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Riemann’s zeta function and T-positivity (3):
Kummer function and inner product representation

By

Yasunori OKABE*

Abstract

We consider Riemann’s zeta function from the viewpoint of the theory of stationary Gaus-
sian processes. In the previous two papers ([11, 12]), we proved that Riemann’s zeta function
satisfies an ordinary differential equation with time delay and then obtained a new represen-
tation of the KM2O-Langevin system which is the characteristics for the non-negative definite
function associated with Riemann’s zeta function. As a continuation of the previous papers,
first, we introduce in this paper a derived Kummer function and prove a new representation
theorem for an analytic continuation for Riemann’s zeta function, by obtaining an analytic
continuation of the derived Kummer function. Second, we prove an inner product representa-
tion theorem for the analytic continuation of Riemann’s zeta function and the derived Kummer
function, by constructing a Hamiltonian operator associated with a stationary Gaussian process
with T-positivity.

§1. Introduction

Riemann’s hypothesis for the zeta function

(11) C=C) =3 (Re(s) > 1)

has remained unsolved for 151 years ([14], [16]). By using the gamma function, Riemann
obtained the following representation for an analytic continuation of the zeta function
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¢ =((s):

s S 1 > e(t) — 1 14s 2—s
1.2 2I(= = — — ("2 4+t 2 )dt
(12) TITG) = o+ [ T
where I' = I'(s) and 6 = 0(t) are the gamma function and the theta function, respec-
tively, defined by

(1.3) I'(s)= /00 e 5t (Re(s) > 0),
0
(1.4) o(t) = i e~ (t>0).

We note that

o@t) —1 = —mn?t
(1.5) —— :;e (t > 0).

Since the second term of the right-hand side in (1.2) is regular with respect to
s € C, we see from the properties of the gamma function that Riemann’s zeta function
¢ = ((s) can be analytically continued so that it is regular except at the point s = 1,
where it has a pole of order 1 with residue 1 and vanishes on the set {—2n;n € N}, to
be called the set of the trivial zero points. Riemann’s hypothesis conjectures that real
parts of all non-trivial zero points of the zeta function ¢ = ((s) lie on the vertical line
{s € C;Re(s) = 3}([16].[5)).

The purpose of this paper consists of the following two: one is to introduce a
derived Kummer function associated with the Kummer function and the theta function
and to prove a new representation theorem for the analytic continuation of Riemann’s
zeta function, by obtainig an analytic continuation of the derived Kummer function;
second is to prove an another representation theorem in terms of the innner product for
the analytic continuation of Riemann’s zeta function, by constructing a Hamiltonian
operator associated with a stationary Gaussian process with T-positivity.

The main point is that when we rewrite the second term in the right-hand side of
(1.2) into

oo - ]_ 1+s 2—s > ]' - ]‘ 1ts -
/ 9(t)2 (2 T )dt = / b+l -1 +2) (E+1)7F +(t+1) 7 )dt,
1 0

14s

we note that for each s(0 < Re(s) < 1), the terms (¢t + 1)~z and (¢ + 1)_2%3 on
the right-hand side of the above equation can represented as the Laplace transform of

bounded complex valued Borel measures. In fact, we have

(1.6) (4 1) F = / e~ 1 (dN),
0 2

(1.7) (t+1)""7 = /OOO e_”‘l“%(d)\),
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where for each s(Re(s) > 0), I's = I's(d)\) is a bounded complex valued Borel measure
on [0,00) defined by

(1.8) To(d\) = %S)e—w—ldx
We note that if s is a positive real number, then I'y is the gamma distribution with
mean s and variance s.

The detailed content of this paper is as follows.

In Section 2, we recall the proof the analytic continuation for Riemann’s zeta func-
tion (1.2) due to Riemann, because the method used there is used in the sequel in this
paper

In Section 3, we introduce a derived Kummer function defined by combining the
Kummer function and the theta function, and obtain its analytic continuation, by noting
that the principal part of the integrand in the analytic continuation of Riemann’s zeta
function can be regarded as the Laplace transform of a bounded complex valued Borel
measure defined on [0,00). Furthermore, we prove a new representation theorem of the
analytic cointinuation for Riemann’s zeta function, by using the analytic continuation
for the derived Kummer function.

In Section 4, we introduce other two kinds of functions derived from the Kummer
function and the theta function and obtaining their analytic continuation and prove a
recurrence formula among them, according to the recurrence formula with respect to
parameters of the Kummer function.

In order to clarify a mathematical structure of the notion of T-positivity coming
from the axiomatic field theory([6],[13],[3]) from the view-point of the theory of stochas-
tic processes, we constructed in [7] the Hamiltonian operator acting on the real splitting
space associated with a stationary Gaussian process with T-positivity and derived an
infinite-dimensional Langevin equation describing the time evolutiojn of the above pro-
cess. In Section 5, by taking the same procedure as in [7], we construct a Hamiltonian
operator acting on the complex splitting space associated with a stationary Gaussian
process with T-positivity. Futhermore, we give a note concerning the Shwinger function
of order 2 and the Wightmann function of order 2 in the axiomatic field theory.

In Section 6, we prove an inner product representation theorem for the analytic con-
tinuation of Riemann’s zeta function and the derived Kummer function, by transforming
the bounded complex valued Borel measure used in Section 3 to the gamma distribution
r 3 and using the Hamiltonian operator associated with the stationary Gaussian process
with T-positivity whose covarinace function is given by the Laplace transform of the
gamma, distribution I‘% .

We shall investigate Riemann’s hypothesis, by using the inner product represen-
tation theorem for the analytic continuation of Riemann’s zeta function obtained in
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Section 6 in the forthcoming paper. We would like to dedicate our hearty thanks for
Prof. M.Klimek, Uppsala University, and the referee for giving valuable advices.

§2. The analytic continuation for Riemann’s zeta function due to
Riemann

First, we put together the fundamental properties concerning the gamma function
which are used in this paper, together with the beta function B = B(z,y) (Re(z) >
0,Re(y) > 0) defined by

(2.1) B(z,y) = /01 t*7 11— t)vdt.

Theorem 2.1. (i) The gamma function T' = T'(z) can be analytically continued
so that it has no zero points and is reqular at except the set {—n;n € N*} of poles with
order 1 with residue 1.

(ii)) D(z+1)=al(x).

(iii) W =z(z+1)-(z+n—1).

(iv) T(1—2)D(z) = Sinzrm).

() T(@)P(=0) = = s

(vi) r(g)r(l 20y = 9t (a),

(vii) B(z,y) = 1;((?—5(3 (Re(z) > 0,Re(y) > 0).

By (1.4), we note that the theta function 6 = 6(¢) satisfies the following functional
equation.
1
(2.2) 0(2) = ViO(t)  (t>0),

which is proved by applying Poisson’s addition formula to the function f(z) = e~mw (x €

R).

Theorem 2.2.  ([14]) For any s € {s € C;Re(s) > 1},
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Proof. Fix any n € N and s € {s € C;Re(s) > 1}. By the change of variables
t =2\ in (1.3), we have

I‘(f) = ﬂgns/ e AN
2 0
and so ) -
(2= = / e AT,
2'ns 0

By adding the above with respect to n € N, we see from (1.1) that
w—%r(g)g(s) :/ (3 e MAE LN
0 n=1
:/ O =151,
) 2
1 - ]_ s > - ]. s

(2.3) =/ BN = 13510, +/ BN = 135100

o 2 ) 2

By the change of variables A = ¢t~! and by applying (2.2) to the first term of the
above, we have

1 . . 00 -1\ .
/—Q(A) 1)\5_1d)\=/ OU7) = Ly (5-1p2g
0 2 1

2
[0 Y (D) g

1 2

o0 - ]_ S 1 o0 S S
(2.4) =/ o) =Lty —/ " — )t

1 2 21

On the other hand, by direct calculation, we have
1 [ _sn1 s42 1

2.5 — t 72—t dt = .
(25) 5| F - —

Therefore, by substituting (2.4) and (2.5) to (2.3), we see that Theorem 2.2 holds.
(Q.E.D.)

Lemma 2.3.  ([14]) The theta function 8 = 0(t) satisfies the following inequali-
ties:

e ™ < <e ™M1l-e )t (t>1).

Proof. It follows from (1.5) that the inequality e~ ™ < G(t)T_l holds. On the other
hand, by applying the equality
(2.6) n’t—(t+n—1)=t(n*—1)—(n—1)
=n—-1{n+1)-1)
=(n—1)n>0
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to (1.5), we see that

0t) —1 =~ _ _
< w(t+n—1)
T <X

0
< e—7rt Z e—ﬂ(n—l)
n=1

— e—ﬂt(l o 6—71')—1,

which proves Lemma 2.3. (Q.E.D.)
By using Lemma 2.3, we prove

Lemma 2.4.  ([14]) The function [~ e(t)T_lt_sdt is reqular with respect to s € C.

