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On joint universality for derivatives of the Riemann

zeta function and automorphic L‐functions

By

Hidehiko MISHOU *

Abstract

In this paper we establish two results. The first result looks like a joint universality
theorem for a set of derivatives of the Riemann zeta function. The second result is a joint
universality theorem for a pair of the Riemann zeta function and an automorphic L‐function

in different strips.

§1. Introduction

As usual, let s= $\sigma$+it be a complex variable and \mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} and \mathbb{C} denote

the set of all natural numbers, non‐negative integers, integers, rational numbers, real

numbers and complex numbers respectively. Here and henceforth the letter p denotes

a prime number.

In order to state our results, we define some symbols. Let D be the strip \{s\in
\displaystyle \mathbb{C}|\frac{1}{2}< $\sigma$<1\} . Let  $\mu$ be the Lebesgue measure on \mathbb{R} and for T>0

v_{T}(\displaystyle \cdots)=\frac{1}{T} $\mu$\{ $\tau$\in[0, T] :\cdots\},
where in place of dots we write some conditions satisfied by  $\tau$.

Let  $\zeta$(s) be the Riemann zeta function. In 1975 Voronin [15] established the re‐

markable universality theorem for  $\zeta$(s) .

Theorem 1.1 (Voronin, 1975). Let K be a compact subset of the strip D with

connected complement. Let f(s) be a non‐vanishing and continuous function on K which
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is analytic in the interior of K. Then for any small positive number  $\epsilon$ we have

\displaystyle \lim_{T\rightarrow}\inf_{\infty}v_{T}(\max_{s\in K}| $\zeta$(s+i $\tau$)-f(s)|< $\epsilon$)>0.

Roughly speaking this theorem asserts that any analytic function can be uniformly

approximated by a suitable shift of  $\zeta$(s) . Such universality theorems have been estab‐

lished for many arithmetic zeta functions and some non‐arithmetic zeta functions such

as Hurwitz zeta functions. For more details, refer to Steuding [14]. For each Dirichlet

character  $\chi$ ,
the attached Dirichlet  L‐function

L(s,  $\chi$)=\displaystyle \sum_{n=1}^{\infty}\frac{ $\chi$(n)}{n^{s}}=\prod_{p}(1-\frac{ $\chi$(p)}{p^{s}})^{-1} ( $\sigma$>1)
also has universality property. Moreover Bagchi [2], Gonek [4] and Voronin [15] in‐

dependently proved that for a set of Dirichlet L‐functions universality properties hold

simultaneously.

Theorem 1.2 (Bagchi, Gonek, Voronin). Let $\chi$_{j}(1\leq j\leq r) be pairwise in‐

equivalent Dirichlet characters. For each 1\leq j\leq r ,
let K_{j} be a compact subset of D

with connected complement and f(s) be a non‐vanishing and continuous function on

K_{j} which is analytic in the interior of K_{j} . Then for any  $\epsilon$>0 we have

\displaystyle \lim_{T\rightarrow}\inf_{\infty}v_{T}(_{1}\max_{\leq j\leq r}\max_{s\in K_{j}}|L(s+i $\tau,\ \chi$_{j})-f_{j}(s)|< $\epsilon$)>0.
Such joint universality theorems have been established for the following sets of

arithmetic zeta functions.

(A) Laurinčikas and Matsumoto [7] obtained the joint universality theorem for a set of

twisted automorphic L‐functions \{L(s, f, $\chi$_{j})\} where f is a holomorphic normalized

Hecke eigen cusp form for SL_{2}() and $\chi$_{j} are inequivalent Dirichlet characters.

(B) Bauer [3] established the joint universality for a set of Artin L‐functions

\{L(s, $\chi$_{j}, K/\mathbb{Q})\} when $\chi$_{j} are linearly independent characters of Gal (K/\mathbb{Q}) .

(C) Sander and Steuding [12] investigated thejoint universality for products and sums of

Dirichlet L‐functions. As corollaries, they obtained the joint universality theorems

for

(a) a set of Dedekind zeta functions \{$\zeta$_{K_{j}}(s)\} where K_{j} are abelian extensions of

\mathbb{Q} satisfying some algebraic conditions.

