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On hybrid universality for \mathrm{L}‐functions

By

Lukasz Pańkowski *

Abstract

In this paper we present a recent survey on hybrid universality on \mathrm{L}‐functions, which is

a connection of a universality theorem and the Kronecker approximation theorem.

§1. Introduction

Universality is one of the most interesting phenomenon in modern mathematics.

K.‐G. Grosse‐Erdmann in [GE] proposed the following precise definition of universality
in the language of topology. Let X and Y be two topological spaces and T_{ $\tau$} : X\rightarrow Y

( $\tau$\in I) be a family of mappings. Then an element x\in X is called universal if each

element in Y can be approximated by T_{ $\tau$}(x) for certain  $\tau$\in I or, equivalently, if the set

\{T_{ $\tau$}(x) :  $\tau$\in I\} is dense in Y . Following this we can give a definition of joint universality.
Let X and Y_{1} ,

. . .

, Y_{n} be topological spaces and T_{ $\tau$}^{(i)} : X\rightarrow Y_{i}( $\tau$\in I, 1\leq i\leq n) be a

family of mappings. Then we say that elements x_{1} ,
. . .

, x_{n} in X are jointly universal if

the set \{(T_{ $\tau$}^{(1)}, \ldots, T_{ $\tau$}^{(n)}) :  $\tau$\in I\} is dense in the product space Y_{1}\times\cdots\times Y_{n}.
For a historical overview of universality in functional spaces we refer to [GE] and

[L1]. In our point of view, the most important result was shown by Voronin in [V1]. He

indicated the first explicitly given universal object by proving that the Riemann zeta‐

function is universal with respect to imaginary shifts in the space of analytic functions.

Theorem \mathrm{A} (Voronin [V2]). Let 0<r<\displaystyle \frac{1}{4} and a function f(s) be non‐vanishing
and continuous on the disk |s|\leq r and analytic in the interior. Then for every  $\epsilon$>0
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there exists a real number  $\tau$= $\tau$( $\epsilon$) such that

(1.1) \displaystyle \max_{|s|\leq r}| $\zeta$(s+\frac{3}{4}+i $\tau$)-f(s)|< $\epsilon$.
This result was generalized in many directions. For example, Reich [R] and Bagchi

[B1] showed that the disk can be replaced by a compact subset of D:=\{s\in \mathbb{C} : \displaystyle \frac{1}{2}<
\mathcal{R}<1\} with connected complement, and that the set of translations  $\zeta$(s+i $\tau$) has a

positive lower density. Recall that for a Lebesgue measurable set A\subset(0, \infty) we define

the natural density of A as

\displaystyle \lim_{T\rightarrow\infty}\frac{ $\mu$(A\cap(0,T])}{T},
if the limit exists, where  $\mu$ denotes the Lebesgue measure on \mathbb{R} . Moreover, if the lower

limit of the same quotient is positive, then we say that the set A has a positive lower

density.

Moreover, for the last thirty years numerous analogues of the Voronin theorem for

other \mathrm{L}‐functions important in number theory were discovered by many mathemati‐

cians. For instance, universality theorems were proved for Dirichlet \mathrm{L}‐functions, Hecke

\mathrm{L}‐functions, \mathrm{L}‐functions associated to newforms and many others. Furthermore, it turns

out that there exist also a lot of zeta‐functions with strong universality property, where

the attribute strong means that also functions having zeros can be approximated. The

first example comes from Bagchi [B1] and Gonek [Go], who showed, independently, the

strong universality theorem for Hurwitz zeta‐functions  $\zeta$(s,  $\alpha$) ,
if  $\alpha$ is transcendental or

a rational number \neq 1/2 ,
1. Afterwards, strong universality was proved for many in‐

teresting generalizations of Hurwitz zeta‐functions like Lerch zeta‐functions (see [LM3],
[N1]) or periodic Hurwitz zeta‐functions (see [JL3], [LS]). For more examples and a

comprehensive overview of the theory of universal zeta‐functions we refer to the mono‐

graph [S].
On the other hand, let us consider the circle S^{1}=\{s\in \mathbb{C} : |s|=1\} with topology

induced from \mathbb{C} and mappings T_{ $\tau$} : \mathbb{R}\rightarrow S^{1}( $\tau$\in \mathbb{R}) given by T_{ $\tau$}(x)=e( $\tau$ x) :=e^{2 $\pi$ i $\tau$ x}.

In the above notation the classical Kronecker approximation theorem says that any real

elements $\alpha$_{1} ,
. . .

, $\alpha$_{n} linearly independent over \mathbb{Q} arejoint universal in the product space

 S^{1}\times \cdots \times S^{1} . Again it turns out that the set of  $\tau$\in \mathbb{R} such that (e( $\tau \alpha$_{1}), \ldots, e( $\tau \alpha$_{n}))
approximates with error  $\epsilon$>0 an arbitrary point (e($\theta$_{1}), \ldots, e($\theta$_{n})) has a positive density

equal to (2 $\epsilon$)^{n} . If we denote by |\mathrm{j}|| for x\in \mathbb{R} the distance from x to the nearest integer,
the Kronecker theorem could be formulated as follows (see [KV]).

Theorem B. If $\alpha$_{1} ,
. . .

, $\alpha$_{n} are real numbers linearly independent over \mathbb{Q} and

$\theta$_{1} ,
. . .