Proof. Fix any sgp € C such that |sg|] < N with a natural number N. Since
%t‘s = —(logt)t—*, we see from Lemma 2.3 that for any s € C such that |s| < N,

0(t)—1 0
P20 < (1 ey logapY
a1 —(n_2, lOgt tN
=(1—e ) te 2)t|_€t b
logt, t&
o —m\—1 —(m—2)¢t

<NI(1—e ™) Lem "2t ¢ L1((1,00), B(R), dt).

Hence, by Lebesgue’s convergence theorem, we see that Lemma 2.4 holds. (Q.E.D.)
By applying Lemma 2.4 to Theorem 2.2, we have

Theorem 2.5.  ([14]) The function 7= 2T'(£)¢(s) (Re(s) > 1) can be analytically
continued on C so that it is reqular except at two points s = 0,1, where it has poles of
order 1 with residue 1.

By using Theorem 2.1 and Theorem 2.5, we see that

Theorem 2.6.  ([14]) Riemann’s zeta function ¢ = ((s) can be analytically con-
tinued on C through the following representaion

(6 = TGN Mo+ [ M e T e o)

and it is reqular except at the point s = 1, where it has a pole of order 1 with residue 1.
It also vanishes on the set {—2n;n € N}.
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Moreover, we see from Theorem 2.6 that

Theorem 2.7.  ([14]) The function m2T($)((s) satisfies the following func-
tional equation:

1—s ]_—S

)(s) = 7T T(=

w—%r(g )(1—s) (s€C).

§3. The derived Kummer function associated with the Kummer function
and the theta function

As noted in Section 1, we can decompose the right-hand side in Theorem 2.2 as

follows.
(3.1) w—%r(g)g(s) = oo H RO+ RE),
(3.2) Fi(s) = /Ooo Q(H—;)_l(tﬂ)—l?—sdt,
(3.3) Fy(s) = /Ooo %(t+ 1)~ 2" dt.

We note that the following functional equation holds.
(3.4) Fi(s) = Fy(1—s) (s € C).
By Lemma 2.4, we have

Lemma 3.1.  ([14]) The functions Fy = F1(s) and Fy = F»(s) are regqular on the
complex plane C.

By applying (1.6) and (1.7) to (3.2) and (3.3), we have

Lemma 3.2. Forany s € {s € C;—1 < Re(s) < 2},

() F(s) =T
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Proof. By (1.5), (1.6), (1.8) and (3.2), we have

rd < gt 1 1 .
Fi(s) = + %) / AR / e~ e AN LN dt
0

1 ‘I’ 8 / Z —mn?(t+1) /00 6_t>\€_)‘)\1—58 _ld)\)dt
n=1 0

—F(l—l—s)_lie_mz /oo i(/oo e_(m2+>\)te—>\)\1§s_1d)\)dt
- 2
n=1 0 n=1 70
1+S 1 © —71"!7,2 o0 ]_ _)\ 1+5_1
=T~ ;e /0 mmEeac

which proves (i). Property (ii) follows from (i) and (3.4). (Q.E.D.)

By using the bounded complex valued Borel measure 'y in (1.6)(resp. T 2-s in
(1.7)), we find from Lemma 3.2 that the functions F} and F5 can be rewritten in the
following form:

> 2 [ 1 2
) F — —7n -
(35) R I (@),
a2 [ 1 1-2s
(3.6) Fs(s) = E e /0 7m2+)\)\ 1 F2;s_l(d)\).
n=1

In this Section 3, we use the representation for the functions F; and Fj in Lemma 3.2.
The representation (3.5) and (3.6) will be further studied in Section 6.
For each s € {s € C;Re(s) > 0}, we define a function f = f(z;s) on [0,00) by

[ee) ts_l
. 18) = 3
(37) flas)= [ e

Lemma 3.3. Forany s € {s € C;—1 < Re(s) < 2},

(1) FI(S) :F(l—;S)_lZe_ﬁn2(ﬂ-n2)1+75_lf(7rn27 1—2|—8)7
n=1

228y § o )55 s 2
2 T2

(i) Fa(s) = I(

).

Proof. By using the change of variables A = 7mn?t in Lemma 3.2(i), we see that (i)
holds. Property (ii) follows from (i) and (3.4). (Q.E.D.)

Lemma 3.4. For any s € {s € C;0 < Re(s) < 1},

0 flass) =109 - 15 [ e 0d > 0)

xS
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™

(i) f(0;8) =

sin(ms)’

Proof. Fix any s € {s € C;0 < Re(s) < 1}. Since the function f = f(x;s)
satisfies the following differential equation

d
—f@s) = flws) = ——=  (z>0),

we find that N .
f(x;8) =e"f(0;5) — / 6“’_1’%6@
0

By using the change of variables y = xt in the above integral, we see that (i) holds. On
the other hand, we have

> 1
. _ s—1
f(O,s)—/O t —1—|—tdt

— / 5 / e~ IHOXg\)dt
0 0

= / e / t5 e dt)d.
0 0

By using the change of variables t\ = u in the above integral, we have
o o
1
f(0;s) :/ e_)‘(/ (E)s_le_“—du)d)\
0 0o A A

= (/000 e_’\)\_sd)\)(/ooo e “uttdu)
=T'(1—-s)[(s).

Hence, by Theorem 2.1(iv), we see that (ii) holds. (Q.E.D.)

Lemma 3.5. For any s € {s € C;0 < Re(s) < 1} and any = > 0,

1 > n
/06 ;(l—s)(Q—s)---(n—i-l—s)

=97
o F2—s—|—n '

Proof. Integration by parts gives us

1 1—s 1
t _ T
x(l—t)t—Sdt: J?(l—t) t=1 / :I?(].—t)t].—Sdt
K e A

1
_ 1 47 /ex(l_t)tl_sdt.
0

1—-s 1-—s
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For any N € N, integrating by parts [N times, we obtain

N n

(38)/0 6x(1_t)t_3dt = Z (1 — 8)(2 _ 8) . (TL +1 - s)

n=0

N+t ! (1) ;N+1
2(1=t) N+1=s ;.
+(1—3)(2—3)---(1\7+1—s)/0 ¢

Since
$N+1 1 $N+1

=5 @—s) (N+1-5) = T-Re(s) M

and
PN HI=s| < o7t N (0 <t < 1)

for any s € {s € C;0 < Re(s) < 1} and any x > 0, we can let N go to oo in (3.8) to see
that

b e, S "
(39) /Oe =) AT T i)

n=0

By replacing s by 2 — s in Theorem 2.1(iii), we see that F(l?(g—i)”) =(2-9)(3 -

s)--+(n+1—s). Hence, we conclude from (3.9) that Lemma 3.5 holds. (Q.E.D.)
Here, we shall recall the Kummer function 1 Fj(a;¢; z) which is also called the hy-

pergeometric function of confluent type with two parameters a and ¢ (a,c € C)([1],[4]).
2 T(a+n) T(c) 2"

(3.10) 1Fi(a;e;2) = Z T(@) T(ctn) nl (z € C).

n=0

The function u(z) = 1Fi(a;c; 2) satisfies the following hypergeometric differential
equation of confluent type.
d2

(3.11) zﬂu(z) + (¢ — z)%u(z) —au(z) =0 (z € C),

which is also called Kummer’s differential equation. We know that when ¢ # 0, —1, -2, - - -,
the fundamental system {uq,us} of solutions to Kummer’s differential equation is given
by

(3.12) wuy(2) = 1Fi(a;c;2) and wug(2) =2 ¢ 1 Fi(a—c+1;2 — ¢ 2) (z € C).
We have the following integral formula for the Kummer function.

(3.13)

1Fi(a;¢2) = Ile) ] /01 e € ) R Al (0 < Re(a) < Re(c),z € C).

F'(a)'(c—a
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It follows from (3.10) that

RN - S (N
(3.14) 1Fi(L;¢2) = nZ:O Tt n)Z (z € C).

Hence, we see from Lemma 3.5 that

Lemma 3.6. For any s € {s € C;0 < Re(s) < 1} and any = > 0,

1
/ U8t = (1 — 8) 1 Fi(1;2 — s;2).
0

By Lemmas 3.4 and 3.6, we have

Lemma 3.7. For any s € {s € C;0 < Re(s) < 1} and any = > 0,

f(x;s) = ef”sin?m) - 91;(2 1—s) "1 Fi(1;2—s52)  (z>0).