(b) a set of Hurwitz zeta functions \{ $\zeta$(s, $\alpha$_{j})\} where $\alpha$_{j} are rational numbers.
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Now we will explain the reason why there are not many results on joint universality

compared to results on ordinary universality.
First of all, the joint universality does not hold for every sets of zeta functions

with universality property. We give one example. For each j\geq 0 ,
the j‐th derivative

$\zeta$^{(j)}(s) of  $\zeta$(s) has universality property in the strip D . Now we prove that the joint

universality theorem does not hold for a set of derivatives of  $\zeta$(s) . Let K_{1} and K_{2} be

simply connected compact subsets of D such that K_{1} is included in the interior of K_{2}.

Let f(s) be a non‐vanishing and continuous function on K_{2} which is analytic in the

interior of K_{2} . Let  $\epsilon$>0 . Assume that for a real number  $\tau$ the inequality

\displaystyle \max_{s\in K_{2}}| $\zeta$(s+i $\tau$)-f(s)|< $\epsilon$
holds. Then the Cauchy�s integral formula

 g^{(n)}(s)=\displaystyle \frac{n!}{2 $\pi$ i}\int_{|z-s|=r}\frac{g(z)}{(z-s)^{n+1}}dz
implies that

|$\zeta$'(s+i $\tau$)-f'(z)|<C(K_{1}, K_{2})\cdot $\epsilon$

holds for any  s\in K_{1} . Therefore the joint universality does not hold for a pair of  $\zeta$(s)
and $\zeta$'(s) .

Secondly, in the current method to prove the joint universality theorem, the fol‐

lowing two properties of Dirichlet characters play crucial roles:

\bullet Periodicity

Let  $\chi$ be a Dirichlet character modulo  q ,
then

 $\chi$(n)= $\chi$(a) if n\equiv a (\mathrm{m}\mathrm{o}\mathrm{d} q) .

\bullet Orthogonality

Let $\chi$_{1} and $\chi$_{2} be Dirichlet characters modulo q ,
then

\displaystyle \lim_{x\rightarrow\infty}\frac{1}{ $\pi$(x)}\sum_{p\leq x}$\chi$_{1}(p)\overline{$\chi$_{2}(p)}=\left\{\begin{array}{l}
\frac{ $\phi$(q)}{q}($\chi$_{1}=$\chi$_{2}) ,\\
0 (\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}),
\end{array}\right.
where  $\pi$(x)=\displaystyle \sum_{p\leq x}1 and  $\phi$(q) is the Euler�s totient function.

In fact, as shown in Theorem 1.2 and results (\mathrm{A})-(\mathrm{C}) ,
all known families of arithmetic

zeta functions with joint universality are concerned with characters of finite order.

Which is the more important property, the periodicity or the orthogonality? Steud‐

ing [14] gave a conjecture on this problem. Let S denote the Selberg class, which is
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the set of Dirichlet series satisfying (i) Ramanujan conjecture (estimation for Dirichlet

coefficients), (ii) Analytic continuation to \mathbb{C} , (iii) Functional equation, and (iv) Euler

product. A function L(s)\in S is called primitive if it cannot be factored as a product
of two elements in S non‐trivially.

Conjecture (Steuding). For each j=1 , 2, let L_{j}(s)=\displaystyle \sum_{n}a_{j}(n)n^{-s} be a primi‐

tive function in S. Assume the Selberg conjecture

(1.1) \displaystyle \sum_{p\leq x}\frac{a_{1}(p)\overline{a_{2}(p)}}{p}=\left\{\begin{array}{l}
\log\log x+O(1)(L_{1}=L_{2}) ,\\
O(1) (otherwise).
\end{array}\right.
Then L(s) and L(s) are joint universal.

The condition (1) is regarded as a generalization of the orthogonality of Dirichlet

characters.

Recently Nagoshi [10] obtained a remarkable result on automorphic L‐functions

which confirms the Steuding�s conjecture. For an even positive integer k let \mathcal{F}_{k} be the

set of all holomorphic normalized Hecke eigen cusp forms of weight k with respect to

SL_{2}(\mathbb{Z}) . For f\in \mathcal{F}_{k} let \tilde{ $\lambda$}_{f}(n)=$\lambda$_{f}(n)n^{\frac{k-1}{2}} denote the n‐th Fourier coefficient of f.
Then the associated automorphic L‐function L(s, f) is given by

