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Partial Epstein zeta functions on binary linear codes

and their functional equations

By

Kazuyoshi Suzuki *

Abstract

In this paper, partial Epstein zeta functions on binary linear codes, which are related

with Hamming weight enumerators of binary linear codes, are newly defined. Then functional

equations for those zeta functions on codes are presented. In particular, it is clarified that

simple functional equations hold for partial Epstein zeta functions on binary linear self‐dual

codes.

§1. Introduction

The minimum distance of a code determines the error correction/ detection capa‐

bility of the code. The distance distribution of a linear code is equivalent to the weight
distribution of the code, because the difference between any two codewords is equal to

another codeword. The MacWilliams identity for Hamming weight enumerators pro‐

vides the relationship between the Hamming weight distribution of a code and that of

the dual code [10, 11]. By using the MacWilliams identity, the weight enumerator of

the dual code of a code is derived from that of the code, and vice versa. Some gener‐

alizations of Hamming weight enumerators and those of the MacWilliams identity have

been known [11, 13].
Broué and Enguehard provided a method of construction of elliptic modular forms

using the weight enumerators of self‐dual codes [3]. The relationship between several

types of modular forms such as Hilbert, Jacobi, and Siegel modular forms and those
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of weight enumerators, e.g. Hamming weight enumerators and Lee weight enumerators,

of codes over finite fields, finite rings have been extensively studied by Bannai, Choie,

Ebeling, Nebe, Ozeki, Runge, Solé, et al. [1, 2, 4, 5, 6, 7, 12].
Modular forms closely relate to Dirichlet series and zeta functions. One classical

reason why modular forms were studied is their use in investigating the number of ways

of representing an integer by a quadratic form. For example, the number of ways an in‐

teger can be represented as a sum of squares is equal to the coefficient in the q‐expansion
of the power of a modular form. P. Epstein introduced a zeta function associated with

positive definite quadratic forms [8]. In [14], partial Epstein zeta functions, which are

summands of Epstein zeta functions associated with quadratic forms, have been intro‐

duced and their functional equations have been proved by using the Mellin transform of

theta series which are related with modular forms on binary linear codes. In this paper,

partial Epstein zeta functions for binary linear codes, which are related with Hamming

weight enumerators of binary linear codes, are newly defined. Then functional equations
of those zeta functions for codes are presented. In particular, it is clarified that simple
functional equations hold for zeta functions for binary linear self‐dual codes.

The organization of this paper is as follows: Section 2 presents some definitions and

some basic facts concerning binary linear codes and explains the MacWilliams identity.
Section 3 describes theta series and their transformation formulae. Section 4 presents

partial Epstein zeta functions for binary linear codes and their functional equations that

are the main theme of this paper.

§2. Preliminaries

This section presents the definitions and the basic properties of binary linear codes

and explains the MacWilliams identity for Hamming weight enumerators of binary linear

codes.

§2.1. Binary linear codes

Let \mathrm{F}_{2} be the binary field. A k‐dimensional subspace of n‐dimensional vector space

\mathrm{F}_{2}^{n} is called a binary [n, k] linear code or a binary [n, k] code, where n and k are called

the code length and the dimension of the code, respectively. An element of a code is

called a codeword of the code. A class of binary linear codes is defined by matrices

over \mathrm{F}_{2} . A binary [n, k] code may be specified by a basis of k linearly independent
codewords. A matrix whose rows are a basis of a code is called a generator matrix of

the code. The same code, in the sense of a set of codewords or a vector space, may be

described by different generator matrices or bases of the vector space. Let G be a k\times n
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generator matrix of a binary [n, k] code C and let us denote G as

G= \left\{\begin{array}{llll}
g_{1,1} & g_{1,2} & \cdots & g_{1,n}\\
g_{2,1} & g_{2,2} & \cdots & g_{2,n}\\
\vdots & \vdots &  & \vdots\\
 g_{k,1} & g_{k,2} & \cdots & g_{k,n}
\end{array}\right\} ,

where g_{j,l} are elements of \mathrm{F}_{2} and the rows of G are a basis of C . All rows of G and all

linear combinations of them are codewords in C . Therefore, C contains 2^{k} codewords.

The null space of C is spanned by the rows of the following matrix H that satisfies the

relation G{}^{t}H=O_{k\times(n-k)} :

H= \left\{\begin{array}{llll}
h_{1,1} & h_{1,2} & \cdots & h_{1,n}\\
h_{2,1} & h_{2,2} & \cdots & h_{2,n}\\
\vdots & \vdots &  & \vdots\\
 h_{n-k,1} & h_{n-k,2} & \cdots & h_{n-k,n}
\end{array}\right\} ,

where h_{j,l} are elements of \mathrm{F}_{2}, {}^{t}H denotes the transpose of H
,

and O_{k\times(n-k)} denotes

the k\times(n-k) zero matrix. The matrix H is called a parity‐check matrix of C and

generates the dual code of C . The dual code C^{\perp} of C is defined by

C^{\perp}:= { \mathrm{v}\in \mathrm{F}_{2}^{n}|\langle \mathrm{c}, \mathrm{v}\rangle=0 for all \mathrm{c}\in C},

where \langle \mathrm{c}, \displaystyle \mathrm{v}\rangle=\sum_{j=1}^{n}c_{j}v_{j} for \mathrm{c}= ( c_{1}, c2, . . .