Lemma 3.8. Forany s € {s € C;—1 < Re(s) < 2},

e ™ | Fy(1; =2, ),

(i) Fos) = S iT(S) 2 — 2o (1 2 ).

Proof. By Lemmas 3.3, 3.5 and 3.7, we have

n=1
mn? T I'((1+5)/2) 2y1—Lts 5 Lts
X AT I-(ts2) 1F1(12 = ——mn?))
= (m?) " x
n=1
- 2 (en2) 5y (120
X(F((l +5)/2)sin(r(1+5)/2) 1—s (mn®) 7= 1P (15 5 T %)
00 7r(1+8)/2 1 9 o | 3_ 4
= Z(F((l +8)/2)sin(n(1 + 8)/2) n—s T se 1F1(1; —,mﬂ))

n=1
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Hence, by using the following formula for the gamma function

r(14s)/2 _ _1;5F 1—s
T((1+5)/2)sin(r(1 +5)/2) (=)

(0 < Re(s) < 1)

following from Theorem 2.1(iii), we see that (i) holds. Property (ii) follows from (i) and
(3.4). (Q.E.D.)

Lemma 3.9.  For any fized s € {s € C;Re(s) > 3}, the following series is
absolutely convergent:

Proof. Put s =0+ i1 (0,7 € R). By Lemma 3.5 and Theorem 2.1(iii), we have

00
Z —7rn2 Z |1_‘8+m 7m2) )
n=1 m=

—n? 1 2\m
:|S_1|7;16 (mZ:O|(S—1)s(s+1)---(s+m—1)|(ﬂn) )

oo

S —mn? 1 2\m
§|3_1|Ze (Z (0_1)0(0+1)...(0+m—1)(ﬂ-n) )

m=0

=|s—1] Z e—rn / 77n2(1—t)ta—2dt)
3—1|/ Ze_“” Hto—2at.

Hence, by the change of variables t = A™!, we obtain

(3.15) S e (Y |p(££r)m)|(m ) < |s— 1|/ Ze_%ﬂ))\“’d)\.

On the other hand, it follows from (2.2) that

(3.16) i \/_Z -’ ‘/__1.

2
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Therefore, by (3.15) and (3.16), we have
= —7n? S F(S) 2\m
nzz:le (mz::O |m|(7m ™)

> - 2301 L *VA-1
§|s—1|(/1 (Ze_m ’\))\E_Ud)\—l—/l \/X2 A7dN)

n=1

* < —mn? 1o 1
:|s—1|(/1 I B

Since it follows from Lemma 2.4 that the first term of the bottom part in the above
equation is finite, we conclude that Lemma 3.9 holds. (Q.E.D.)

By virtue of Lemma 3.9, we can introduce a function Ky = Kp(s) on {s €
C;Re(s) > 2} defined by

_ —7rn2 P( ) 2
(3.17) Ky(s) = E ———(mn")™).
f — r s—l—m)(

m—O

We note from (3.13) that
(3.18) Z —m Py (1 sy wn?).

We call the function Ky = Kp(s) the derived Kummer function associated with the
Kummer function and the theta function.

Lemma 3.10. (i) The derived Kummer function Ky = K@( ) can be analytically

continued on C so that it is reqular except at the point s = , where it has a pole of
order 1 with resdue 1
. _1-s_1—s 2 3—s
(i) Fi(s)=n = D(=5)(1 =) = 7= Ko(—5—) (s #0,1).
- s 2
_s S 2 24+ s
(i) Fofs) =7 iT(CE)() — ~Ko(—)  (s#0,1)

Proof. By Lemma 3.8, we see that for any s € {s € C; —1 < Re(s) < 0},

Fils) = T 000 - 5) - o Ko (P50,
By multiplying the above by %, we have
Ko(P520) = 22 Rils) - n T T~ 5),
Therefore, it follows from Theorems 2.5, 2.6 and 3.12 that (i) holds. Property (ii) follows
from (i) and the functional equation in (3.4). (Q.E.D.)

Furthermore, by using Lemma 3.10, we have
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Lemma 3.11.

2 2+s 1

(i) FI(S)ZEKO( 5 )—8(8_1) (s #0,1).

2 3—s5 1

(i1 FQ(S):l—sKe( 2 )_s(s—l)

(s #0,1).

Proof. By (iii) in Lemma 3.10, we have

2Ky(25) = ETG)C(s) - Fols).

By substituting (3.1) to the right-hand side of the above, we see that %Kg(z‘gs) =
3(8—1_1) + Fi(s), which proves (i). Property (ii) follows from (i) and (3.4). (Q.E.D.)
We define a function £ = £(s) on C by

(3.19) £(s) = ss—1)

It follows from Theorem 2.7 that the function £ = £(s) satisfies the following functional
equation.

(3.20) fs)=€1—s) (se€Q).

We are now going to prove one of the main theorems of this paper.

Theorem 3.12.  The function & has the following representation:
1 3—s 24 s
§05) = 5 — (sKo(“5) + (1= 9)Ko(=20))

Proof. By Lemma 3.10, we have

. 1-
r(—2

Fi(s)+ Fy(s)=n""2

—(

2 3—s 2 2+s
1—s

By combining this with (3.1), we have

s 1 :W—lz;sr(li)g(l—s)+7r‘%1“(§)<(8)

—(
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Therefore, from Theorem 2.7, we have

s 8 1 2 3—s 2 2+s
T 2F(§)C(s):8(8—1)+1—8K0( 5 ) TSR

).

s(s—1) , we conclude that Theorem 3.12 holds. (Q.E.D.)

By multiplying the above by ==

§4. A recurrence formula for the derived Kummer function

In this section, we introduce other two kinds of functions derived from the Kummer
function and the theta function and obtain their analytic continuation. Furthermore,
we prove some recurrence formulae among them, by using the recurrence formulas with
respect to parameters of the Kummer function.

[4.1] We recall several recurrence formulae for the Kummer function 1 F} = 1 Fj(a;c; 2)
with two parameters a and c([1],[4]).

Theorem 4.1.  ([1],[4])

. 0 a
(i) 9 1Fi(a;c;2) = p 1Fi(a+1e+1;2).

(i) 1Fi(a;c;2) = € 1Fi(c —a;¢—2).

(iii) a1Fi(a+ 1+ 1;2) = (a—c¢)1Fi(a;c+ 1;2) + ¢1 Fi(a; ¢ 2).

(iv) z1Fi(a+Lie+1;2) =c(1Fi(a+1;¢2) — 1Fi(a; ¢ 2)).

(v) ai1Fi(a+1;¢2)=(2+2a—c)1Fi(a;¢;2) + (c —a)1Fi(a — 156 2).

(vi) (c—a)z1Fi(a;e+1;2) =c(z4+c—1)1F1(a;¢;2) + c(1 — ¢) 1 Fy(a;c — 15 2).

V11 11m Fi(a;c;z Fila+n+1;n+2;z n 0
c—-—n] (C) S (TL + ].)' 1 ’ ’ T ’

where (a)y, is defined by

(@)p=ala+1)---(a+n—-1)=

[4.2] In (3.17), we introduced the derived Kummer function K = K(s) associ-
ated with the Kummer function and the theta function. As a refinement, by using the
Kummer function 1 F(a; s; z) with a parameter a(> 0), we introduce a derived Kummer
function Ky(a) = Kg(a;s) with a parameter a(> 0) by

(4.1) Ky(a;s) = Zl e—wn2(z F(?;l)m) F(:f)m) (W;ln!)m).

m=0
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We note that

(4.2) Ze mn® VFy(a; s;m02),
(4.3) Ke(l,s)—Ke( ).

Ifs>a+ %, then the following Lemma 4.2, which is a refinement of Lemma 3.10,
assures that

Lemma 4.2.  For any fized a > 0 and s € {s € C;Re(s) > a+ 1}, the following
series is absolutely convergent and its convergence is uniform in the set {s € C;Re(s) >
oo} for any og > a+ %:

2)m

Z e_mz(z F(a4+m) T(s) (mn

I'(a) T(s+m) m! )

Proof. By using the integral formula (3.13), we can prove Lemma 4.2, using the
same procedure as in Lemma 3.10. We give here a proof of completeness.

Put s = o +ir (0,7 € R). Noting that o > 09 > a+ 1 > 0, we see from Theorem
2.1(iii) that

| [(s) < 1
Cis+m) ~ [s(s+1)---(s+m—1)]
1
S00(00—i—l)---(ao—i-m—1)
_ F(O’o)
F(O'()—l-m).