, $\theta$_{n} are real numbers, then, for every positive $\epsilon$_{1} ,
. . .

, $\epsilon$_{n}<1/2 ,
the set of  $\tau$ such

that

(1.2)  1\displaystyle \leq i\leq n\max|| $\tau \alpha$_{i}-$\theta$_{i}||<$\epsilon$_{i}
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has a positive density equal to 2^{n}\displaystyle \prod_{1\leq i\leq n}$\epsilon$_{i}.

The following question arises in a natural way: does the set of real numbers satis‐

fying simultaneously (1.1) and (1.2) have a positive lower density? Using some ideas of

Good [Goo], a partial answer was firstly given by Gonek for Dirichlet \mathrm{L}‐functions (for
example see [SS, Theorem \mathrm{A}]).

Theorem \mathrm{C} (Gonek). Let q be a positive integer and let K\in D be a compact
set with connected complement. Suppose that for each prime p|q we have 0\leq$\theta$_{p}<1
and that for each character  $\chi$ mod  q ,

the function g(s) is continuous on K and analytic
in the interior. Then, for every  $\epsilon$>0 ,

there is a real number  $\tau$ such that

\displaystyle \max_{p1q}\Vert\frac{ $\tau$\log p}{2 $\pi$}-$\theta$_{p}\Vert< $\epsilon$ and  $\chi$ \displaystyle \mathrm{d}qK\max_{\mathrm{m}\mathrm{o}}\max_{s\in}|L(s+i $\tau$,  $\chi$)-g(s)|< $\epsilon$.
Recently, a slightly improvement was given by Kaczorowski and Kulas in [KK].

They showed that in Gonek�s theorem it suffices to assume that Dirichlet characters

are pairwise non‐equivalent and that the set of all parameters  $\tau$ satisfying the above

inequalities has a positive lower density.
In this paper we present a recent survey of the author, which gives a complete

answer to our question and significantly extend a class of functions having this property.
For convenience, we use the following definition of hybrid universality.

Definition 1.1. We say that a set of functions \{L_{1}, . . . , L_{n}\} is hybridly jointly
universal if for every compact set K\subset D with connected complement, any functions

f_{1} ,
. . .

, f_{n} continuous and non‐vanishing on K
,

which are analytic in the interior of

K
, any real numbers ($\alpha$_{i})_{(1\leq i\leq m)} linearly independent over \mathbb{Q} and any real numbers

($\theta$_{i})_{1\leq i\leq m} ,
the set of real numbers  $\tau$ such that

 1\displaystyle \max_{\leq j\leq n}\max_{s\in K}|L_{j}(s+i $\tau$)-f_{j}(s)|< $\epsilon$ and
l \leqj \leqmmax \Vert $\tau \alpha$_{j}-$\theta$_{j}\Vert< $\epsilon$

has a positive lower density.

Moreover, we say that the set \{L_{1}, . . . , L_{n}\} is hybridly strongly jointly universal if

functions having zeros can be approximated as well.

In Section 2 we define a wide class of functions having Euler product, which con‐

tains for instance Dirichlet \mathrm{L}‐functions. In this class we formulate the hybrid universality
theorem and give the main steps of the proof. In Section 3 we shall deal with hybrid

strong universality for an axiomatically defined class of zeta‐functions without Euler

product like Lerch zeta‐functions, twists of Lerch zeta‐functions and periodic Hurwitz

zeta‐functions. At the end, in Section 4, we present some application of hybrid univer‐

sality. For example, we show how to apply this property to prove universality for new

\mathrm{L}‐functions and obtain self‐approximation property.
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§2. Hybridly universal \mathrm{L}‐functions

§2.1. The class of \mathrm{L}‐functions

Throughout this section we will work with \mathrm{L}‐functions defined as the following
Euler product (see [KV, Chapter 7

(2.1) F(s)=\displaystyle \prod_{p\in \mathbb{P}}R_{p}(p^{-s}) , ( $\sigma$>1)
where p runs over all primes and R_{p}(z)=1+\displaystyle \sum_{m=1}^{\infty}a(p^{m})z^{m} are rational functions,

analytic and non‐vanishing on the disk |z|<1.
First of all, we assume the following Ramanujan conjecture on the size of the

coefficients:

(E1) \forall_{ $\epsilon$>0}a(p^{m})\ll_{ $\epsilon$}p^{ $\epsilon$ m} uniformly in p.

One can easily show that (E1) implies that F(s) is an absolutely convergent Dirichlet

series

\displaystyle \sum_{n=1}^{\infty}\frac{a(n)}{n^{s}}, ( $\sigma$>1)
where a(n)=\displaystyle \prod_{p|n}a(p^{l$\nu$_{p}(n)}) and v_{p}(n) is the exponent of the prime p in the prime
factorization of the integer n . Obviously, one can prove that a(m)\ll m^{ $\epsilon$} for every  $\epsilon$.

Now, let us describe some analytic properties which should be satisfied by F(s) .

Obviously, it is natural to ask for an analytic continuation, especially that, as was shown

by Bohr [Bo], all absolutely convergent Dirichlet series are almost periodic function in

the half‐plane of absolute convergence and we can not expect the universality theorem

for them.