, c_{n} ) and \mathrm{v}=(v_{1}, \mathrm{v}_{2}, \ldots, v_{n}) ,
which is the

inner product of \mathrm{c} and \mathrm{v} . For a linear code C ,
its dual code C^{\perp} consists of all rows of

H and all linear combinations of them. In other words, H is a generator matrix of C^{\perp}.

If C=C^{\perp} ,
then C is called a self‐dual code.

Example 2.1. Let C_{7} be the binary [7, 4] Hamming code. A generator matrix

G_{7} and a parity‐check matrix H_{7} of C_{7} are

\lceil 1101000\rceil

 G_{7}=\lfloor_{1110001}^{1010100}0110010\rfloor
and  H_{7}=\left\{\begin{array}{l}
1001101\\
0101011\\
0010111
\end{array}\right\},

respectively.

Example 2.2. The binary [8, 4] extended Hamming code is a self‐dual code [11].
The following matrix G_{8} is a parity‐check matrix of C_{8} as well as a generator matrix of

C_{8} :

G_{8}=\left\{\begin{array}{l}
10011010\\
01010110\\
00101110\\
11111111
\end{array}\right\}
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§2.2. MacWilliams identity for Hamming weight enumerators of binary
linear codes

The distance distribution of a code closely relates to the error correction/ detection

capability of the code. Any two codewords in a code have to be definitely far from each

other for ensuring the specific error correction / detection capability. The distance

distribution of a linear code is equivalent to the weight distribution of the code, because

the distance between two codewords is equal to the weight of another codeword.

Definition 2.3 (Hamming weight [11, p.8]). Let \mathrm{u}=(u_{1}, u_{2}, \ldots, u_{n}) be an el‐

ement of \mathrm{F}_{2}^{n} ,
where u_{i} denotes the ith component of \mathrm{u} . The Hamming weight of u_{i},

denoted by w_{\mathrm{H}}(u_{i}) ,
is defined by

w_{\mathrm{H}}(u_{i}):=\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} u_{i}=0,\\
1 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Then the Hamming weight of \mathrm{u}

,
denoted by w_{\mathrm{H}}(\mathrm{u}) ,

is defined by

w_{\mathrm{H}}(\displaystyle \mathrm{u}):=\sum_{i=1}^{n}w_{\mathrm{H}}(u_{i}) .

The Hamming weight of a vector denotes the number of nonzero components of the

vector.

Definition 2.4 (Hamming weight enumerator [11, p.126]). Let x_{0} and x_{1} be in‐

determinates. For a binary [n, k] code C ,
the Hamming weight enumerator W_{C}(x_{0}, x_{1})

is defined by

W_{C}(x_{0}, x_{1}) :=\displaystyle \sum_{\mathrm{c}\in C}x_{0}^{n-w_{\mathrm{H}}(\mathrm{c})}x_{1}^{w_{\mathrm{H}}(\mathrm{c})}=\sum_{i=0}^{n}W_{i}x_{0}^{n-i}x_{1}^{i},
where W_{i} denotes the number of codewords of Hamming weight i in C . In the same way,

for the dual code C^{\perp} of C ,
the Hamming weight enumerator W_{C}\perp(x_{0}, x_{1}) is defined by

W_{C}\displaystyle \perp(x_{0}, x_{1}) :=\sum_{\mathrm{c}\in C^{\perp}}x_{0}^{n-w_{\mathrm{H}}(\mathrm{c}')}x_{1}^{w_{\mathrm{H}}(\mathrm{c}')}=\sum_{j=0}^{n}W_{j}^{\perp}x_{0}^{n-j}x_{1}^{j},
where W_{j}^{\perp} denotes the number of codewords of Hamming weight j in C^{\perp} . Both the

weight enumerators W_{C}(x_{0}, x_{1}) and W_{C}\perp(x_{0}, x_{1}) are homogeneous polynomials of

degree n in two indeterminates x_{0} and x_{1}.

The following Theorem 2.5 holds for Hamming weight enumerators of binary linear

codes.
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Theorem 2.5 (MacWilliams identity [10], [11, p.127]). Let C be a binary [n, k]
code with dual code C^{\perp} . Then the following relation holds between the weight enumerator

of C and that of C^{\perp} :

(2.1) W_{C}\displaystyle \perp(x_{0}, x_{1})=\frac{1}{|C|}W_{C}(x_{0}+x_{1}, x_{0}-x_{1}) ,

where |C|=2^{k} denotes the number of codewords in C.