Therefore, we see from Theorem 2.1(iii) and (3.13) that for any z > 0

m

Fla+m) T(s) zm ZT(a+m) T(og) =
Zl T(a) T(s+m)m! <Z T(a) T(oo+m)m!

= 1F1(a;00; 2)

I'(o9) /1 (1—t)100—(a+1) -1
= e® A 1—8)" " dt.
M@0 —a) o 4=

Hence, we have

Z e—ﬁn2 ( Z |F(a + m) F(F(S) (Wn )m |)

I'(a) s+m) m!

(o
< —mn?t tao (a—l—l) —t a_ldt.
_I‘(a)I‘ao—a / Ze (-9
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By the change of variables t = A™!, we have
S o (30 Hlatm) L))
— = D(a) T(s+m) ml

I'(o0) * < o~ T\ \—o0—(at+1) (| _ \—1yja—1y-2
SF(a)F(JO—a)/I > A (1 —A"He Ix"2gx.

By using (3.16), we have

2= T(a+m) T(s n?)"
ge (Z_| (I‘(a) )F(.s:-)m)( m!) D

I'(o0) S oA VAi-1 —oo—(a+1) (1 _ y—1ya—1y—2
< T (o = )/ (ﬁz + =5 (1—A"He 1A "2ax
B ['(00) o0 °° - A—1., 1
4= et oI

1 [ A-1.,, 1 1
+§/1 (T) ()\Jo—(a—l/2) + \oo—(a—1) )d)\}

We calculate the second term in (4.4). By the change of variables % =t, we

obtain

(4.5) [w(ﬂ)a—l;dt - /01 (1 (1 — 1)@ (1 — )2

) No—(a—1)
1 3
/ N1 — ) e gy
0

1
Bla,s —a— =).
(a5 —a-3)

Similarly, we have

©A—1,, 1
/1 ( )\ ) = (a+1)d B(a,s —a).

Hence, we have

CA=1,4 1 Fa)'(s—(a+1/2)) T(a)'(s—a)
(46) /1 ( A ) As—(a—1/2) dt = I'(s—1/2) - T'(s) '

We consider the first term in (4.4). First, we consider the case where a > 1. Since
(22)e~! is bounded in [1,00), we see from Lemma 2.3 that the integrand of the first
term in (4.4) is integrable. Hence, the first term of the right-hand side in (4.4) is finite.

Next, we also consider the case where 0 < a < 1. We decompose the integral part
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of the first term in (4.4) into

oo X oy A—1 1
—mn - a—1
| eI

n=1

4.7 _ = —mn?\ )\_]‘ a—1 1 d)\
(47) =) TG e

o° 2y, A—1 1
—7mn A a—1
/2 QeI e

n=1

%)“_1 = W)\l_“. Since W is integrable
in [1, 2], we see from Lemma 2.3 that the integrand of the first term in (4.8) is integrable

in [1,2]. Furthermore, since (252)*~! is bounded in [2, 00), we see from Lemma 2.3 that

We have the decomposition (

the integrand of the second term in (4.8) is integrable in [2,00). Hence, the first term
of the right-hand side in (4.4) is finite.
Thus, we have proved Lemma 4.2. (Q.E.D.)
By noting (3.10) and (3.12), we can arrange the proof of Lemma 4.2 to see that

Lemma 4.3.  For any fized a > 0 and s € {s € C;Re(s) > a+ 3}, the following
series

> 2 F(S) /1 2
e T e™ (1 . t)s_a_lta_ldt
,; [(a)l(s —a) Jo

1s absolutely convergent and the following relation holds:

= —mn? F(S) ' mmt1 _ p\s—a—1,a—1
> e —F(a)F(s—a)/ ™1 —t) oLt

n=1 0
o F(S) * = —n? A—1 a—1 1
= oo, QNG e

l(I‘(a)I‘(s —(a+1/2)) T(a)l'(s— a))
2 I'(s—1/2) I'(s) '

Concerning the analytic continuation for the derived Kummer function Kg(a) =
Ky(a; s) with a parameter a, we have

Theorem 4.4. Let a be any fixed positive number.

r

(i) Ko(a;s) = ﬁ/o (Z e—ﬂnzt)(l _gysmamlya—lgy

.. T'(s > = —mn? )\_1(1— 1
(ii) Kg(a;s):m{/l (;e NS s
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1 T'(a)'(s—(a+1/2)) T(a)T(s—a)
S Teoy T e

(iii) The following function
)" Ky(a; 5)

can be analytically continued on C so that it is reqular except at the set {a — %,

a—mn;n € N*}NZ, where it has poles of order 1.
(iv)  The function Kg(a;s) can be analytically continued on C so that it is reqular

except on the set {a — %, —n;n € N*} NZ, where it has poles of order 1.

Proof. We see from Lemmas 2.3 and 2.4 that (i) and (ii) hold.
Next, we prove (iii). For that purpose, we have only to prove that

o 2y, A—1 1
™A a—1 : :
(4.8) /1 ( E e )( X ) o (a1/2) dA is regular in C.

n=1

First, we consider the case where a > 1. By noting that (%)a_1 is bounded in
[1,00), we can use the same estimate as in the proof of Lemma 2.4 to see that (4.8) is
proved.

Next, we also consider the case where 0 < a < 1. We docompose the integral part
in (4.8) into

o0 = 2y A —1 1
—mncA a—1
) (O N s

n=1
2 ©© oo 00
2y A —1 1 2y A—1 1
— —mn A a—1 —mn\ a—1
_/1 (Z_:le (=) )\s_(a_l/Q)d)\—l—/Q (Z_jle )

By noting that (%)“_1 = W)\l_“, we decompose the integrand of the first
term in the right-hand side in (4.9) into

= oy A—1 1 1 = > 1
—mn A a—1 — —TAy
(Zl € ) b\ ) No—(@-1/2) ~ (A —1)i-a (Zl € ))\s—(a+1/2)'

Since W is integrable in [1,2], we can use the same estimate as in the proof
of Lemma 2.4 to see that the first term of the right-hand side in (4.9) is regular in C.
Furthermore, since (%)a_1 is bounded in [2,00), we can use the same estimate as in

the proof of Lemma 2.4 to see that the second term of the right-hand side in (4.9) is
regular in C. This proves (4.8).
Property (iv) comes from (iii) and Theorem 2.1(i). (Q-E.D.)
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Theorem 4.5.  The following relation holds: for any a > 0,

1 1
aKgla+1;s+1) = (a—s)Kp(a;s+ 1) + sKg(a;s) (s#a+ 54~ 5,0, —-1,-2,...).

[4.3] Asin Lemma 4.2, by taking into account Theorem 4.1(iii), we prove

Lemma 4.6.  For any fited a > 0 and s € {s € C;Re(s) > a+ 2}, the following

series is absolutely convergent:
iﬂ'”% o i I( a—l— m) T'(s) (an)m)‘
o I(s+m) m!

m=0

Proof. From the proof of Lemma 4.2

5 n2, = D(a+m) T(s n?2)m
an Z| (I‘a )F(s:—)m)( m!) )

F(O) ! 7rn e~ 24N yo— (a—l—l) a—1
= L(a)'(o —a) / Z )t (1= o) dt.

n=1
By the change of variables t = A™!, we have

9 —n2 I'(a+m) T(s n?
(4.10) Zm Z()' Ta) )F(s:—)m)( m!) )

(o)
<\ 2—\y—o+a+1 1— )\—1 a—l)\—2d)\.
~TI'(a)T'(oc —a) / ane ’ ( )

By differentiating (3.16) with respect to A, we have

> w21 > > 1
—\72 Z mmle 7 = 5)\_% Z eTA _ \/XZ e ™A + Z)\_§
n=1 n=1 n=1
and so
i 7777,2 1 3 s 2)\ 5 e 2)\ 1 3
(4.11) ZW/@%‘T = —5)\5 Z e ™ AR anQe_m - Z)\E.
n=1 n=1 n=1

By substituting this into (4.10), we have

9 —mn2 a+m) I'(s n?
(4.12) an ﬂ;}' F(—;) )I‘(s:—)m)( m!) )

D /1 (D™= AT I R

I'(
I'(a)['(c —a)

+/ (3" mn2e ™ M) (1 — AThe T AT R AN — i/ (1 — A~ hHa-ty-otetzgyy,
1

<
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Similarly as in the proof of Lemma 4.2, we find that the first term of the bottom
part in (4.12) is finite.
By using (2.6), we have
s 2
anQe_“” A< (ane ™)™ e 1[0, 00), B(R), dA).
n=1
Hence, similarly as in the proof of Lemma 4.2, we find that the second term of the
bottom in (4.12) is finite.
Since it follows from (4.5) and Theorem 4.1(v) that
CA=1,4 1 3 I'(a)I'(o — (a+3/2))
—B - -
/1 ()" et = Blao—a—g) T(o—3/2)
we find that the third term of the bottom part in (4.12) is finite. Hence, we have proved
Lemma 4.6. (Q.E.D.)
By virtue of Lemma 4.6, we can introduce another derived Kummer function
Kg(a) = Kg(a;s) with a parameter a(> 0) by

9 —mn? . T(a+m I'(s ™m2)™
(4.13) Kj(a;s) Zﬂn Z (F(—'c—z) )1"(8 El—)m)( m!) ).

m=0

Concerning the analytic continuation for the function Kg(a) = K (a;s), we have

Theorem 4.7. Let a be any fized positive number.
. 1 ) L% o~ ety A=l 1
(i) Kg(a;s) = m{—gfl (;6 )( h\ ) No—(at1/2) dA

oo = o A1 1 1T(a)T(s — (a+3/2))
+/1 (O e ™) () e SCEET) }.