L(s, f)=\displaystyle \prod_{p}(1-\frac{$\lambda$_{f}(p)}{p^{s}}+\frac{1}{p^{2s}})^{-1}=\prod_{p}(1-\frac{ $\alpha$(p)}{p^{s}})^{-1}(1-\frac{ $\beta$(p)}{p^{s}})^{-1} ( $\sigma$>1) ,

where  $\alpha$(p) ,  $\beta$(p)\in \mathbb{C} with | $\alpha$(p)|=| $\beta$(p)|=1 and $\lambda$_{f}(p)= $\alpha$(p)+ $\beta$(p) . For the

coefficients $\lambda$_{f}(n) ,
we have

\displaystyle \sum_{p\leq x}$\lambda$_{f}(p)=o( $\pi$(x)) ,

and

\displaystyle \sum_{p\leq x}|$\lambda$_{f}(p)|^{2}\sim $\pi$(x) ,

where the latter estimate is due to Rankin [11]. These estimates imply that the orthog‐
onal relation (1) holds for a pair of L_{1}(s)= $\zeta$(s) and L_{2}(s)=L(s, f) . For each prime

p ,
define an angle $\theta$_{p}\in[0,  $\pi$] by $\lambda$_{f}(p)=2\cos$\theta$_{p} . Then, for a positive integer m

,
the

symmetric m‐th power L‐function L(s, f, m) is given by

L(s, f, m)=\displaystyle \prod_{p}\prod_{j=0}^{m}(1-\frac{e^{(m-2j)$\theta$_{p}}}{p^{s}})^{-1} ( $\sigma$>1) .

Murty [9] showed that the famous Sato‐ Tate conjecture is valid if all L(s, f, m) have

analytic continuation to  $\sigma$\geq 1 . When m\leq 4 , Shahidi [13] obtained the analytic
continuation of L(s, f, m) to  $\sigma$\geq 1 . However the case m>4 is still open.
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Theorem 1.3 (Nagoshi, 2005). Let f\in \mathcal{F}_{k} . Assume that for each positive in‐

tegers m
,

the attached L ‐function L(s, f, m) admits analytic continuation to \mathbb{C} and

satisfies the Grand Riemann hypothesis. Let $\sigma$_{1} and $\sigma$_{2} be real numbers satisfy ing

\displaystyle \frac{1}{2}<$\sigma$_{1}<$\sigma$_{2}<1 and 1+$\sigma$_{1}-2$\sigma$_{2}>0 . For each j=1 , 2, let K_{j} be a compact subset

in the strip $\sigma$_{1}< $\sigma$<$\sigma$_{2} with connected complement and f(s) be a non‐vanishing and

continuous function on K_{j} which is analytic in the interior of K_{j} . Then for any  $\epsilon$>0

we have

\displaystyle \lim_{T\rightarrow}\inf_{\infty}v_{T}\left(\begin{array}{lllll}
\max_{s\in K_{1}}| $\zeta$(s & +i $\tau$)- & f_{1}(s)|< &  $\epsilon$ & \\
\max_{s\in K_{2}}|L(s & +i $\tau$,f)- &  & f_{2}(s)|< &  $\epsilon$
\end{array}\right)>0.
In the above theorem, the assumption on the L‐functions L(s, f, m) is probably

correct, but very strong. Theorem 1.3 also implies the difficulty of the Steuding�s

conjecture.

§2. Results

In the previous section we saw that the joint universality does not hold for a set

of derivatives of  $\zeta$(s) in the strict sense. However we can obtain the following result,
which is similar to the joint universality theorem for the set.

Theorem 2.1. Let K_{1} and K_{2} be simply connected compact subsets of D. Sup‐

pose that K_{1} is included in the interior of K_{2} . Let f(s) be a non‐vanishing and con‐

tinuous function on K_{2} which is analytic in the interior of K_{2} . Let f_{j}(s)(1\leq j\leq l)
be continuous functions on K_{2} which are analytic in the interior of K_{2} . Then for any

 $\epsilon$>0 there exist positive integers N_{j}(1\leq j\leq l) such that

\displaystyle \lim_{T\rightarrow}\inf_{\infty}v_{T}\left(\begin{array}{lllll}
\max_{s\in K_{1}}| $\zeta$(s & +i $\tau$)- & f(s)|< $\epsilon$ &  & \\
\max_{1\leq j\leq l}\max_{s\in K_{1}}|$\zeta$^{(N_{j})}(s & +i $\tau$)- &  & f_{j}(s)|< &  $\epsilon$
\end{array}\right)>0.
Also we saw that the joint universality theorem has not been yet proved for a pair

of  $\zeta$(s) and L(s, f) unconditionally. However, if we restrict compact subsets K_{1} and K_{2},
we can prove the joint universality theorem for this pair.