Equation (2.1) is the MacWilliams identity for Hamming weight enumera‐

tors of binary linear codes and shows that the weight enumerator of C^{\perp} is derived

from that of C . Equation (2.1) is symmetric with respect to the roles of C and C^{\perp},
that is,

(2.2) W_{C}(x_{0}, x_{1})=\displaystyle \frac{1}{|C^{\perp}|}W_{C}\perp(x_{0}+x_{1}, x_{0}-x_{1}) ,

where |C^{\perp}|=2^{n-k} denotes the number of codewords in C^{\perp} . Equation (2.2) is obtained

by putting y_{0}=x_{0}+x_{1} and y_{1}=x_{0}-x_{1} in Eq. (2.1). The weight enumerator of C is

derived from that of C^{\perp} by using Eq. (2.2).
If C is self‐dual, then n=2k and |C|=2^{k}=2^{n/2} . Therefore, Eq. (2.1) results in

the following form:

(2.3) W_{C}(x_{0}, x_{1})=W_{C}(\displaystyle \frac{x_{0}+x_{1}}{\sqrt{2}}, \frac{x_{0}-x_{1}}{\sqrt{2}}) .

Equation (2.3) shows that the Hamming weight enumerators of binary linear self‐dual

codes are invariant under the transform

 $\sigma$:\displaystyle \left(\begin{array}{l}
x_{0}\\
x_{1}
\end{array}\right)\mapsto\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1\\
1 & -1
\end{array}\right)\displaystyle \left(\begin{array}{l}
x_{0}\\
x_{1}
\end{array}\right)
Example 2.6. The code C_{7} ,

which was given in Example 2.1, contains 16 code‐

words shown in Table 1. Then the weight enumerator of C_{7} is

W_{C_{7}}(x_{0}, x_{1})=x_{0}^{7}+7x_{0}^{4}x_{1}^{3}+7x_{0}^{3}x_{1}^{4}+x_{1}^{7}.

On the other hand, the dual code C_{7}^{\perp} contains 8 codewords shown in Table 2. The

weight enumerator of C_{7}^{\perp} is

W_{C_{7}^{\perp}}(x_{0}, x_{1})=x_{0}^{7}+7x_{0}^{3}x_{1}^{4}.
Substitute x_{0}+x_{1} and x_{0}-x_{1} into x_{0} and x_{1} of W_{C_{7}}(x_{0}, x_{1}) , respectively, then

W_{C_{7}}(x_{0}+x_{1}, x_{0}-x_{1})

=(x_{0}+x_{1})^{7}+7(x_{0}+x_{1})^{4}(x_{0}-x_{1})^{3}+7(x_{0}+x_{1})^{3}(x_{0}-x_{1})^{4}+(x_{0}-x_{1})^{7}

=16(x_{0}^{7}+7x_{0}^{3}x_{1}^{4})=2^{4}W_{C_{7}}\perp(x_{0}, x_{1}) .
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Table 1. Codewords in C_{7} and their Hamming weights

Codeword Weight Codeword Weight Codeword Weight
0000000

1101000

1010100

0110010

1110001

1111111

Table 2. Codewords in C_{7}^{\perp} and their Hamming weights

Codeword Weight Codeword Weight Codeword Weight
0000000

1001101

0101011

Conversely, W_{C_{7}}(x_{0}, x_{1}) is derived from W_{C_{7}}\perp(x_{0}+x_{1}, x_{0}-x_{1}) . In fact,

W_{C_{7}^{\perp}}(x_{0}+x_{1}, x_{0}-x_{1})=(x_{0}+x_{1})^{7}+7(x_{0}+x_{1})^{3}(x_{0}-x_{1})^{4}
=8(x_{0}^{7}+7x_{0}^{4}x_{1}^{3}+7x_{0}^{3}x_{1}^{4}+x_{1}^{7})=2^{3}W_{C_{7}}(x_{0}, x_{1}) .

Example 2.7. The code C_{8} ,
which was given in Example 2.2, contains 16 code‐

words shown in Table 3. Since the generator matrix of C_{8}^{\perp} is identical with that of C_{8},
both the weight enumerators of C_{8} and C_{8}^{\perp} are

W_{C_{8}}(x_{0}, x_{1})=W_{C_{8}}\perp(x_{0}, x_{1})=x_{0}^{8}+14x_{0}^{4}x_{1}^{4}+x_{1}^{8}.
In fact, W_{C_{8}}(x_{0}, x_{1}) is invariant under the transform  $\sigma$ :

 W_{C_{8}}(\displaystyle \frac{x_{0}+x_{1}}{\sqrt{2}}, \frac{x_{0}-x_{1}}{\sqrt{2}})=(\frac{x_{0}+x_{1}}{\sqrt{2}})^{8}+14(\frac{x_{0}+x_{1}}{\sqrt{2}})^{4}(\frac{x_{0}-x_{1}}{\sqrt{2}})^{4}+(\frac{x_{0}-x_{1}}{\sqrt{2}})^{8}
=x_{0}^{8}+14x_{0}^{4}x_{1}^{4}+x_{1}^{8}=W_{C_{8}}(x_{0}, x_{1}) .

