(2.5) lim sup — /Sup |Cn(s + 17,053 b5) | dT < Cpy (E k—||—kojzl|2°m> ,
k=0

T—o00 seEKm

with some C), > 0 and o, > %, meN,j=1,...,r,1=1,..,1l;. The compact sets K,,
and K,, come from the definition of the metric p,,.
Now let

l 1
A - CY e C i M i
k20m 5 jlm m £ (k T Oéj)2‘7m .
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Taking M,, = Rn2™ e ! and Mjim = Rjim2%T™ e where m € N and € > 0 is an
arbitrary number, we find by (2.4) and (2.5) that

€

T—o00 §Ef<m seK,, 2m

lim sup P (( sup | Xr.,(8)] > Mm) V (Elj,l :sup | Xrom,i(s)| > Mjlm>> <

This together with (2.3) implies

P ( sup |X,(8)| > Mm> V (Elj,l :sup | Xy,u(s)] > Mjlm> < im,

seKnm, s€K,, 2
where X,,(8), X, ;1(s), j=1,...,7, L =1,...,1;, are the elements of the random vector
X,,(8,s). From this, we obtain that

Pn(Hev) Z - €,
where
HY ={f € H'(Dy, D) : sup |f(3)| < M, Sup | f1(s)| < Miim,
SEKm

sek,,
j=1yr =10, me N}

is a compact subset of the space HY(D,, D). This proves the tightness of the family
{P, :n e N}

By the Prokhorov theorem, the family {FP, : n € N} is relatively compact.
Hence, there exists a sequence nxy — oo and a probability measure P on
(H"(Dy,D),B(H"(Dy,D))) such that

(2.6) X, (48 = P

"k k—o0

On the probability space (Qg, B(£2),P), define the H?(D,, D)-valued random ele-
ment X (8, s) by the formula

Xr(8,8) =C(5+i0T,s +40T,a;b, F).
Then Lemma 2.4 yields, for every e > 0, the relation

lim limsupP (py (X7(8,5),X7,(3,5)) =€) =0.

no0 oo

This, (2.3), (2.6) and Theorem 4.2 of [2] show that X (8, s) TL P, or Pp converges
— 00
weakly to P as T' — oo.

Using the random elements

gn(é +10T, s + 0T, o, w; b, F)
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and
C(5+1i0T,s +1i0T, a,w; b, F),

as well as Lemma 2.5, we obtain in a similar way that the second measure of Lemma 2.6
also converges weakly to P as T — oo. O

The end of the proof of Theorem 2.1 is standard. We apply Lemma 2.6, the ergod-
icity of the one-parameter group {®, : t € R} of measurable and measure preserving
transformations on €2, where, for w € Q and 7 € R,

P (w) = ((p_” :peP),((m+ aj)_” :m € Ng,7 =1, ...,7“)) w,

see Lemma 7 of [20], as well as the classical Birkhoff-Khintchine theorem.

§3. Support of the measure Pg

The space HV(D,, D) is separable, therefore the support of P, is the minimal closed
set Sp, C H(Dy, D) such that P:(Sp,) = 1. The set Sp, consists of all points g €
H"Y (D;7 D) such that, for every opgn néighbourhood G of g_, the inequality P:(G) > 0
holds. B

Define

={9€ H(Dx):g(s) #0or g(s) =0}.

Theorem 3.1.  Suppose that the numbers aq, ..., o, are algebraically independent
over Q, and that rank(B;) =1;, j = 1,...,7. Then the support of the measure PQ is the
set S, x H*(D).

Proof. We have that
HY(D,,D)=H(D,)x H*(D).
In view of separability of the above spaces, the equality
B(H"(Dy, D)) = B(H(D,)) x BUH"(D))

is true [2]. Therefore, it suffices to investigate Pc(A) for A = B x C, where B €
B(H(D,)) and C € B(H"(D)). We already have mentioned that the measure my; is

the product of the measures my and m - Therefore, we have that
P (A)= my (weQ:((5s,awb, F)e A
=mH(w€Q:C( ,F) e B, ((s, a,g;ﬁ)EC)

(3.1) = thn (wEQ C(5,0,F) € B> H(
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In [25], Lemma 9, it was obtained that the support of the random element ((§,w, F') is
the set Sy, i.e., S, is a minimal closed subset of H(D,) such that

(3.2) M (w e C(3,0,F) e SR) ~1.

To be precise, in [25] the space H(Dy ar), where Dy = {s € C: & < o < - Jt| <
M}, is considered, however, all arguments remain valid for the space H(D,). Also, in
[27], Theorem 3.1, it was proved that the support of the random element ((s, a,w; b) is
the whole of H*(D), i.e., H*(D) is a minimal closed set of H*(D) such that

my (g €Q:((s,a,w;b) € H“(D)) —1.

From this and (3.1), (3.2), the theorem follows. O

§4. Proof of Theorem 1.5

We first recall the Mergelyan theorem on the approximation of analytic functions
by polynomials.

Lemma 4.1.  Suppose that K is a compact subset on the complex plane with
connected complement, and that f(s) is a continuous function on K which is analytic
in th interior of K. Then, for every e > 0, there exists a polynomial p(s) such that

sup | f(s) — p(s)| <.
seK

Proof of the lemma is given in [30], see also [39].

Proof. of Theorem 1.5. In view of Lemma 4.1, there exist polynomials p(s) and
pji(s) such that

(4.1) sup |f(s) — p(s)| < 3
seK
and
(4.2) sup sup sup |fji(s) —pj(s)] < %

1<j<r 1<I<l; s€Kj,

Since f(s) # 0 on K, we have that p(s) # 0 on K as well if € is small enough. Therefore,
we can define a continuous branch of log p(s) on K which will be analytic in the interior
of K. By Lemma 4.1 again, there exists a polynomial ¢(s) such that

<6
1

o)
seK
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From this and (4.1), we have that

(4.3) sup ’f(s) _ ed(s)
seK

<€
2.

Define

1<j<r 1<I<l; s€eKj, 2

G = {g € H°(Dy, D) : sup ’Q(s) — ()
- sEK

€ €
< =, sup sup sup |gi(s) —pj(s)] < —}.

In view of Theorem 3.1, the vector (eq(s),pﬂ,j =1,...,rl=1,..,1l), is an element of
the support of the measure P;. Since G is an open set, this shows that Pr(G) > 0.
Therefore, Theorem 2.1 togeth_er with an equivalent of the weak convergencg in terms
of open sets yields the inequality

1
lim inf —meas< 7 € [0, 7] : sup |((s + i, F) —e?®)| < E,
T—oo 1 scK 2

' €
sup sup sup [((s+iT,a;;b5) —pj(s)] < 5} > 0.
1<5<r 1<i<l; seKj;

From this, (4.2) and (4.3), the assertion of the theorem follows. O
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