Theorem 2.2. Let f\in \mathcal{F}_{k} . Let D_{1}=\displaystyle \{s\in \mathbb{C} \frac{1}{2}< $\sigma$<\frac{3}{4}\} and D_{2}=

\displaystyle \{s\in \mathbb{C} \frac{3}{4}< $\sigma$<1\} . For each j=1 , 2, let K_{j} be a compact subset in D_{j} with

connected complement and f(s) be a non‐vanishing and continuous function on K_{j}
which is analytic in the interior of K_{j} . Then for any  $\epsilon$>0 we have

\displaystyle \lim_{T\rightarrow}\inf_{\infty}v_{T}\left(\begin{array}{llll}
\max_{s\in K_{1}}| $\zeta$(s & +i $\tau$)- & f_{1}(s)|< &  $\epsilon$\\
\max_{s\in K_{2}}|L(s & +i $\tau$,f)- &  & f_{2}(s)|< $\epsilon$
\end{array}\right)>0.
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In the next section we will prove Theorem 2.1. In §4, we will sketch the proof of

Theorem 2.2.

§3. Proof of Theorem 2.1

In 1952 Maclane [8] showed that the following theorem, which is the key of the

proof of Theorem 2.1.

Lemma 3.1 (Maclane, 1952). There exists an entire function F(s) such that to

any entire function g(s) there is an increasing sequence n_{k}\in \mathbb{Z}_{\geq 0} for which

F^{(n_{k})}(s)\rightarrow g(s) as  k\rightarrow\infty

holds locally uniformly in \mathbb{C}.

Lemma 3.2 (Mergelyan, 1952). Let K be a compact subset of \mathbb{C} with connected

complement. Then any continuous function on K which is analytic in the interior of
K is approximable uniformly on K by the polynomials of s.

Proof of Theorem 2.1. Let f(s) and f(s) be the same functions as in Theorem

2.1. First we consider the case that all f(s) and f(s) are entire functions. Let F(s) be

the same entire function as in Lemma 3.1. There exist non‐negative integers n_{0}<n_{1}<
. . . <n_{l} for which inequalities

(3.1) \displaystyle \max_{s\in K_{2}}|F^{(n_{0})}-f(s)|<\frac{ $\epsilon$}{2} and 1\displaystyle \max_{\leq j\leq l}\max_{s\in K_{2}}|F^{(n_{j})}(s)-f_{j}(s)|<\frac{ $\epsilon$}{2}
hold. We put

(1 \bullet \bullet and minfj \mathrm{j} \mathrm{j} 2 2 \mathrm{g}N_{j}=n_{j}-n_{0}(1\leq j\leq l) and  $\delta$=\displaystyle \min\{|z_{1}-z_{2}||z_{1}\in\partial K_{1}, z_{2}\in\partial K_{2}\}.

According to the classical Rouche�s theorem, we may assume that F^{(n_{0})}(s) is non‐

vanishing on K_{2} . Then, by the universality of  $\zeta$(s) ,
the set A_{T} of real numbers  $\tau$\in[0, T]

for which

(3.2) \displaystyle \max_{s\in K_{2}}| $\zeta$(s+i $\tau$)-F^{(n_{0})}(s)|<\frac{$\delta$^{N_{l}+1}}{2N_{l}!} $\epsilon$
hold has a positive lower density as  T\rightarrow\infty . Let  1\leq j\leq l and s\in K_{1} be fixed. From
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the Cauchy�s integral formula and (3), it follows that for any  $\tau$\in A_{T}

|$\zeta$^{(N_{j})}(s+i $\tau$)-F^{(n_{j})}(s)|

=|\displaystyle \frac{N_{j}!}{2 $\pi$ i}\int_{|z-s|= $\delta$}\frac{ $\zeta$(z+i $\tau$)-F^{(n_{0})}(z)}{(z-s)^{N_{j}+1}}dz|
\displaystyle \leq\frac{N_{j}!}{$\delta$^{N_{j}+1}}\max_{z\in K_{2}}| $\zeta$(z+i $\tau$)-F(n_{0})(z)|

(3.3) <\displaystyle \frac{ $\epsilon$}{2}.
Combining (2) and (4), we complete the proof in the first case.