Equation (2.1) provides the relationship between the coefficients of W_{C}(x_{0}, x_{1})
and those of W_{C}\perp(x_{0}, x_{1}) . To indicate the relationship explicitly, we introduce the
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Table 3. Codewords in C_{8} and their Hamming weights

Codeword Weight Codeword Weight Codeword Weight
00000000

00101110

01100101

11010001

01001011

11111111

(n+1)\times(n+1) matrix M_{n} as follows: we denote the expansion of the polynomial

(x_{0}+x_{1})^{n-j}(x_{0}-x_{1})^{j} as

$\mu$_{j,0}x_{0}^{n}+$\mu$_{j,1}x_{0}^{n-1}x_{1}+\cdots+$\mu$_{j,n}x_{1}^{n}

for j=0 , 1, . . .

,
n . The coefficients $\mu$_{j,l}=\displaystyle \sum_{p=0}^{l}(-1)^{p}\left(\begin{array}{l}
j\\
p
\end{array}\right)\left(\begin{array}{l}
n-j\\
l-p
\end{array}\right) are known as special

cases of Krawtchouk polynomials [11, p.129, Equation (12)]. We define M_{n} by

M_{n}:=\left(\begin{array}{llll}
$\mu$_{0,0} & $\mu$_{0,1} & \cdots & $\mu$_{0,n}\\
$\mu$_{1,0} & $\mu$_{1,1} & \cdots & $\mu$_{1,n}\\
\vdots & \vdots &  & \vdots\\
$\mu$_{n,0}$\mu$_{n,1} & \vdots\cdots & \cdots & $\mu$_{n,n}
\end{array}\right) .

Proposition 2.8. The coefficients $\mu$_{j,l} have the following properties:

(i) \displaystyle \sum_{m=0}^{n}$\mu$_{j,m}$\mu$_{m,l}=\left\{\begin{array}{l}
2^{n} \mathrm{i}\mathrm{f} j=l,\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
(ii)\displaystyle \sum_{l=0}^{n}$\mu$_{j,l}=\left\{\begin{array}{l}
2^{n} \mathrm{i}\mathrm{f} j=0,\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Property (i) implies that M_{n}^{2}=2^{n}I_{n+1} ,

where I_{n+1} denotes the (n+1)\times(n+1) identity
matrix.

Proof. Property (i) is given in [11, p.152, Chapter 5, Corollary 18]. Property (ii)
is obtained by substituting 1 into x_{0} and x_{1} of the equations (x_{0}+x_{1})^{n-j}(x_{0}-x_{1})^{j}=
$\mu$_{j,0}x_{0}^{n}+$\mu$_{j,1}x_{0}^{n-1}x_{1}+\cdots+$\mu$_{j,n}x_{1}^{n} for j=0 , 1, . . .

,
n. \square 

By using the components of the matrix M_{n} ,
the right‐hand side of Eq. (2.1) is
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expressed as follows:

\displaystyle \frac{1}{2^{k}}W_{C}(x_{0}+x_{1}, x_{0}-x_{1})

=\displaystyle \frac{1}{2^{k}}\sum_{i=0}^{n}W_{i}(x_{0}+x_{1})^{n-i}(x_{0}-x_{1})^{i}
=\displaystyle \frac{1}{2^{k}}\sum_{i=0}^{n}W_{i}($\mu$_{i,0}x_{0}^{n}+$\mu$_{i,1}x_{0}^{n-1}x_{1}+\cdots+$\mu$_{i,n}x_{1}^{n})

(2.4) =\displaystyle \frac{1}{2^{k}}\{(\sum_{i=0}^{n}W_{i}$\mu$_{i,0})x_{0}^{n}+(\sum_{i=0}^{n}W_{i}$\mu$_{i,1})x_{0}^{n-1}x_{1}+\cdots+(\sum_{i=0}^{n}W_{i}$\mu$_{i,n})x_{1}^{n}\}
Comparing the coefficients of Eq. (2.4) with those of the left‐hand side of Eq. (2.1), we

see that the coefficients of W_{C}(x_{0}, x_{1}) and those of W_{C}\perp(x_{0}, x_{1}) satisfy the following

equation:

(2.5) (W_{0}^{\perp}, W_{1}^{\perp}, W_{2}^{\perp} ,
. . .

, W_{n}^{\perp})=\displaystyle \frac{1}{2^{k}}(W_{0}, W_{1} , W2, . . .