(ii) The following function

()

TG —a) )" Kj(a;s)

can be analytically continued on C so that it is reqular except on the set of {a— 2”; L.ne
{—-2,-1,0,1,2,...}} N Z, where it has poles of order 1.

(iii) The function Kg(a;s) can be analytically continued on C so that it is reqular except
on the set {a — 2”;1, —n;n € {—2,—-1,0,1,2,...}} NZ, where it has poles of order 1.

Proof. We see from Lemma 4.6 that

['(s L[ o A= 1, 1
(4.14) Kz(a;s)zm{_§/l (Ze )\)( A ) )\s—(a—l—l/g)d)\

n=1

o0 X 2y A—1 1 1 A—1
2 —mn“A a—1 = a—1 s—l—a—|—2
+/1 (Zlﬂ'ne (S A 4/1 ()i dA}.
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On the other hand, it follows from (4.5) and Theorem 2.1(v) that

© A—1.,_ 1 F(a)'(s— (a—1/2))
(4.15) /1 (T) 1)\3—(0,—1—1/2) dt = ( I'(s +(1/2) /

Hence, it follows from (4.14) and (4.15) that (i) holds. Similarly as in the proof of
Lemma 4.6(ii), we can use the same estimate as in Lemma 2.4 to see that both the first
term and the second term of the bottom part in (i) are regular on C. Hence, we see
from Theorem 2.1(i) that (ii) holds. Property (iii) follows from (ii) and Theorem 4.1(i).

(QED.)

We prove another representation for the function K (a;s).

Theorem 4.8.  For any a > 0,

1 oo
K3 (a;s) = r(a)g((ss)— ot /0 (nz_:l e ™) (1 - ¢)* et Dy

Proof. First, by the change of variables % = t in Theorem 4.7(i), we see that
the first essential term of the right-hand side of Theorem 4.7(i) is rewritten into

* < Py AT L 1 ' 2 a—1 s—(a+3%) -2
[T = [ Qo e e a2

n=1
1 ©o° 2
:/ O eyt — o)t ar,
0 p=1

By using the functional equation in (3.16) and Theorem 2.1(v), we have

oo X 2y A —1 1
—Tn A a—1
/1 (Ze ) h ) No—(at1/2) dA

n=1

1 oo
_ / (Z e—ﬂ'nz(l—t))ta—l(l . t)s_(a+2)dt
0 n=1

1
+ % / (ta—l(l _ t)s—(a+2) - ta—l(l _ t)s—(a—l—%))dt
0
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_ /1(i e—ﬂ'nz(l—t))ta—l(l - t)s_(a+2)dt
0 n=1
L B 1 B 5
+ 5( (a,s—(a+1)) — B(a,s — (a+ 5)))
1 oo
_ / (Z e—ﬂ'nz(l—t))ta—l(l - t)s_(a+2)dt
0 n=1
N 1(1“(@)1“(8 —(a+1)) I(a)l(s—(a+ 3/2)))
2 I'(s—1) I'(s—3/2) '

Furthermore, by using the change of variables % =t in Theorem 4.7(i), we also
see that the second essential term of the right-hand side of Theorem 4.7(i) is rewritten

into

S 2 —mn?\ A—1 a—1 1
/1 (Zlm NS
o
1 o0 2 3
:/ (3" mn2e T20)ee 1 (1 — )+ (1 — ) 2t
0 n=1
1 i wn? 7
:/ (> mnle Tt (1 — ) TR dt,
0 n=1

By using the functional equation in (4.11), we have

e 2 —mn?\ A—1 a—1 1 d\
) (Zl e ) b\ ) No—(at3/2)
n=

1 oo
/ (Z e—ﬂnz(l—t))ta—l(l o t)s_(a+2)dt
0 n=1

N |

1 ©© 1
2 : 1
—I—/ ( 7.(_,,,1126—7Tnz(].—'If))t(l—l(1 _ t)s—(a+1)dt _ Z / ta—l(l _ t)s_(a+2)dt
0 n=1 0

1 o0
_ _% / (Z e—rn2(1—t))ta—1(1 . t)s—(a—l—Q)dt
0 p=1

1 oo
1
—i—/o (Z 7m2€—7m2(1—t))t“—1(1 —¢)s~ @t — ZB(CL’ s—(a+1)).

n=1
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Hence, by using Theorem 2.1(vii), we have

)\ —1 1
2 —7rn a—1
(4.16) / E ™m S ) o (@T5/2) X

_5/ (Z e—ﬂ'nz(l—t))ta—l(l - t)s—(a+2)dt
0 p=1

& > 1T(a)(s— (a+1))
2,—mn*(1=t)ypa—1q _ pys—(a+l) gp = .
+/0<nzlme e (1 - 1) I T6-T

Hence, by substituting (4.16) to Theorem 4.7(i), we have

Ke'(a; 8) _ F( ) ){__ /Ol(i 6—7rn2(1—t))ta—1(1 . t)s—(a+2)dt

Fa)'(s—a —
_l(f‘(a)l"(s —(a+1) T(a)l'(s—(a+ 3/2)))
4 I'(s—1) I'(s—3/2)
_% /01(2 6—7rn2(1—t))ta—1(1 - t)s—(a+2)dt
= n2e—m  (L=t)ypa—1(] _ pys—(at1) gy _ EF(Q)P(S —(a+1))
+/0(n§=:1 (1 — 1) = TG D

1T(@)T(s— (a+ 3/2))}
4 T(s-3/2)

:L _ = e—ﬁnz(l—t) a—1 _ p\s—(a+2)
FaT(s—a) | /O(Z i1 - 1)

n=1

b~ 9 n?(D)ysaot s—(a+1 1T(a)'(s = (a+1)
—|—/O (ane ( ))t (1—1) (+)dt—§ T(s — 1) 2

n=1

which proves Theorem 4.8. (Q.E.D.)

Corresponding to Theorem 4.7, by using the recurrence formulae (iii),(iv) and (v)
in Theorem 4.1, we see from Theorem 4.7 that

Theorem 4.9.  The following relations hold: for any a > 0,
(i) Kpla+1;s+1)=s(Kela+1;s) — Ko(a;s)),
(i) aKg(a+1;5) = Kj(a;s) + (2a — s)Kyg(a; ) + (s — a)Kp(a — 1; 8),
(iii) (s —a)KZ(a;s+1) = sK(a;s) + s(s — 1)K¢(a;s) +s(1 — 5)K¢(a;s — 1),

where s ¢ {a+2,a+ 3,a+3,1,0,-1,-2,.. } NZ.
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§5. A Hamiltonian operator associated with a stationary Gaussian
process having T-positivity

Let X = (X (t);t € R) be any real valued stationary Gaussian process on a proba-
bility space (€2, B, P) with mean 0 and the covariance function R = R(t) : R — R:

(5.1) E(X()=0 (t€R),
(5.2) BE(X(t)X(s))=R(t—s) (t.sc€R).

Furthermore, we consider the case where the process X satisfies T-positivity, that
is, there exists a bounded Borel measure 0 = o(d\) on [0,00) such that the covariance
function R = R(t) can be represented as the Laplace transform of the Borel measure o:

(5.3) R(t) = /0 h e Ma(d))  (teR).

[5.1] We define a complex Hilbert space M(X) as the closed subspace of the
complex Hilbert space L2(Q2, B, P) by

(5.4) M(X) = the closed linear hull of {X(¢);t € R}.