Now we consider the general case. By Lemma 3.2 there exist polynomials p(s) and

q_{j}(s) which satisfy

\displaystyle \max_{s\in K_{2}}|f(s)-e^{p(s)}|< $\epsilon$ and \displaystyle \max_{s\in K_{2}}|f_{j}(s)-q_{j}(s)|< $\epsilon$.
These e^{p(s)} and q_{j}(s) are entire functions, therefore the proof of the theorem is com‐

pleted. \square 

§4. Outline of the proof of Theorem 2.2

In this section we sketch the proof of Theorem 2.2, which is equivalent to the joint

universality for  $\zeta$(s) and L(s+\displaystyle \frac{1}{4}, f) in the strip D_{1}=\displaystyle \{s\in \mathbb{C} \frac{1}{2}< $\sigma$<\frac{3}{4}\} . In

these days the joint universality property for zeta functions is mainly obtained as an

application of the joint limit theorem on the weak convergence of probability measure

associated with the zeta functions. This method was devised by Bagchi [1]. In order to

state the joint limit theorem, we need some notation. For space S, \mathcal{B}(S) will stand for

the family of Borel subsets of S . Let H(D) be the space of analytic functions on the

strip D_{1} equipped with the topology of uniform convergence on compact subsets. Let

H^{2}() =H(D_{1})\times H(D_{1}) . Denote by  $\gamma$ the unit circle \{s\in \mathbb{C}||s|=1\} and set

 $\Omega$=\displaystyle \prod_{p}$\gamma$_{p},
where  $\gamma$_{p}= $\gamma$ for all primes  p . The infinite‐dimensional torus  $\Omega$ is a compact Abelian

groups with respect to the product topology and pointwise multiplication. Therefore

the probability Haar measure  m_{H} on ( $\Omega$, \mathcal{B} can be defined. Denote by  $\omega$(p) the

projection of  $\omega$\in $\Omega$ to the coordinate space  $\gamma$_{p} for any p . For  $\sigma$>\displaystyle \frac{1}{2} and  $\omega$\in $\Omega$ we

define

 $\zeta$(s,  $\omega$)=\displaystyle \prod_{p}(1-\frac{ $\omega$(p)}{p^{s}})^{-1}
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and

L(s, f,  $\omega$)=\displaystyle \prod_{p}(1-\frac{ $\alpha$(p) $\omega$(p)}{p^{s}})^{-1}(1-\frac{ $\beta$(p) $\omega$(p)}{p^{s}})^{-1}
Since for almost all  $\omega$\in $\Omega$ these products are convergent uniformly on compact subsets of

 D_{1} ,
a pair of these products become a H^{2}(\mathrm{D}) ‐valued random element on the probability

space ( $\Omega$, \mathcal{B}( $\Omega$), m_{H}) . For A\in \mathcal{B}(H^{2}(D_{1})) ,
define two probability measures

P_{T}(A)=v_{T}(( $\zeta$(s+i $\tau$), L(s+\displaystyle \frac{1}{4}, f))\in A) ,

where T>0 and

P(A)=m_{H}(( $\zeta$(s,  $\omega$), L(s+\displaystyle \frac{1}{4}, f,  $\omega$))\in A) .

Lemma 4.1 (Joint limit theorem). The probability measure P_{T} converges weakly
to the probability measure P as T\rightarrow\infty.

Proof. The lemma is easily obtained by combining the limit theorem for  $\zeta$(s) (The‐
orem 5.1.8 in Laurinčikas [5]) and the limit theorem for L(s, f) (Lemma 1 in Laurinčikas

and Matsumoto [6]). \square 

For  $\sigma$>\displaystyle \frac{1}{2} and  $\omega$\in $\Omega$ we define functions  g_{p} and h_{p} by

\displaystyle \log(1-\frac{ $\omega$(p)}{p^{s}})^{-1}=\frac{ $\omega$(p)}{p^{s}}+g_{p}(s)
and

\displaystyle \log(1-\frac{ $\alpha$(p) $\omega$(p)}{p^{s}})^{-1}+\log(1-\frac{ $\beta$(p) $\omega$(p)}{p^{s}})^{-1}=\frac{$\lambda$_{f}(p) $\omega$(p)}{p^{s}}+h_{p}(s) .