, W_{n})M_{n}.
Multiplying both sides of Eq. (2.5) by \displaystyle \frac{1}{2^{n}}M_{n} yields

(2.6) (W_{0}, W_{1}, W_{2} ,
. . .

, W_{n})=\displaystyle \frac{1}{2^{n-k}}(W_{0}^{\perp}, W_{1}^{\perp}, W_{2}^{\perp}, \ldots, W_{n}^{\perp})M_{n}.
Equation (2.6) is also obtained directly from Eq. (2.2). Equations (2.5) and (2.6) play

important roles in Section 4.

§3. Theta series

In this section, we deal with one‐variable theta series that are essential to derive

the functional equations for partial Epstein zeta functions on binary linear codes in

Section 4.

Definition 3.1. Let  $\tau$ be a variable in the upper half‐plane \mathcal{H} of C. Let \mathrm{u}_{n,j}=

(1, . . .

, 1,0, . . .

, 0) be an element of \mathrm{F}_{2}^{n} ,
where the leftmost j components of \mathrm{u}_{n,j} are 1 �s

and the other components are 0 �s for j=0 , 1, . . .

,
n . For  $\tau$\in \mathcal{H} ,

the theta series $\theta$_{n,j}( $\tau$)
for j=0 , 1, . . .

,
n are defined by

$\theta$_{n,j}( $\tau$):= \displaystyle \sum_{\mathrm{m}\in \mathrm{Z}^{n},\mathrm{m}\equiv \mathrm{u}_{n,j}(\mathrm{m}\mathrm{o}\mathrm{d} 2)}e^{2 $\pi$ i $\tau$\frac{\langle \mathrm{m},\mathrm{m}\rangle}{4}}=\sum_{\mathrm{m}\in \mathbb{Z}^{n}}e^{2 $\pi$ i $\tau$\frac{\langle 2\mathrm{m}+\mathrm{u}_{n,j},2\mathrm{m}+\mathrm{u}_{n,j}\rangle}{4}},
where \langle \mathrm{u}, \mathrm{v}\rangle is the standard inner product of \mathrm{u} and \mathrm{v}.
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Remark. For all positive integers n
,
the theta series $\theta$_{n,j}( $\tau$) consists of the powers

of $\theta$_{1,0}( $\tau$) and $\theta$_{1,1}( $\tau$) :

(3.1) $\theta$_{n,j}( $\tau$)=$\theta$_{1,0}( $\tau$)^{n-j}$\theta$_{1,1}( $\tau$)^{j}.

Proposition 3.2. The theta series $\theta$_{n,j}( $\tau$) forj=0 , 1, . . .

,
n satisfy the follow‐

ing two transfO rmation formulae:

(i) \left(\begin{array}{l}
$\theta$_{n,0}( $\tau$+1)\\
$\theta$_{n,1}( $\tau$+1)\\
$\theta$_{n,2}( $\tau$+1)\\
\vdots\\
$\theta$_{n,n}( $\tau$+1)
\end{array}\right)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1, i, i2, . . . , i^{n})\left(\begin{array}{l}
$\theta$_{n,0}( $\tau$)\\
$\theta$_{n,1}( $\tau$)\\
$\theta$_{n,2}( $\tau$)\\
\vdots\\
$\theta$_{n,n}( $\tau$)
\end{array}\right),
(ii) (_{$\theta$_{n,n}(\frac{-1}{ $\tau$})_{/}}^{$\theta$_{n,0}(\frac{-1}{-1-1 $\tau \tau \tau$})^{\backslash }}$\theta$_{n,2}(\displaystyle \frac{}{})$\theta$_{n,1}(\frac{}{})=(\sqrt{\frac{ $\tau$}{i}})^{n}\frac{1}{\sqrt{2^{n}}}M_{n}\left(\begin{array}{l}
$\theta$_{n,0}( $\tau$)\\
$\theta$_{n,1}( $\tau$)\\
$\theta$_{n,2}( $\tau$)\\
$\theta$_{n,n}( $\tau$)
\end{array}\right),
where i=\sqrt{-1} and- $\pi$/4<\arg\sqrt{ $\tau$}/i< $\pi$/4 . The symbol diag (1, i, i2, . . . , i^{n}) denotes

a diagonal matrix.

Proof. The first formula follows directly from the definition of $\theta$_{n,j}( $\tau$) .