(E2) F has meromorphic continuation to the half‐plane  $\sigma$>\displaystyle \frac{1}{2} . It can possess at most a

finite number of poles and all of them must lie on the straight line  $\sigma$=1.

The following condition gives us a restriction on order of growth.

(E3) F is a function of finite order, which means that

F(s)\ll_{ $\sigma$}|t|^{A( $\sigma$)} for  $\sigma$>\displaystyle \frac{1}{2}, |t|\rightarrow\infty.

The last axiom is required by Carlson�s theorem (for example see [KV, Theo‐

rem A.2.10]) which plays a crucial role in the proof of universality.

(E4) For any fixed \displaystyle \frac{1}{2}< $\sigma$<1 the square mean‐value

\displaystyle \frac{1}{T}\int_{-T}^{T}|F( $\sigma$+it)|^{2}dt
is bounded as T\rightarrow\infty.
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By \mathcal{E} we denote the class consisting of functions of the form (2.1) and satisfying

(E1)(E4).

§2.2. Approximation by a finite product and sum

In the proof of universality, the following property, called acceptability, plays a

crucial role. Roughly speaking, it says that every analytic function can be approximated

by a certain finite product F_{M}(s,  $\Theta$)=\displaystyle \prod_{p\in M}R_{p}(p^{-s}e(-$\theta$_{p})) associated to F\in \mathcal{E},
where  $\Theta$=($\theta$_{p})_{p\in \mathbb{P}}\subset \mathbb{R} and M\subset \mathbb{P} is a finite set of primes. Following [KK] we

call an open and bounded subset G of \mathbb{C} admissible, when for every  $\epsilon$>0 the set

G_{ $\epsilon$}= { s\in \mathbb{C} : |s-w|< $\epsilon$ for certain  w\in G } has connected complement.

Definition 2.1. We say that the set \{F_{1}, . . . , F_{n}\}\subset \mathcal{E} is acceptable if it satisfies

the following condition: for every finite set A\subset \mathbb{P} , arbitrary admissible domain G such

that \overline{G}\subset D , every analytic and non‐vanishing functions f_{1} ,
. . .

, f_{n} on the closure \overline{G},
there exists a sequence of finite sets  M_{1}\subset M_{2}\subset \subset \mathbb{P} such that

\displaystyle \bigcup_{k=1}^{\infty}M_{k}=\{p:p\not\in A\}
and for certain $\Theta$_{k}=($\theta$_{kp})_{p\in \mathbb{P}}

F_{j,M_{k}}(s, $\Theta$_{k})\rightarrow f_{j}(s) uniformly for s\in\overline{G}, j=1 ,
. . .

,
n

as k\rightarrow\infty.

Remark. The assumption that M_{k} �s are disjoint to a given set A is crucial only
to obtain hybrid type of universality.

By the continuity of logarithm and the following lemma, one can easily see that

an approximation by a finite product F_{M}(s,  $\Theta$) in the above definition can be replaced

by an approximation of functions \log f_{1}(s) ,
. . .

, \log f(s) by finite sums of the form

\displaystyle \sum_{p\in M'}\frac{a(p)e(-$\theta$_{p})}{p^{\mathrm{s}}}.
Lemma 2.2. For any F\in \mathcal{E} and any sequence  $\Theta$=($\theta$_{p})_{p}\in $\Omega$ the series

\displaystyle \sum_{p\in \mathbb{P}}(\log R_{p}(p^{-s}e(-$\theta$_{p}))-\frac{a(p)e(-$\theta$_{p})}{p^{s}})
is absolutely convergent in the half‐ plane  $\sigma$>\displaystyle \frac{1}{2}.

Unfortunately, in practice, it is difficult to check whether functions from \mathcal{E} form

an acceptable set. Usually (see for example the proof of Lemma 6 in [KK]), we need
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to work with certain Hilbert space of analytic functions and apply PhragménLindelöf

principle and Pechersky�s generalization of the Riemann rearrangement theorem.

In order to easily verify the acceptability we use the following result, which com‐

bining with Lemma 2.2 gives some sufficient conditions for functions from an acceptable
set.

Lemma 2.3. Suppose that an increasing to infinity sequence ($\lambda$_{n})\subset \mathbb{R} and se‐

quences (a(n)) , (b_{1}(n)) ,
. . .

, (b_{m}(n))\subset \mathbb{C} are such that

(i) there exists an integer k such that rank [ b_{j}(n)]_{1\leq j\leq m}^{1\leq n\leq k}=m
(ii) \displaystyle \sum_{n=1}^{\infty}|a(n)b_{j}(n)|^{2}e^{-2$\lambda$_{n} $\sigma$}<\infty for  $\sigma$>1/2 and j=1 , 2, . . .

,
m

(iii) there exists c>0 such that for all B>0 and n_{0}\in \mathbb{N} we have

\displaystyle \sum 1\gg e^{(1- $\epsilon$)x}
x<$\lambda$_{n}\leq x+B/x^{2}

(b_{1}(n),\ldots,b_{m}(n))=(b_{1} (n0),\cdots,b_{m}(n_{0}))
|a(n)|>c

for every sufficiently small  $\epsilon$>0.

Moreover let G be an admissible set with \overline{G}\subset D, f_{1} ,
. . .