We denote by (x,x)nx) and || * [|nx) the inner product and the norm in the complex
Hilbert space M(X), respectively:

(5.5) Y, 2)ymx)=E(Y Z) (Y, Z € M(X)),
(5.6) 1Y mx) =1/ Y, Y )mx) (Y € M(X)).

Furthermore, we define three complex closed subspaces M™(X), M~ (X) and
M —/*(X) of the complex Hilbert space M(X) by

(5.7) M (X) = the closed linear hull of {X (¢);t > 0},
(5.8) M~ (X) = the closed linear hull of { X (¢);¢ < 0},
(5.9) M~/+(X) = the closed linear hull of {Pmrx)Y;Y € M™ (X))},

where Pyp+(x) stands for the projection operator on the closed space M (X). We call
these complex closed subspaces MT(X), M~ (X) and M~/*(X) the future space, the
past space and the splitting space associated with the process X, respectively.

In [7], we treated the real Hilbert space M,,1(X) defined by

(5.10)0 M X) = the closure of {Zf:]:l cn X (tn);Cnytn € R(1 <n < N),N € N}

real (

and constructed a Hamiltonian operator acting on the real splitting subspace Mr—e/&:i (X)

of the space M X). Since we can obtain the same results as in [7] by taking the

real (
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same procedure as in [7], we state only the results of [7] which will be needed in this
paper.

Since X is a real valued and stationary process, we can construct a strongly con-
tinuous one-parameter group U = (U(t);t € R) of unitary operators and a unitary and
self-adjoint operator T" acting on the complex Hilbert space M(X) such that

(5.11) Ut)(X(s)=X(s+t) (t,s€R),
(5.12) T(X(s))=X(—s) (s€R).

The operator T is called a time reflection operator.

Furthermore, we define an operator S acting on the complex Hilbert space M(X)
by

It then follows that

Lemma 5.1.  ([7])

(i) The operator S is a bounded self-adjoint operator.

(i) S(M(X)) c M~/*(X).

Since R(t +s) = (X (1), TX(s))mx) (t,s € R), we find from (5.3) that
Lemma 5.2.  ([7]) The self-adjoint operator S is non-negative, that is,

SY),Y)mx) >0 (Y € M(X)).

Remark.  Since the non-negative property of the operator S is equivalent to the
T-positivity of the process X([2]), the notion of T-positivity is also called a reflection
positivity.

Lemma 5.3. ([7)) UMt (X)eM /(X)) c MT(X)oM/+(X) (t>

0).
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By using the strongly continuous one-parameter group {U(t);t € R} of unitary
operators in (5.11), we define a one-parameter semi-group {V(¢);t > 0} of bounded
operators acting on the splitting space M~/ (X) by

(5.14) V()Y = Py xyUR)Y (Y € MT/T(X)).

Lemma 5.4. ([7]) (V(t);t > 0) is the strongly continuous one-parameter semi-
group of contraction operator.

Concerning the kernel space of the operator S in (5.13), we have
Lemma 5.5. ([7]) {Y e MH(X); SY =0} = MT(X) o M~/+(X).
It follows from Lemmas 5.1, 5.2 and 5.5 that

Lemma 5.6. ([7]) (i) The bounded self-adjoint operator S : M~/T(X) —
M~/+(X) is positive and contractive.

(i) Sz(M~/+(X)) is dense in M~/*(X).

After the above preparations, we have

Theorem 5.7.  ([7]) There exists uniquely a strongly continuous one-parameter
semi-group {T(t);t > 0} of bounded symmetric operators acting on the splitting space
M ~/*+(X) such that

T(t)S? = S3V(t)  (t=>0).

As a characteristic difference property between the one-parameter group {U (¢);t €
R} of unitary operators and the one-parameter semi-group {7'(¢);t > 0} of bounded
symmetric operators, we show

Proposition 5.8.
() (UOX0).UXO)mo) = R(E—5)  (ts€R).

(i) (T(£)X(0),T(s)X(0))arx) = R(tE+5)  (t,s>0).

Proof. (i) comes from (5.2) and (5.11). Take any ¢,s > 0 and fix them. By
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Lemmas 5.1(i), 5.1(iv) and Theorem 5.7, we have

which, together with (i), proves (ii). (Q.E.D.)
We denote by —Hx the infinitesimal generator of the strongly continuous one-
parameter semi-group {7'(t);t > 0}:

(5.15) T(t) =e tx  (t>0).

Sine the operator Hx is a self-adjoint and non-negative operator acting on the
splitting space M~/%(X), we have a decomposition {E()); A > 0} of identity associated
with the operator Hx ([17]):

(5.16) Hx = /0 T BN,

We note that each operator E()) is a projection operator acting on the space M~/*(X).
We call the self-adjoint operator Hx the Hamiltonian operator associated with the
stationary Gaussian process X.

As an application of Proposition 5.8(ii), we find that the Borel measure o in (5.3)
can be represented by the spectral resolution (E(\); A > 0).

Proposition 5.9. ([7]) o(d)\) = d(E(A)X(0), X(0))m(x)-
Proof. It follows from (5.15), (5.16) and Proposition 5.8(ii) that for any ¢t > 0,

R(t)

(T'(t)X(0), X(0))m(x)
(e X(0), X(0))mx)

(f T e PEN) X (0), X (0))mx)
0

— /O - e " d(BE(N)X(0), X(0)m(x)-
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Therefore, by noting (5.3), we see from the uniqueness of the Laplace transform that
Proposition 5.9 holds.. (Q.E.D.)
As a special property of the vector X (0) of the splitting space M~/+(X), we have

Lemma 5.10.  ([7]) The Hamiltonian operator Hx has a simple spectrum and
the vector X (0) is a generating vector of the splitting space M~/+(X) with respect to
the operator Hx, that is,

{T(t)X(0);t > 0} is dense in M~/T(X).

By virtue of Lemma 5.10, we can apply Theorem 7.10 in [15] to the operator Hx
to obtain

Theorem 5.11.  ([7]) (i) There exists a unitary operator V. from M~/ (X) onto
L?([0,00), B([0,00)),0) such that

Y = / OO(VY)()\)dE()\)X(O) (Y e M~/ (X)).
0
(ii) Setting H, = VHxV ™!, we obtain

D(H,) = {f € L*([0,0), B([0,00)),0); A\f(A) € L*([0,00), B([0,00)), )}
and
(Hof)(A) =Af(A)  (f € D(H,)).
From Lemma 5.10 and Proposition 5.9, we obtain

Proposition 5.12.  ([7]) The following three conditions (i),(ii) and (iii) are equiv-
alent:

(i) o({0}) =0.
(ii)  s-limyoo T'(t) = 0.
(iii) Hx is injective.
[5.2] By taking account of (5.15), we can do an analytic continuation of the one-
parameter semigroup {T'(t);t > 0} constructed in Theorem 5.7 from [0,00) to {z €

C;Re(z) > 0} to define a family {T'(z); z € C,Re(z) > 0} of bounded operators acting
on the splitting space M~/+(X) by

(5.17) T(2)Y = /OO e PMENY (Y e M~/H(X)).

We show



306 YASUNORI OKABE
Theorem 5.13.
(i) T(21)T(22) =T (21 +22) (2 € C,Re(z;) 20(1 <j<2)).

(ii) For each Y € M~/*(X),

(T(21)Y, T(22)Y Jnax) = /0 T gy,

(iii) For each Y € M~/%(X), the following function

{z € C;Re(z) >0} 3z = T(2)Y e M/H(X)

is differentiable and T@Y =[S (=xe*)dE(\)Y .

Proof. By noting the property of sepctral resolution, we find from (5.17) that
dENT (22)Y = e = E(N)Y and so T(21)T(22)Y = [~ e e 2 EN)Y =T(z1 +
29)Y", which proves (i). (ii) comes from Proposition 5.9. Fix any z € {z € C;Re(z) > 0}.
For any w € {w € C;0 < |w| < 1},

Tz+w)Y —T(2)Y _ /OO(—)\e_ZA)dE()\)Y _ /OO 6—2)\(6_10)\—_1 + ANdE(N)Y.
w 0 0 w

. —wA __ )\2 —w\ __
Since [“—— + )| < |w|2 e -l

the Lebegue’s convergence theorem to see that

,limy, o + X\ =0 and Ae *" is bounded, we can use

lim
w—0

H T(z4+w)Y —T(2)Y

- /0 Oo(—)\e‘ZA)dE()\)YHM(X) —0,

which implies that (iii) holds. (Q.E.D.)
We define a complex valued stochastic process Xw = (Xw(7); 7 € R) by

(5.18) Xw(T) =T(>i1)X(0).