The second formula is obtained by using the Poisson summation formula. Two‐

variable theta series for  $\tau$\in \mathcal{H} and z\in \mathbb{C} ,
which are extensions of $\theta$_{n,j}( $\tau$) ,

were defined

and their transformation formulae were given in [14]. The proof of the second formula for

$\theta$_{n,j}( $\tau$) is analogous to that of the second formula for the two‐variable theta series. \square 

§4. Partial Epstein zeta functions on binary linear codes

Definition 4.1 (Epstein zeta functions [8]). Let s be a complex variable with

\Re s>n/2 ,
let Y be an n\times n matrix of a positive definite quadratic form, and let \mathrm{g}

and \mathrm{h} be n‐dimensional real vectors. Then the Epstein zeta function associated with

(Y, \mathrm{g}, \mathrm{h}) is defined by

Z_{n}(Y, \displaystyle \mathrm{g}, \mathrm{h}, s):=\mathrm{a}+\mathrm{g}\neq 0_{n}\sum_{\mathrm{a}\in \mathrm{Z}^{n}}\frac{e^{2 $\pi$ i\langle \mathrm{h},\mathrm{a}\rangle}}{({}^{t}(\mathrm{a}+\mathrm{g})Y(\mathrm{a}+\mathrm{g}))^{s}},
where a runs over all elements in \mathbb{Z}^{n} except for any vectors such that \mathrm{a}+\mathrm{g}=0_{n} ,

and

0_{n} is the n‐dimensional zero vector.
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Let us substitute the n\times n identity matrix I_{n} into Y and substitute 0_{n} into \mathrm{g} and

\mathrm{h}
, respectively. Then we have

Z_{n}(I_{n}, 0_{n}, 0_{n}, s)=\displaystyle \mathrm{a}\neq 0_{n}\sum_{\mathrm{a}\in \mathrm{Z}^{n}}\frac{1}{\langle \mathrm{a},\mathrm{a}\rangle^{s}},
where \langle \mathrm{a}, \mathrm{a}\rangle denotes the standard inner product of a and itself. We denote the function

 Z_{n}(I_{n}, 0_{n}, 0_{n}, s) by Z(s) and define partial Epstein zeta functions of Z(s) as follows.

Definition 4.2 (Partial Epstein zeta functions [14]). Let s be a complex vari‐

able with \Re s>n/2 . Partial Epstein zeta functions Z_{n,j}(s) for j=0 , 1, . . .

,
n are

defined by

Z_{n,j}(s):=2\displaystyle \mathrm{v}+\mathrm{u}_{n,j}\neq 0_{n}\sum_{\mathrm{v}\in \mathrm{Z}^{n}}\frac{1}{\langle 2\mathrm{v}+\mathrm{u}_{n,j},2\mathrm{v}+\mathrm{u}_{n,j}\rangle^{s}},
where the vectors \mathrm{u}_{n,j} are binary vectors given in Definition 3.1.

Theorem 4.3 ([14]). Partial Epstein zeta functions Z_{n,j}(s) forj=0 , 1, . . .

, n,

which are defined for \Re s>n/2 ,
extend analytically to entire functions on the whole

complex s ‐plane except for a simple pole at s=n/2 with residue ( $\pi$/4)^{n/2}/ $\Gamma$(n/2) ,

where  $\Gamma$(s) is the gamma function. Let

$\Lambda$_{n,j}(s):=(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)Z_{n,j}(s) .

Then the following relation holds forj=0 , 1, . . .

,
n :

(4.1) $\Lambda$_{n,j}(s)=\displaystyle \frac{1}{\sqrt{2^{n}}}\sum_{l=0}^{n}$\mu$_{j,l}$\Lambda$_{n,l}(\frac{n}{2}-s) ,

where $\mu$_{j,l} is the (j, l)th component of M_{n} . These relations forj =0 , 1, . . .

,
n are

rewritten in the following single equation:

(4.2) (\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)\left(\begin{array}{l}
Z_{n,0}(s)\\
Z_{n,1}(s)\\
Z_{n,n}(s)
\end{array}\right)=(\frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)\frac{1}{\sqrt{2^{n}}}M_{n}\left(\begin{array}{l}
Z_{n,0}(\frac{n}{2}-s)\\
Z_{n,1}(\frac{n}{2}-s)\\
Z_{n,n}(\frac{n}{2}-s)
\end{array}\right)
The above type of partial Epstein zeta functions are components of partial Epstein

zeta functions on binary linear codes which are defined as follows.

Definition 4.4 (Partial Epstein zeta functions on binary linear codes). For a

binary [n, k] code C ,
let  $\Lambda$(C) be the following set:

 $\Lambda$(C):=\{\mathrm{c}+2\mathrm{v}|\mathrm{c}\in C, \mathrm{v}\in \mathbb{Z}^{n}\}.
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For a complex variable s\in \mathbb{C} with \Re s>n/2 ,
the partial Epstein zeta function on C is

defined by

Z_{ $\Lambda$(C)}(s):=\displaystyle \mathrm{r}\in $\Lambda$(C)\sum_{\mathrm{r}\neq 0_{n}}\frac{1}{\langle \mathrm{r},\mathrm{r}\rangle^{s}}=\sum_{\mathrm{c}\in C} \sum_{\mathrm{v}\in \mathrm{z}^{n},2\mathrm{v}+\mathrm{c}\neq 0_{n}}\frac{1}{\langle 2\mathrm{v}+\mathrm{c},2\mathrm{v}+\mathrm{c}\rangle^{s}}.
In the same way, for the dual code C^{\perp} of C ,