, f_{m} any analytic functions on

\overline{G} , and A\subset \mathbb{N} a finite set. Then, for every y>0 and  $\epsilon$>0 ,
there exists a finite set

M\subset \mathbb{N}\backslash A containing all integers less than y ,
and there exist real numbers $\theta$_{n}, (n\in M) ,

such that

1\displaystyle \leq j\leq m_{s\in}\max \mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{G}}|\sum_{n\in M}\frac{a(n)b_{j}(n)e(-$\theta$_{n})}{e^{$\lambda$_{n}s}}-f_{j}(s)|< $\epsilon$.
Proof. The proof of the lemma can be found in [P1] and basically follows the proof

of Lemma 6 in [KK]. \square 

Proposition 2.4. Let F_{1} ,
. . .

, F_{n}\in \mathcal{E} , where

F_{j}(s)=\displaystyle \prod_{p}(1+\sum_{m=1}^{\infty}\frac{a^{(j)}(p^{m})}{p^{sm}})
Moreover, assume that $\lambda$_{m}=\log p_{m} ,

where p_{m} is the m‐th prime number, and b^{(j)}(m) :=

a^{(j)}(p) satisfy the condition (i), (iii) fr om Lemma 2.3. Then the set \{F_{1}, . . . , F_{n}\} is

acceptable.

§2.3. The classical Kronecker approximation theorem

The next step in the proof of universality is to show that the factors e(-$\theta$_{p})
in F_{M}(s,  $\Theta$) can be replaced by p^{i $\tau$}=e(\displaystyle \frac{ $\tau$\log p}{2 $\pi$}) for infinitely many real numbers  $\tau$.
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To prove it, it suffices to apply Theorem \mathrm{B} and the fact that the numbers \log p are

linearly independent over the field \mathbb{Q} of rational numbers.

In this step, we encounter the main obstacle in proving a hybrid version of uni‐

versality (recall Definition 1.1). Obviously, in the case when $\alpha$_{1} ,
. . .

, $\alpha$_{n} and \displaystyle \{ \frac{\log p}{2 $\pi$}\}_{p\in \mathbb{P}}
are linearly independent over \mathbb{Q} , it suffices to follow the original prove of the Voronin

theorem.

In general case, we need to apply the following lemma (for a_{n}=\displaystyle \frac{\log p_{n}}{2 $\pi$} ), which plays
a crucial role in the proof of hybrid universality.

Lemma 2.5 (Corollary 2.7 in [P3]). Suppose that (a_{n})_{n=1}^{\infty} are real numbers lin‐

early independent over \mathbb{Q} . Moreover assume that $\alpha$_{1} ,
. . .

, $\alpha$_{m} are real numbers linearly

independent over \mathbb{Q} and $\theta$_{1} ,
. . .

, $\theta$_{m} arbitrary real numbers. Then there exist finite sets

J\subset\{1, 2, . . . , m\} and A=A($\alpha$_{1}, \ldots, $\alpha$_{m})\subset \mathbb{Z}_{+} such that the set

\{a_{i}\}_{i\in A\cup M}\cup\{$\alpha$_{i}\}_{i\in J}

is linearly independent over \mathbb{Q} for every finite set of non‐negative integers M with  M\cap

 A=\emptyset.

Moreover, there exist real numbers $\theta$_{i}^{*}, i\in A and a positive integer N such that

\displaystyle \max\Vert N $\tau \alpha$_{i}-$\theta$_{i}\Vert i\not\in J< $\epsilon$,
whenever the following inequalities hold

\displaystyle \max i\in J\Vert $\tau \alpha$_{i}-\frac{$\theta$_{i}}{N}\Vert<\frac{ $\epsilon$}{N},

\displaystyle \max i\in A\Vert $\tau$ a_{i}-\frac{$\theta$_{i}^{*}}{N}\Vert<\frac{ $\epsilon$}{N}.
§2.4. Main theorem

In the last step of the proof of universality, using the Kronecker theorem for the

logarithms of primes and Carlson�s theorem, one shows that the set of all  $\tau$
,

such that

 F(s+i $\tau$) approximates in some sense (see for example p.18 of [S]) the finite product

F_{M}(s,  $\Theta$) for any given  $\Theta$=($\theta$_{p}) ,
has a positive lower density.

In order to get hybrid universality we need to use Lemma 2.5 for a_{n}=\displaystyle \frac{\log p_{n}}{2 $\pi$} instead

of the Kronecker theorem. Then, since p_{n}^{i $\tau$} ,
for n\in A ,

are close to certain e(-$\theta$_{n}^{*}) and

can not approximate an arbitrary e(-$\theta$_{n}) ,
we can only obtain that the set of all  $\tau$

such that  F(s+i $\tau$)_{|A}:=F(s+i $\tau$)\displaystyle \prod_{n\in A}R_{p_{n}}^{-1}(a(p_{n})p_{n}^{-s}) approximates F_{M}(s,  $\Theta$) ,
where