Theorem 5.14. The complex valued stochastic process Xw is stationary whose
mean is 0 and covariance function Rx, = (Rx (7);7 € R) is given by

Rxw (1) = (Xw(T +1), Xw(t))mx) = /OOO e Ao (dN) (r,t € R).

Proof. By (5.17) and (5.18), we have

(Xw (T +1), Xwe)mx) = /O e TN (V) X (0), X (0),
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which, together with Proposition 5.9, implies that Theorem 5.14 holds. (Q.E.D.)

We explain a relation between the real valued stationary Gaussian process X and
the complex valued stationary process Xw from the view-point of the axiomatic field
theory. We find from (5.2) and Theorem 5.14 that the covarince function R and Rx,,
of the stationary Gaussian process X and the stationary process Xw is given by the
Laplace transform and the one-sided Fourier transform of the bounded Borel measure
o = o(d\) in [0, 00), respectively. For this reason, the covarinace function R and Rx,
is qualified to be called the Schwinger function of order 2 and the Wightmann function
of order 2, respectively([6],[13],[3]).

§6. An inner product representation for the analytic continuation for
Riemann’s zeta function and the derived Kummer function

[6.1] By transforming the complex valued Borel measure T’ Lt in (3.5) and I‘zgs
in (3.6) to the real valued gamma distribution I's, we find that the functions F} in (3.1)
and Fy in (3.2) can be rewritten in the following form.

Lemma 6.1.

G) Fi(s) = 1i/j Z m/ n2+>\ NEFLT (40,

0 R0 = e e ) e T

Let Xr,,, = (Xr,,(t);t € R) be the one-dimensional stationary Gaussian process
with mean 0 whose covariance function RXr3/4 = (er3/4 (t);t € R) is given by

(6.1) Rx,,, (t) = /O°° e—ltlkr%(dA) (t € R).

By applying Theorem 5.7 to the above stationary Gaussian process Xr, , with
T-positivity, we have the strongly continuous one-parameter group {TXF3/4 (t);t > 0}
and the Hamiltonian operator pr3/4 associated with the stationary Gaussian process
XF3 /4 .

_tHXr‘3/4 (t > 0)

(6.2) TXF3/4 (t) =e
Since I's ({0}) = 0, it follows from Proposition 5.12 that

Proposition 6.2.  The Hamiltonian operator er3/4 18 injective.
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For each a > 0, we define the resolvent operator G, for the semi-group {T: Xr,,, (t);t >
0} by

o0
(6.3) Go = /0 e_o‘thFs/4 (t)dt = (o + pr3/4)_1~

In particular, we see from (5.16) and (6.3) that

(6.4) Go = /Ooo - Jlr CdB().

Corresponding to the derived Kummer function Ky defined by (3.18), we introduce
an operator Gy acting on the splitting space M~/ *(Xr, 14) by

(6.5) Gy = i e_ﬁn2 Grn2.

n=1

Furthermore, we define a function G = G(X) : [0,00) — R by

0
S
— ™2+ A\

(6.6) G(N)

Lemma 6.3.

e—A

() £5<60) < sk

(ii) Gy is a bounded operator and

GyY = /0 b GNIEN)Y (Y e M /*(Xr,,,)).

Proof. By noting (1.5), we have

G(A)

o o]
Ze—rn2/ 6—(7Tn2+>\)tdt
n=1 0

/OO(Z e—ﬂnz(t—l—l))e—)\tdt

0

n=1
“Ot+1)-1
:/ ( + ) G—Atdt
0 2
% g .
:/ (t) 16—)\(t—1)dt
1 2

= e>‘/ —e(t) _ 16_>\tdt.
1 2
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Therefore, by the change of variables x = At, we have

e [ 0(x —
(6.7) G()\):X/)\ M;le_xdx.

By applying the left-hand side of the inequality in Lemma 2.3 to (6.7), we have

6>‘ 00 . e>\ o . 6 e —(m/A+1)A e T
G\ > — e dy = — STy = — =
()_)\/A ¢ ohea AA C TN TIATL N

which gives the left-hand side in the inequality of (i).
On the other hand, by applying the right-hand side of the inequality in Lemma 2.3
o (6.7), we have

€>\ o8 6—71'(3:/>\) 1 6—)\
<= L ey =
G()\)_)\/ = dx Py

which gives the right-hand side in the inequality of (i).
Furthermore, we see from (6.4) and (6.5) that

- —7n? > 1

By virtue of (i), we can use Fubini’s theorem to change the order between the summation
and the integral in the above equality and find from (6.6) that

= —mn’ YAE (A YAE (A
Ge /0 Z 7m2 + )\ / GO

n=1

which proves (ii).
Thus, we conclude that Lemma 6.3 holds. (Q.E.D.)
[6.2] By virtue of Proposition 6.2, for each 0 € R, we can define a self-adjoint
operator H, acting on the splitting space M~/ T(Xr, 14) by

20—1

(6.8) Hy = (Hx,, )" :/ AT AE(N),
0

(6.9) D(H,)={Y € M~/*(Xp,,,); VY(N)A"T € L*([0,00), B([0,0)),T'3)}.

Lemma 6.4. For any 0 € R, GgH, is a symmetric operator and GoH, =
H,Gy.

Proof. Since it follows from Lemma 6.3(ii) that Gy is a bounded operator,
D(GpH,) = D(H,). Take any Y € D(H,) and fix it. Since it follows from Lemma
6.3(ii) that G(\) is a bounded function, we note that

20—1 20—1

(6.10) MEEGVY (A) = GA)WT VY (V) € L2([0,00), B([0,00)),Ts ).
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Furthermore, by Theorem 5.11(ii) and Lemma 6.3, we have
(6.11) V(GeH,Y)(N) = AT GAVY (N).

Hence, we see from (6.8) and (6.9) that GyY € D(H,) and GoH,Y = H,GpY . On
the other hand, take any Y € D(H,) and Z € M_/+(X[‘3/4). By (6.9), we see from
Theorem 5.11(ii) that

20—1 —

(G0H0Y7Z)M(Xp3/4):/ GMNATT VY(\)VZ(AT
0

20—1

= / h VY (N)GAA* T VZ(\T
0

= (Y, GGHJZ)M(XFB/4)7

which proves that GgH, is a symmetric operator.
Therefore, we conclude that Lemma 6.4 holds. (Q.E.D.)
[6.3] After the above preparations, we shall obtain an inner product representation
for the analytic continuation of Riemann’s zeta function.

For that purpose, contact to (5.18), we define a complex valued stochastic process
W = (W(r);7r € R) by

(6.12) W(r) = /oo NTAE(\)X(0).
0

We note that

(6.13) W(0) = X(0).

Lemma 6.5. The complex valued stochastic process W is stationary whose
mean is 0 and covariance function Rw = (Rw(T); T € R) is given by

Rw(r) = (W(r+1), W(t)Mmxr,,,) = /0 h NT2g(d)\)  (1,t €R).

Proof. By (6.12), we have

(W(r+8), W(t)mxr,,,) = / 7 i) AT(E(MN)X(0), X(0)),

0
which, together with Proposition 5.9, implies that Lemma 6.5 holds. (Q.E.D.)
Lemma 6.6. Forany s=oc+it(0 <o < 1,7 € R),

(i) V(X(0)) =1,
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(i) X(0) € D(H,)ND(H, o),
(iii) V(W(r) =1,
(iv) W(r) € D(H,) N D(Hi_o).

Proof. Since limy oo E(\) = I and limy_o E(\) = 0, (i) holds. By virtue of (i),

in order to prove (ii), we have only to show

20—1 1—

(6.14) AT AT € L2([0,00), B([0,00)), Ts4).-

By noting (1.8), we have

TnERer = [ et tan= [ e — L
i | Tz (dA) = ; e =), ¢ aE At

20

—1
4

Since 0 < o < 1, we see that —1 < 3= < 3 and so that A € L*([0, c0), B(]0, 00)),T'z).
By replacing o to 1 — o, we find that A7~ € L?([0, ), B([0, oo)),I‘%), which proves
(6.14). Since V(W (1)) = A'7, (iii) holds. By virtue of (iii), (iv) can be proved similarly
as in (ii).

Therefore, we conclude that Lemma 6.6 holds. (Q.E.D.)