the set  $\Lambda$(C^{\perp}) is defined by

 $\Lambda$(C^{\perp}):=\{\mathrm{c}'+2\mathrm{v}|\mathrm{c}'\in C^{\perp}, \mathrm{v}\in \mathbb{Z}^{n}\}.
For a complex variable s\in \mathbb{C} with \Re s>n/2 ,

the partial Epstein zeta function on C^{\perp}

is defined by

Z_{ $\Lambda$(C^{\perp})}(s):=\displaystyle \mathrm{r}'\in, $\Lambda$(C\perp)\sum_{\mathrm{r}\neq 0_{n}}\frac{1}{\langle \mathrm{r}',\mathrm{r}'\rangle^{s}}=\sum_{\mathrm{c}\in C} \sum_{\mathrm{v}\in \mathrm{z}^{n},2\mathrm{v}+\mathrm{c}'\neq 0_{n}}\frac{1}{\langle 2\mathrm{v}+\mathrm{c}',2\mathrm{v}+\mathrm{c}'\rangle^{s}}.
Replacing \mathrm{u}_{n,j} with a codeword \mathrm{c} of Hamming weight j does not change

the summation Z_{n,j}(s) . Therefore, if the Hamming weight enumerator of C is

W_{C}(x_{0}, x_{1})=\displaystyle \sum_{i=0}^{n}W_{i}x_{0}^{n-i}x_{1}^{i} ,
then Z_{ $\Lambda$(C)}(s) is expressed as follows by using the coef‐

ficients W_{0}, W_{1} ,
. . .

, W_{n} of W_{C}(x_{0}, x_{1}) :

(4.3) Z_{ $\Lambda$(C)}(s)=\displaystyle \sum^{n}W_{i}\sum_{\neq 0_{n}}i=0\mathrm{v}\in \mathrm{Z}^{n}2\mathrm{v}+\mathrm{u}_{n,i}\frac{1}{\langle 2\mathrm{v}+\mathrm{u}_{n,i},2\mathrm{v}+\mathrm{u}_{n,i}\rangle^{s}}=\sum_{i=0}^{n}W_{i}Z_{n,i}(s) .

In the same way, for the Hamming weight enumerator W_{C}\displaystyle \perp(x_{0}, x_{1})=\sum_{j=0}^{n}W_{j}^{\perp}x_{0}^{n-j}x_{1}^{j}
of C^{\perp} ,

the partial Epstein zeta function Z_{ $\Lambda$(C^{\perp})}(s) is expressed as

(4.4) Z_{ $\Lambda$(C^{\perp})}(s)=\displaystyle \sum_{j=0}^{n}W_{j}^{\perp}Z_{n,j}(s) .

The next Theorem 4.5 is the main result in this paper.

Theorem 4.5. The partial Epstein zeta function Z_{ $\Lambda$(C)}(s) on a binary [n, k] code

C with dual code C^{\perp} extends analytically to an entire function on the whole complex

plane except for a simple pole at s=n/2 with residue 2^{k}( $\pi$/4)^{n/2}/ $\Gamma$(n/2) . Then

Z_{ $\Lambda$(C)}(s) satisfies the following functional equation:

(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)\frac{1}{\sqrt{2^{k}}}Z_{ $\Lambda$(C)}(s)=(\frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)\frac{1}{\sqrt{2^{n-k}}}Z_{ $\Lambda$(C^{\perp})}(\frac{n}{2}-s)
In particular, if C is self‐ dual, we have

(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)Z_{ $\Lambda$(C)}(s)=(\frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)Z_{ $\Lambda$(C)}(\frac{n}{2}-s)
and the residue of Z_{ $\Lambda$(C)}(s) at the pole s=n/2 is ( $\pi$/2)^{n/2}/ $\Gamma$(n/2) .
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Proof. Let us substitute Eq. (2.6) into Z_{ $\Lambda$(C)}(s) . We then have

Z_{ $\Lambda$(C)}(s)=\displaystyle \sum_{i=0}^{n}W_{i}Z_{n,i}(s)=(W_{0}W_{1} . . . W_{n})\left(\begin{array}{l}
Z_{n,0}(s)\\
Z_{n,1}(s)\\
\vdots\\
 Z_{n,n}(s)
\end{array}\right)
(4.5) =\displaystyle \frac{1}{2^{n-k}}(W_{0}^{\perp}W_{1}^{\perp} . . . W_{n}^{\perp})M_{n}\left(\begin{array}{l}
Z_{n,0}(s)\\
Z_{n,1}(s)\\
Z_{n,n}(s)
\end{array}\right)
Multiplying both sides of Eq. (4.5) by ( $\pi$/2)^{-s} $\Gamma$(s)/\sqrt{2^{k}} yields