Then for all s\in D_{1} and almost all  $\omega$\in $\Omega$

(\log $\zeta$(s,  $\omega$), \displaystyle \log L(s+\frac{1}{4}, f,  $\omega$))=\sum_{p}(\frac{ $\omega$(p)}{p^{s}}, \frac{$\lambda$_{f}(p) $\omega$(p)}{p^{s}})+\sum_{p}(g_{p}(s), h_{p}(s)) ,

where the sum is taken over all prime numbers. Remark that the series \displaystyle \sum_{p}(g_{p}(s), h(s))
converges uniformly for  $\omega$\in $\Omega$ and on any compact subset of  D_{1} . For each prime p we

set

f_{p}(s)=(\displaystyle \frac{1}{p^{s}}, \frac{$\lambda$_{f}(p)}{p^{s+\frac{1}{4}}})\in H^{2} (D1).

Lemma 4.2 (Joint denseness lemma). The set of convergent series

\displaystyle \{\sum_{p} $\omega$(p)f_{p}(s)\in H^{2}(D_{1})  $\omega$\in $\Omega$\}
is dense in H^{2}(D_{1}) .
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The lemma implies that the set \displaystyle \{( $\zeta$(s,  $\omega$), L(s+\frac{1}{4}, f,  $\omega$))\in H^{2}(D_{1})| $\omega$\in $\Omega$\} is also

dense in the space H^{2}(D_{1}) . From Lemma 4.1 and Lemma 4.2, the joint universality
follows immediately.

Proof of Lemma 4.2. Let U be a bounded simply connected region in D_{1} . Let \mathcal{H}

be the Hardy space on U ,
which is the set of analytic and second integrable functions

on U . Let \mathcal{H}^{2}=\mathcal{H}\times \mathcal{H} . The space \mathcal{H} becomes a complex Hilbert space with the inner

product

\displaystyle \langle g_{1}, g_{2}\rangle=\int\int_{U}g_{1}(s)\overline{g_{2}(s)}d $\sigma$ dt.
We will prove that the set \displaystyle \{\sum_{p}a_{p}f_{p}(s)\in \mathcal{H}^{2}||a_{p}|=1\} is dense in \mathcal{H}^{2} by using the

following general denseness lemma, which was essentially obtained by Voronin [15].

Lemma 4.3. Let H be a complex Hilbert space with the inner product \rangle and

the norm \Vert \Vert . Suppose that a sequence \{u_{n}\}\subset H satisfies

(i) \displaystyle \sum_{n}\Vert u_{n}\Vert<\infty,
(ii) for any non‐zero element u\in H

\displaystyle \sum_{n}|\langle u_{n}, u\rangle|=\infty.

\displaystyle \{\sum_{n\geq m}a_{n}u_{n}\in H
Then for any m>0 the set

|a_{n}|=1\}
is dense in H.

We return to the proof of Lemma 4.2. Let $\sigma$_{0}= mins |s\in\overline{U}} >\displaystyle \frac{1}{2} . Then

\displaystyle \sum_{p}\Vert f_{p}(s)\Vert^{2}=\sum_{p}\int\int_{U}\frac{1+|$\lambda$_{f}(p)|^{2}p^{-\frac{1}{2}}}{p^{2 $\sigma$}}d $\sigma$ dt\ll U\sum_{p}\frac{1}{p^{2$\sigma$_{0}}}<\infty.
Therefore the sequence \{f_{p}(s)\} satisfies the condition (i) in Lemma 4.3. For g(s)=
(g_{1}(s), g_{2}(s))\in \mathcal{H}^{2} we have

\displaystyle \langle f_{p}(s) , g(s)\rangle=\int\int_{U}\frac{1}{p^{s}}\overline{g_{1}(s)}d $\sigma$ dt+\int\int_{U}\frac{$\lambda$_{f}(p)}{p^{s+\frac{1}{4}}}\overline{g_{2}(s)}d $\sigma$ dt
=\displaystyle \triangle_{1}(\log p)+\frac{$\lambda$_{f}(p)}{p^{\frac{1}{4}}}\triangle_{2}(\log p) ,
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where we set

\displaystyle \triangle_{j}(z)=\int\int_{U}e^{-sz}\overline{g_{j}(s)}d $\sigma$ dt
for z\in \mathbb{C} and j=1 ,