M\cap A=\emptyset.
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Finally combining this idea and the acceptability of the set \{F_{1}, . . . , F_{n}\} ,
one can

prove that the set of real numbers  $\tau$ satisfying the following inequalities

 1\displaystyle \leq j\leq n_{s\in}\max \mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{G}}|F_{j}(s+i $\tau$)_{|A}-f_{j}(s)\prod_{n\in A}R_{p_{n}}^{-1}(p_{n}^{-s}e(-$\theta$_{p_{n}}^{*}))|< $\epsilon$
\displaystyle \max_{n\in A}|| $\tau$\frac{\log p_{n}}{2 $\pi$}-$\theta$_{p_{n}}^{*}||< $\epsilon$ and  1\displaystyle \leq i\leq m\max|| $\tau \alpha$_{i}-$\theta$_{i}||< $\epsilon$

has a positive lower density, where  G is a certain admissible set, $\theta$_{i} �s are an arbitrary

given and the set A and real numbers $\theta$_{p_{n}}^{*} come from Lemma 2.5 applying to a_{n}=\displaystyle \frac{\log p_{n}}{2 $\pi$}.
Hence, using the Margelyan theorem and the inequality \displaystyle \max_{n\in A}|| $\tau$\frac{\log p_{n}}{2 $\pi$}-$\theta$_{p_{n}}^{*}||< $\epsilon$

we get the following main theorem (for the complete proof see [P1]).

Theorem 2.6 (hybrid joint universality theorem). An acceptable set

\{F_{1}, . . . , F_{n}\}\subset \mathcal{E} is hybridly jointly universal.

Example 2.7. It is well‐known that Dirichlet \mathrm{L}‐functions L(s,  $\chi$)=\displaystyle \prod_{p}(1-
\displaystyle \frac{ $\chi$(p)}{p^{\mathrm{s}}})^{-1} are meromorphic on \mathbb{C} with possible pole at s=1 . Moreover | $\chi$(\cdot)|=1 and

L(s,  $\chi$) satisfies (E3) and (E4) by Theorem 5.4, Chapter IV of [Pr] and Theorem 7.2,

Chapter VII of [T], respectively. Hence for every Dirichlet character  $\chi$ the \mathrm{L}‐function

L(s,  $\chi$) belongs to the class \mathcal{E}.

Moreover, putting a(n)=1, b_{j}(n)=$\chi$_{j}(n) and $\lambda$_{n}=\log p_{n} in Lemma 2.3 one

can easily see that the set \{L(s, $\chi$_{1}), . . . , L(s, $\chi$_{n})\} is acceptable for every pairwise non‐

equivalent Dirichlet characters $\chi$_{1} ,
. . .

, $\chi$_{n} . Hence the set \{L(s, $\chi$_{1}), . . . , L(s, $\chi$_{n})\} is

hybridly jointly universal.

Example 2.8. Now, let K be a finite Galois‐extension of \mathbb{Q} and $\chi$_{1} ,
. . .

, $\chi$_{n} lin‐

early independent characters of the group G(K/\mathbb{Q}) . Then it is known that Artin L‐

functions associated to $\chi$_{j} satisfy the conditions (\mathrm{E}1)-(\mathrm{E}2) and have Euler product of

the form (2.1). Unfortunately, for now it is only proved that (E4) holds only in the

half‐place 1-\displaystyle \frac{1}{2k}< $\sigma$<1 ,
where k= ] G(K/\mathbb{Q}) . Hence, verifying the assumption of

Lemma 2.3, we can show that \{L(s, $\chi$_{1}), . . . , L(s, $\chi$_{n})\} is hybridly jointly universal in

the half‐plane 1-\displaystyle \frac{1}{2k}< $\sigma$<1.

§3. Hybridly strongly universal zeta‐functions

§3.1. Main theorem for zeta‐functions without Euler product

Let us define the class \mathcal{L} to consist of functions

L(s; $\beta$, a)=\displaystyle \sum_{n=1}^{\infty}\frac{a(n)}{(n+ $\beta$)^{s}},  $\sigma$>1,
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where 0< $\beta$<1 and a is a sequence of complex numbers, which satisfy the following
conditions:

(L1) a(m)\ll_{ $\epsilon$}m^{ $\epsilon$} for every  $\epsilon$>0,

(L2) L has meromorphic continuation to the half‐plane  $\sigma$>1/2 . It can possess at most

a finite number of poles and all of them must lie on the straight line  $\sigma$=1.

(L3) for every  $\epsilon$>0 , compact set K\subset D and sufficiently large y we have

\displaystyle \max_{s\in K}\frac{1}{T}\int_{-T}^{T}|L(s+it; $\beta$, a)-L_{M}(s+it; $\beta$, a)|^{2}dt< $\epsilon$ (T\rightarrow\infty) ,

where

M=\{n\in \mathbb{N} : n\leq y\} and L_{M}(s; $\beta$, a)=\displaystyle \sum_{n\in M}\frac{a(n)}{(n+ $\beta$)^{s}}.
Essentially, the proof of hybrid strong universality for functions from \mathcal{L} is very

similar to the proof of Theorem 2.6. The main difference is caused by the fact that,
in general, a function from \mathcal{L} does not have Euler product, so we can not use an ap‐

proximation by finite product over primes and the linearly independence of the loga‐
rithms of primes. In order to overcome this difficulties we need to use a finite sum

\displaystyle \sum_{n\in M}\frac{a(n)e(-$\theta$_{n})}{(n+ $\beta$)^{\mathrm{s}}} instead of a finite product over primes. Moreover, to approximate

arbitrary given analytic functions f_{1} ,
. . .

, f_{n} it is sufficient to take n functions from

\mathcal{L} associated to algebraically independent real numbers $\beta$_{1} ,
. . .