Lemma 6.7. Foranys=oc+ir(0<o< 1,7 €R),

) Fils) = pra s (Gt (W (D), WO,

2
" '(3/4)
SR RYE)

Proof. By taking the same consideration as in Lemma 6.3(ii) and using Lemma

(Golho(W (=), W(0))mixr, -

6.6(iii), we can change the order of the summation and the integral in Lemma 6.1 to

see from Theorem 5.7 that

O e v D DU S e MY

I((1+s)/2) —l TNt + A
= sy f, OOV
_ % OOO GONAST N (dN)
_ % /0 VG, (W) VWO (4)
— %(GGHU(W(%)), W(0))mxr,,):

which proves (i). Similarly, we find that (ii) holds. (Q.E.D.)
We shall prove one of the main results in this paper.
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Theorem 6.8. For any s=c+it(0 <o < 1,7 € R),
_s S
= 40(3)c(s)
1 '(3/4)

e (W(0), W(O0)mxr,,,) +

T(3/4)
I'((2-1s)/2)

W(GQHJ (W(g)% W(O))M(XF3/4)

+ (Gng_a(W(—%)),W(O))M(Xr3/4)'

Proof. By Lemma 6.6(i), we have

1 1
(6.15) TPy oo 1)(W(o),W(o))M<xF3/4>.

Therefore, by combining (6.15) with Lemma 6.7, we find that Theorem 6.8 holds.
(Q.E.D.)

In particular, we see from (3.19) and Theorem 6.8 that

Theorem 6.9. For any s=c+it(0 <o < 1,7 € R),

£(s) = %(W(O), W (O0)nxr, ) + 82(; (1114)?8()3 //24)) (GoHo (W (), W(0)mex, )

2
e Gt (W (- ). W (O,

[6.4] Next, we prove an inner product representation theorem for the analytic
continuation of the derived Kummer function associated with the Kummer function
and the theta function.

Theorem 6.10. Foranys=oc+it(0 <o < 1,7 € R),

) Ko = (2 WI0) + g o s Gl (W)L W O, ,
) KoP5) = (-2W(0) + G Gt (W (- ), WO, -

Proof. By Lemmas 3.11(i) and 6.7(i), we have

§K0(2 —2|_ S) B 3(31— 1) +Fi(s)
| T'(3/4) .
8(8 — 1) + 1-\((1 n 8)/2) (GQHU(W(§))7X(O))M(Xr3/4)a
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which, together with (6.15), implies that (i) holds. Similarly, we see from Lemmas
3.11(ii) and 6.7(ii) that (ii) holds. Thus we conclude that Theorem 6.10 holds. (Q.E.D.)

By transforming the variable %1 to the variable s in Theorem 6.10, we have the
inner product representation theorem for the derived Kummer function associated with

the Kummer function and the theta function.

Theorem 6.11.  Forany s=o+ir(l<o < 3,7 €R),

2 (s — 1)I(3/4)
253 (0) I'((2s—1)/2)

GoHy—1(W (7)), W(0))mxr,,,)-

[6.5] Finally, we introduce a complex valued random field and obtain another
inner product representation theorem for the analytic continuation of Riemann’s zeta
function and the derived Kummer function associated with the Kummer function and
the theta function.

As an generalization of (6.10), we show

Lemma 6.12. For any s € C such that Re(s) > —%,
(i) A€ LQ([Oa OO): B([Oa OO))7 F3/4)>

(i) (logA\)A* € L2([0,00), B([0, 00)),T'3/4).

Proof. By (1.8), we have

oo 1 o0 3 1 o0 1
5|21 _ / 20 ,—Ay3-1 7y _ / - ‘
/0 R R Ve S e v

Since % — 20 < 1, we see that the above integral is finite, which proves (i). Similarly,

we have
> 1

o0
log M)A*|2Ts (d)\) = —/ e Mlog \)EAZ7 NI 1g),
0|( JA’|"T's (dA) TG/ J, (logA)

Take any og such that % — 20 < 09 < 1. Then

1
T(3/4)

0o o0 1
/ |(10g )\))\S|2F%(d)\) _ / G—A()\Uo—(l/él—a) (log A)Q))A_ad)‘
0 0 0

Since o9 — (1/4—0) > 0 and 0 < 09 < 1, we see that the above integral is finite, which
proves (ii). (Q.E.D.)

By virtue of Lemma 6.12, we can enlarge the time domain of the complex valued
stochastic process W in (6.12) to define the complex valued random field Y = (Y (s); s €
C.Re(s) > —2) by

(6.16) Y(s) = /O T AEO)X(0).
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We note that the random variable of the field Y on the imaginary axis corresponds to
the stochastic process W in (6.12) and

(6.17) Y (0) = X(0)
Theorem 6.13.
(i) (Y(Sl),Y(Sz))M(xF3/4) = M;@;ﬁ’m (Re(s;) > —2(j = 1,2)).

(ii)  The following function

3
{s € C;Re(s) > —g} >s—Y(s) € M_/+(X1"3/4)

is differentiable and Yd(j) = [, (log M)A*dE(X\) X (0).

Proof. By (1.8), (6.16) and Proposition 5.9, we have

(Y (51, Y (52D, = | A7 T ya(a)
0

1 o Ays145713/4-1
= CEAD SEREED Sy DY
I'(3/4) /0
1 /OO Ay (5145543/4)—1
= [ e /-1 gy
I'(3/4) Jo

_ T(s1+35343/4)
r'e/M4)

which proves (i). Fix any so = ¢ + i1p € {s € C;Re(s) > —3}. Take 6 > 0 such that
1 200425 < 1. For any s € {w € C;0 < |s| < £},

Y(so+s)
s

- / " (log WA AE() X (0) = / T g e x (0
0 0 5

and so
Y(sg+s)—Y
s

| (s0) _/0 (log)\))\SOdE()\)X(O)HIQ\/I(Xr3/4)

e.e] s _ 1
:/ A200|A - —log A|’T3/4(dX)
0

1

D | 1

-\ 2

= log AP———dA
I'(3/4) /0 e s o8 A A\1/4=200

1 o0
A1 1 A -1 1
Y 2 = _ 2___ -
(6.18) = /0 e P log Al NV d\ + /1 e | . log A| YT dA.

On the other hand, we note that
A*—1 5 (log )‘)4 62|s|| log A|

(6.19) | 4

—log)\|2 <
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First, we consider the first term in the right-hand side of (6.18). Since it follows
from (6.19) that

Af—1 5 1 s2(log M) _s5100n 1

| —log A \1/4—20, S 1 ¢ o \1/4—200
_ s*(log At A0
- 4 \1/4—200

s2(log \)4 A
- A \1/4—200+25

Hence, since limg_,g % —logA=0,1/4—209+20 <1 and MXS is bounded in
(0,1), we can apply Lebegue’s convergence theorm to find from (6.18) and (6.19) that
the first term in the right-hand side of (6.18) tends to zero as s tends to zero.

Next, we consider the second term in the right-hand side of (6.18). Since it follows
from (6.19) that

AP —1 5 1 s2(log M) s100n 1

| —log A| \1/4—20, S 1 ¢ ° \1/4—20,
_ s%(log )t X
- 4 \1/4—200"

we can apply Lebegue’s convergence theorm to find from (6.18) and (6.19) that the
second term in the right-hand side of (6.18) tends to zero as s tends to zero.
Thus, we conclude that Theorem 6.13. (Q.E.D.)
By using the random field Y introduced in (6.16) and noting (6.8) and (6.17), we

can rewrite Lemma 6.7 into

Lemma 6.14. Foranys=oc+ir(0 <o < 1,7 €R),
B Al = %@m%; .Y 0)aacx,
(i) Fo(s) = r((l;(i—/j))/z) Gov (L - zs)jy(o))M(Xw).

Similarly, we can rewrite Theorem 6.8 which is one of the main results in this paper
into

Theorem 6.15. Foranys=oc+ir(0 <o <1l,7 €R),

— T YO Y O, )+ iy a7y oY (7Y O,

%(Gey(l _428% Y(0))mxr, ,)-
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As its corollary, we can rewrite Theorem 6.9 into

Theorem 6.16. Foranys=oc+ir(0 <o <1l,7 €R),

(5) = £ (Y(0). Y (O)nacxr, )+ o (zllfg’ //;‘)) (@Y (Z22), Y (0w, )

s(s— T(3/4) . 1= 2s
2F((2 — 8)/2) (GQY(T)p Y(O))M(Xp3/4)

Finally, concerning the derived Kummer function, we can rewrite Theorem 6.11

Theorem 6.17.  Forany s=o0 +ir(l<o < 3,7 €R),

Ko(s) = (282_ ZY(0)+ %Gw(#), Y (0)nax, -
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