2. To prove the condition (ii) in Lemma 4.3, we quote the following
lemma from Nagoshi [10].

Lemma 4.4. Let \displaystyle \frac{1}{2}<$\sigma$_{1}<$\sigma$_{2}<\frac{3}{4} such that U in included in the strip $\sigma$_{1}<

\Re s<$\sigma$_{2} . Let h(s) be a function in \mathcal{H} . Define

\displaystyle \triangle_{h}(z)=\int\int_{U}e^{-sz}\overline{h(s)}d $\sigma$ dt.
Then \triangle_{h}(z) is entire, and satisfies the following property:

(I) there exists a positive constant c=c(U, h) such that

|\triangle_{h}(x)|\leq ce^{-$\sigma$_{1}x}

holds for all x\geq 0,

(II) if h(s) is a non‐zero element, there exists a divergent positive sequence  x_{n}\rightarrow

1 (n\rightarrow\infty) and a sequence of intervals I_{n}=[$\alpha$_{n}, $\alpha$_{n}+$\beta$_{n}]\subset[x_{n}-1, x_{n}+1]
such that

|\displaystyle \triangle_{h}(x)|\geq\frac{1}{4}e^{-$\sigma$_{2}x_{n}} (x\in I_{n}) .

and such that

(4.1) $\beta$_{n}\sim x_{n}^{-4}

The statement (I) easily follows from the Cauchy‐Schwarz inequality. The state‐

ment (II) was essentially obtained by Voronin [15]. Now we prove

\displaystyle \sum_{p}|\langle f_{p}(s) , g(s)\rangle|=\infty
for any non‐zero  g(s)=(g_{1}(s), g_{2}(s))\in \mathcal{H}^{2} . When g_{1}=0 ,

the divergence of the series

was established in [6] essentially. Therefore we may assume that g_{1} is non‐zero. By
the statement (II) in Lemma 4.4 there exists a sequence  x_{n}\rightarrow\infty and a sequence of

intervals  I_{n}=[$\alpha$_{n}, $\alpha$_{n}+$\beta$_{n}] such that

(4.2) |\displaystyle \triangle_{1}(x)|\geq\frac{1}{4}e^{-$\sigma$_{2}x_{n}} (x\in I_{n}) .

Also, by the statement (I) in Lemma 4.4 there exists a positive constant c_{2} such that

(4.3) |\triangle_{2}(x)|\leq c_{2}e^{-$\sigma$_{1}x} (x\in I_{n}) .
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From (6) and (7), for any p with \log p\in I_{n} we have

|\displaystyle \langle f_{p}(s) , g(s)\rangle|\geq|\triangle_{1}(\log p)|-\frac{|$\lambda$_{f}(p)|}{p^{\frac{1}{4}}}|\triangle_{2}(\log p)|
>_{-}^{1}e^{-$\sigma$_{2}x_{n}}-2ce^{-($\sigma$_{1}+\frac{1}{4})(X^{1)}}
-4

\displaystyle \geq(\frac{1}{4}-2ce^{($\sigma$_{1}+\frac{1}{4})}e^{-(\frac{1}{4}+$\sigma$_{1}-$\sigma$_{2})x_{n}})e^{-$\sigma$_{2}x_{n}}.
Since $\sigma$_{2}-$\sigma$_{1}<\displaystyle \frac{1}{4} ,

there exists a positive constant C3 such that

|\langle f_{p}(s) , g(s)\rangle|\geq c_{3}e^{-$\sigma$_{2}x_{n}}

for sufficiently large n and all p with \log p\in I_{n} . By the prime number theorem and (5),
we have

\displaystyle \sum_{\log p\in I_{n}}|\langle f_{p}(s) ,  g(s)\displaystyle \rangle|\geq( $\pi$(e^{$\alpha$_{n}+$\beta$_{n}})- $\pi$(e^{$\alpha$_{n}}))\cdot c_{3}e^{-$\sigma$_{2}x_{n}}\gg\frac{1}{x_{n}^{8}}e^{(1-$\sigma$_{2})x_{n}}\rightarrow\infty (n\rightarrow\infty) .

Therefore the sequence \{f_{p}(s)\} satisfies the condition (ii) in Lemma 4.3. This completes
the proof of Theorem 2.2.
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