, $\beta$_{n} . This algebraic in‐

dependence provides that the numbers \log(m+$\beta$_{j}) , m\in \mathbb{N}, 1\leq j\leq n are linearly

independent over \mathbb{Q} , which replaced the linear independence of the logarithms of primes
in the proof of Theorem 2.6.

Similarly to Section 2, we use the following definition of acceptability in \mathcal{L}.

Definition 3.1. We say that a set \{L_{1}(s; $\beta$, a_{1}), . . . , L_{m}(s; $\beta$, a_{m})\}\subset \mathcal{L} is accept‐
able if it satisfies the following condition: for every finite set M\subset \mathbb{N} , every admissible

domain G with \overline{G}\subset D ,
and any analytic functions f_{1} ,

. . .

, f_{m} on \overline{G} , there exists a

sequence of finite sets M_{1}\subset M_{2}\subset\ldots\subset \mathbb{N} such that

\displaystyle \bigcup_{k=1}^{\infty}M_{k}=\mathbb{N}\backslash M
and for suitable sequence $\Theta$_{k}=($\theta$_{n}^{(k)})\displaystyle \in\prod_{n}\mathbb{R} ,

as k\rightarrow\infty,

L_{j,M_{k}}(s; $\beta$, a_{j}\displaystyle \cdot$\Theta$_{k})=\sum_{n\in M_{k}}\frac{a_{j}(n)e(-$\theta$_{n}^{(k)})}{(n+ $\beta$)^{s}}\rightarrow f_{j}(s)
uniformly for s\in\overline{G}, j=1 , 2, . . .

,
m.
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Thus, combining the idea described above and verifying the acceptability property

by Lemma 2.3 gives the following main theorem.

Theorem 3.2 (hybrid strong joint universality theorem). Let us assume that for

every fixed 1\leq j\leq n the set \{L_{k}^{(j)}(s;$\beta$_{j}, a_{k}^{(j)})\}_{1\leq k\leq m_{j}}\subset \mathcal{L} is acceptable and the numbers

$\beta$_{1} ,
. . .

, $\beta$_{n} are algebraically independent. Then the set of all functions L_{k}^{(j)}(s;$\beta$_{j}, a_{k}^{(j)}) ,

1\leq j\leq n and 1\leq k\leq m_{j} ,
is hybridly strongly jointly universal.

For the complete proof of the above theorem see [P2].

§3.2. Examples

The first example of the strongly universal object was given by S. M. Gonek [Go]
and B. Bagchi [B1], independently. They showed that the Hurwitz zeta‐function  $\zeta$(s,  $\beta$)
is strongly universal when  $\beta$\neq 1/2 ,

1 is a rational or transcendental number. Next,
A. Laurinčikas and K. Matsumoto (see [L2], [LM1], [LM2], [LM3]) considered the joint
value‐distribution of Lerch zeta‐function defined for 0< $\lambda$,  $\beta$\leq 1 as the Dirichlet series

L(s; $\beta$,  $\lambda$)=\displaystyle \sum_{n=0}^{\infty}\frac{e( $\lambda$ n)}{(n+ $\beta$)^{s}}, \Re s>1.
For example, they proved the joint universality theorem for Lerch zeta‐functions, which

was improved by T. Nakamura in [N1]. For a great overview of the theory of Lerch

zeta‐functions we refer to [GL].
Obviously, the Lerch zeta‐functions satisfy condition (L1) and (L2) from the defini‐

tion of class \mathcal{L} . Moreover to prove condition (L3) it is sufficient to use the Montgomery‐

Vaughan theorem and follow the prove of Theorem 3.3.1 in [GL]. We skip the proof
of this fact as the modifications needed are straightforward and can be left to the

reader. Hence, using Lemma 2.3, it is clear that for 0< $\beta$<1 and 0\leq $\lambda$<1

the set \{L(s; $\beta$; $\lambda$)\}\subset \mathcal{L} is acceptable. Therefore, Theorem 3.2 implies that for every

algebraically independent $\beta$_{1} ,
. . .

, $\beta$_{n} the set \{L(s;$\beta$_{1};$\lambda$_{1}) ,
. . .

, L(s;$\beta$_{n};$\lambda$_{n}) is hybridly

strongly jointly universal.

Another generalization of the Hurwitz zeta‐function is a periodic Hurwitz zeta‐

function, introduced by A. Javtokas and A. Laurinčikas in [JL1] and defined for a

periodic sequence of complex numbers \mathfrak{A}=(a_{n})_{n=0}^{\infty} and real number 0< $\beta$\leq 1 as

 $\zeta$(s; $\beta$, \displaystyle \mathfrak{A})=\sum_{n=0}^{\infty}\frac{a_{n}}{(n+ $\beta$)^{s}}, \Re s>1.
More details on value‐distribution and universality of this function could be found in

[JL2], [JL3], however the strongest result was proved recently in [LS].
Note that also periodic Hurwitz zeta‐functions belong to the class \mathcal{L} , since can be

written as a linear combination of some Hurwitz zeta‐functions associated to suitable
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parameters  $\beta$ . Moreover the set \{L(s; $\beta$, \mathfrak{U}_{1}), . . . , L(s; $\beta$, \mathfrak{U}_{m})\} is acceptable, whenever

periodic sequences \mathrm{U}_{j}=(a_{jn}) , j=1 , 2, . . .