(4.6)

(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)\frac{1}{\sqrt{2^{k}}}Z_{ $\Lambda$(C)}(s)=(\frac{ $\pi$}{2})^{-s} $\Gamma$(s)\frac{1}{\sqrt{2^{k}}}\frac{1}{2^{n-k}}(W_{0}^{\perp}W_{1}^{\perp}\cdots W_{n}^{\perp})M_{n}\left(\begin{array}{l}
Z_{n,0}(s)\\
Z_{n,1}(s)\\
\vdots\\
 Z_{n,n}(s)
\end{array}\right)
Using Eq. (4.2), we can rewrite the right‐hand side of Eq. (4.6) as

(\displaystyle \frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)\frac{1}{\sqrt{2^{n-k}}}(W_{0}^{\perp}W_{1}^{\perp} . . . W_{n}^{\perp})\left(\begin{array}{l}
Z_{n,0}(\frac{n}{2}-s)\\
Z_{n,1}(\frac{n}{2}-s)\\
\vdots\\
 Z_{n,n}(\frac{n}{2}-s)
\end{array}\right)
=(\displaystyle \frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)\frac{1}{\sqrt{2^{n-k}}}\sum_{j=0}^{n}W_{j}^{\perp}Z_{n,j}(\frac{n}{2}-s)

(4.7) =(\displaystyle \frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)\frac{1}{\sqrt{2^{n-k}}}Z_{ $\Lambda$(C^{\perp})}(\frac{n}{2}-s)
The residue of Z(s) at the pole s=n/2 is equal to the sum of those of Z_{n,j}(s) .

Therefore the residue of Z_{ $\Lambda$(C)}(s) at the pole s=n/2 is 2^{k}( $\pi$/4)^{n/2}/ $\Gamma$(n/2) . In partic‐

ular, if in Eq. (4.7) C=C^{\perp} ,
the equation becomes

(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)Z_{ $\Lambda$(C)}(s)=(\frac{ $\pi$}{2})^{-(n/2-s)} $\Gamma$(\frac{n}{2}-s)Z_{ $\Lambda$(C)}(\frac{n}{2}-s)
Put k=n/2 into 2^{k}( $\pi$/4)^{n/2}/ $\Gamma$(n/2) ,

then the residue of Z_{ $\Lambda$(C)}(s) at the pole s=n/2
is ( $\pi$/2)^{n/2}/ $\Gamma$(n/2) . \square 
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Example 4.6. The Hamming weight enumerator of C_{7} is W_{C_{7}}(x_{0}, x_{1})=x\'{O}+
7x_{0}^{4}x_{1}^{3}+7x_{0}^{3}x_{1}^{4}+x_{1}^{7} . Then, for all s\in \mathbb{C} with \Re s>7/2 ,

the partial Epstein zeta function

on C_{7} is

Z_{ $\Lambda$(C_{7})}(s)=Z_{7,0}(s)+7Z_{7,3}(s)+7Z_{7,4}(s)+Z_{7,7}(s) .

On the other hand, the partial Epstein zeta function on the dual code C_{7}^{\perp} is

Z_{ $\Lambda$(C_{7}^{\perp})}(s)=Z_{7,0}(s)+7Z_{7,4}(s) ,

because the weight enumerator of C_{7}^{\perp} is W_{C_{7}}\perp(x_{0}, x_{1})=x_{0}^{7}+7x_{0}^{3}x_{1}^{4} . Two zeta functions

Z_{ $\Lambda$(C_{7})}(s) and Z_{ $\Lambda$(C_{7}^{\perp})}(s) satisfy the equation

(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)\frac{1}{\sqrt{2^{4}}}Z_{ $\Lambda$(C_{7})}(s)=(\frac{ $\pi$}{2})^{-(7/2-s)} $\Gamma$(\frac{7}{2}-s)\frac{1}{\sqrt{2^{3}}}Z_{ $\Lambda$(C_{7}^{\perp})}(\frac{7}{2}-s)
Example 4.7. The Hamming weight enumerator of the self‐dual code C_{8} is

W_{C_{8}}(x_{0}, x_{1})=x_{0}^{8}+14x_{0}^{4}x_{1}^{4}+x_{1}^{8} . Then, for all s\in \mathbb{C} with \Re s>4 ,
the partial Epstein

zeta function on C_{8} is

Z_{ $\Lambda$(C_{8})}(s)=Z_{8,0}(s)+14Z_{8,4}(s)+Z_{8,8}(s) .

This zeta function satisfies the functional equation

(\displaystyle \frac{ $\pi$}{2})^{-s} $\Gamma$(s)Z_{ $\Lambda$(C_{8})}(s)=(\frac{ $\pi$}{2})^{-(4-s)} $\Gamma$(4-s)Z_{ $\Lambda$(C_{8})}(4-s) .
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