,
m

,
with period k_{j} satisfy the equation

(3.1) rank \left(\begin{array}{llll}
a_{11} & a_{21} & \cdots & a_{m1}\\
a_{12} & a_{22} & \cdots & a_{m2}\\
\vdots & \vdots & \ddots & \vdots\\
 a_{1k} & a_{2k} & \cdots & a_{mk}
\end{array}\right)=m,
where k denotes the least common multiple of all k_{j}.

Therefore, one can see that for every algebraically independent 0<$\beta$_{j}<1, (1\leq
 j\leq n) ,

and every periodic sequences \mathfrak{A}_{k}^{(j)}=(a_{nk}^{(j)}) , (1\leq j\leq n, 1\leq k\leq m_{j}) ,
such that

\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}[a_{nk}^{(j)}]_{1\leq n\leq N_{j}}^{1\leq k\leq m_{j}}=m_{j} for every 1\leq j\leq n ,
where N_{j} is the least common multiply of

periods of all \mathfrak{A}_{k}^{(j)}, (1\leq k\leq m_{j}) ,
we have that the set \{L(s+i $\tau$;$\beta$_{j}, \mathfrak{A}_{k}^{(j)}) :  1\leq j\leq

 n, 1\leq k\leq m_{j}\} is hybridly strongly jointly universal.

The last example of hybridly strongly universal zeta‐functions is twist of Lerch

zeta‐function, investigated by R. Garunkštis and J. Steuding in [G] and defined for a

Dirichlet character  $\chi$ as

 L(s; $\beta$,  $\lambda$,  $\chi$)=\displaystyle \sum_{n=0}^{\infty}\frac{e( $\lambda$ n) $\chi$(n)}{(n+ $\beta$)^{s}}, \Re s>1.
For some analytic properties (like analytic continuation and functional equation) of

twisted Lerch zeta‐function we refer to [G]. For instance, Theorem 1 and equation

(3) from [G] implies that the class \mathcal{L} contains twisted Lerch zeta‐functions. Further‐

more, it is easy to see that for pairwise non‐equivalent Dirichlet�s characters $\chi$_{1} ,
. . .

, $\chi$_{m}

the set \{L(s; $\beta$,  $\lambda,\ \chi$_{1}), . . . , L(s; $\beta$,  $\lambda,\ \chi$_{m})\} is acceptable, since the hypotheses of Lemma

2.3 are fulfilled for $\lambda$_{n}=\log(n+ $\beta$) , a(n)=e( $\lambda$ n) ,
and b_{j}\equiv$\chi$_{j} . Hence the set

\{L(s;$\beta$_{j}, $\lambda$_{k}^{(j)}, $\chi$_{k}^{(j)}) : 1\leq j\leq r, 1\leq k\leq m_{j}\} is hybridly strongly jointly univer‐

sal, whenever we suppose that 0<$\beta$_{j}<1 are algebraically independent numbers,

0<$\lambda$_{k}^{(j)}\leq 1 are real for 1\leq j\leq r, 1\leq k\leq m_{j} ,
and for every fixed 1\leq j\leq r

(j) (j)Dirichlet�s characters $\chi$_{1} ,
. . .

, $\chi$_{m_{j}} are pairwise non‐equivalent.

§4. Applications of hybrid universality

§4.1. On combination of hybridly universal \mathrm{L}‐functions

Firstly, let us recall that the Kronecker theorem on diophantine approximations
was used by H. Bohr in [Bo] to prove that every Dirichlet series is almost‐periodic in

its half‐plane of absolute convergence. More precisely, he showed that for any Dirichlet
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series \displaystyle \sum_{n=1}^{\infty}a_{n}n^{-s} and every  $\epsilon$>0 we have for an arbitrary s lying in the half‐plane of

absolute convergence that

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} $\mu$\{ $\tau$\in[0, T] : |\displaystyle \sum_{n=1}^{\infty}\frac{a_{n}}{n^{s+i $\tau$}}-\sum_{n=1}^{\infty}\frac{a_{n}}{n^{s}}|< $\epsilon$\}>0.
In fact, Bohr applied the Kronecker theorem only for the sequence \log p ,

where p runs

over all primes. Replacing \log p by any sequence linearly independent over the field of

rational numbers gives us easily an analogous result for general Dirichlet series defined

as

\displaystyle \sum_{n=1}^{\infty}a_{n}e^{-$\lambda$_{n}s} ,
where a_{n}\in \mathbb{C}, $\lambda$_{n}\in \mathbb{R}\backslash \{0\}.

Let us denote by S the ring of all general Dirichlet series which are absolutely convergent
in the half‐plane  $\sigma$>1/2.

Since hybrid universality combines diophantine approximations and the universal‐

ity property, the following theorem is straightforward consequence of presented above

Bohr�s idea (see [NP2]).

Theorem 4.1 (Nakamura, Pańkowski [NP2]). Suppose that a set \{L_{1}, . . . , L_{n}\}
is hybridly jointly universal and P\in S[X_{1}, . . . , X_{n}] be polynomial with degree greater
than zero. Then, for any  $\epsilon$>0 and any function g(s) from an image P(H(K), \ldots,

H(K)) ,

\displaystyle \lim_{T\rightarrow}\inf_{\infty}\frac{1}{T} $\mu$\{ $\tau$\in[0, T] : \Vert P(L_{1}(s+i $\tau$), \ldots, L_{n}(s+i $\tau$))-g(s)\Vert_{\infty}< $\epsilon$\}>0.
Moreover, if the set \{L_{1}, . . . , L_{n}\} is hybridly strongly universal then the set \{L_{1}, . . . , L_{n}\}
can approximate g\in P(H_{0}(K), \ldots, H_{0}(K)) .

Remark. The above theorem was inspired by the work of Sander and Steuding

[SS], where they showed how to apply Theorem \mathrm{C} to obtain the strong universality for

the Hurwitz zeta‐function  $\zeta$(s; $\beta$) ,
which for rational  $\beta$=a/q ,

where a, q are co‐prime,
can be written as

 $\zeta$(s;a/q)=q^{s} $\varphi$(q)^{-1}\displaystyle \sum_{\mathrm{m} $\chi$ \mathrm{o}\mathrm{d}q}\overline{ $\chi$}(a)L(s,  $\chi$) ,

where  $\varphi$ is Euler�s totient function.

There are a lot of examples of well‐known zeta‐ and \mathrm{L}‐functions which can be

written as polynomial type combination of hybridly universal functions. For example:

\bullet Estermann zeta‐functions (see Section 3 of [NP1]);

\bullet zeta functions associated to symmetric matrices (see Section 4 of [NP1])
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\bullet Euler products of Igusa type (see Section 3 of [NP2])

\bullet Euler‐Zagier multiple zeta‐functions (see Section 4 of [NP2])

\bullet Tornheim‐Hurwitz type of double zeta‐functions (see Section 5 of [NP2])

For a comprehensive list of such functions and the precise definition we refer to the work

of T. Nakamura and the author [NP1, NP2].

§4.2. Generalized strong recurrence

The second application of hybrid universality is related to Bagchi�s observation,
which connect the Riemann hypothesis and universality.

Theorem \mathrm{D} (Bagchi [B2]). The Riemann Hypothesis holds if and only if, for

every compact set K\displaystyle \subset D:=\{s\in \mathbb{C} : \frac{1}{2}<\Re s<1\} with connected complement and for

every  $\epsilon$>0 ,
the set of real numbers  $\tau$ satisfy ing the following inequality

\displaystyle \max_{s\in K}| $\zeta$(s+i $\tau$)- $\zeta$(s)|< $\epsilon$,
has a positive lower density.

In the language of topological dynamics the above theorem says that the Riemann

Hypothesis is equivalent to the strong recurrence of the Riemann zeta‐function (see
[GHK]).

Nakamura [N2] showed the following result which is a kind of generalization of the

strong recurrence for the Dirichlet \mathrm{L}‐functions L(s,  $\chi$) .

Theorem \mathrm{E} (Nakamura). For almost all  $\delta$\in \mathbb{R} , every compact set K\subset D with

connected complement and every  $\epsilon$>0 ,
the set of real numbers  $\tau$ satisfy ing the following

inequality

(4.1) \displaystyle \max_{s\in K}|L(s+i $\delta \tau$,  $\chi$)-L(s+i $\tau$,  $\chi$)|< $\epsilon$,
has a positive lower density.

Let us mention that the set of real numbers  $\delta$
,

for which the above inequality holds,
was not characterized in the proof of Nakamura�s theorem, but analyzing his proof one

can find out that (4.1) holds for every  $\delta$ which can not be represented as a quotient

\log a/\log b ,
where a, b\in \mathbb{Q} . It is due to the fact that the linear independence of the

numbers \log p, \log p^{ $\delta$} ,
where p runs through all primes, plays a crucial role in the proof

of Nakamura�s theorem. Fortunately, it turns out that only a finite number of primes

p can possibly be involved in the linear dependence of these numbers. More precisely,

using the Six Exponentials Theorem gives the following lemma.
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Lemma 4.2 (Pańkowski [P3, Lemma 2.4]). For an arbitrary irrational number

 $\delta$ there exists a finite set of primes  A=A( $\delta$) containing at most two elements such that

the following set

\{\log p\}_{p\in \mathbb{P}\backslash A}\cup\{ $\delta$\log p\}_{p\in \mathbb{P}},

is linearly independent over \mathbb{Q}.

Then using the above lemma and slightly modifying the proof of hybrid univer‐

sality one can get the following theorem, which trivially implies the improvement of

Nakamura�s result.

Theorem 4.3 (Pańkowski [P3, Theorem 1.1]). Let K\subset D be any compact set

with connected complement,  $\chi$ a Dirichlet character and  f, g any functions which are

non‐vanishing and continuous on K and analytic in the interior. Then, for every  $\delta$\not\in \mathbb{Q}
and  $\epsilon$>0 ,

the set of real numbers  $\tau$ satisfy ing the following inequalities:

\displaystyle \max_{s\in K}|L(s+i $\alpha \tau$,  $\chi$)-f(s)|< $\epsilon$,

\displaystyle \max_{s\in K}|L(s+i $\beta \tau$,  $\chi$)-g(s)|< $\epsilon$,
has a positive lower density.

Remark. Noteworthy is the fact that a similar, but more subtle, method was

used by P. Drungilas, R. Garunkštis and A. Kač \dot{}enas in [DGK] to prove universality of

the Selberg zeta‐function for the modular group.
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