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A canonical system of differential equations
arising from the Riemann zeta‐function

By

Masatoshi Suzuki *

Abstract

This paper has two main results, which relate to a criteria for the Riemann hypothesis via

the family of functions $\Theta$_{ $\omega$}(z)= $\xi$(\displaystyle \frac{1}{2}- $\omega$-iz)/ $\xi$(\frac{1}{2}+ $\omega$-iz) ,
where  $\omega$>0 is a real parameter and

 $\xi$(s) is the Riemann xi‐function. The first main result is necessary and sufficient conditions for

$\Theta$_{ $\omega$} to be a meromorphic inner function in the upper half‐plane. It is related to the Riemann

hypothesis directly whether $\Theta$_{ $\omega$} is a meromorphic inner function. In comparison with this, \mathrm{a}

relation of the Riemann hypothesis and the second main result is indirect. It relates to the

theory of de Branges, which associates a meromorphic inner function and a canonical system
of linear differential equations (in the sense of de Branges). As the second main result, the

canonical system associated with $\Theta$_{ $\omega$} is constructed explicitly and unconditionally under the

restriction of the parameter  $\omega$>1 by applying a method of J.‐F. Burnol in his recent work

on the gamma function to the Riemann xi‐function. If such construction is extended to all

 $\omega$>0 unconditionally, we get a criterion for the Riemann hypothesis in terms of a family
of canonical systems parametrized by  $\omega$>0 ,

which explains the validity of the Riemann

hypothesis as positive semidefiniteness of the corresponding family of Hamiltonian matrices.

§1. Introduction

Let  $\zeta$(s) be the Riemann zeta function. The set of all non‐trivial zeros of the

Riemann zeta function coincides with the set of all zeros of the Riemann xi‐function

 $\xi$(s)=\displaystyle \frac{1}{2}s(s-1)$\pi$^{-s/2} $\Gamma$(\frac{s}{2}) $\zeta$(s) .
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The Riemann hypothesis, which is often abbreviated to RH, assert that all zeros of  $\xi$(s)
lie on the critical line \Re(s)=1/2 . We attempt to understand the nontrivial zeros of

the Riemann zeta function via the family of functions

(1.1) A^{ $\omega$}(z):=\displaystyle \frac{1}{2}( $\xi$(s+ $\omega$)+ $\xi$(s- $\omega$)) , B^{ $\omega$}(z):=\frac{i}{2}( $\xi$(s+ $\omega$)- $\xi$(s- $\omega$)) ,

where s=1/2-iz and  $\omega$ is a positive real parameter. Functions  A^{ $\omega$}(z) and B^{ $\omega$}(z) take

real values on the real line and satisfy the functional equations A^{ $\omega$}(z)=A^{ $\omega$}(z) and

B^{ $\omega$}(z)=-B^{ $\omega$}(z) by the functional equations  $\xi$(s)= $\xi$(1-s) and  $\xi$(s)=\overline{ $\xi$(\overline{s})}.
If all zeros of A^{ $\omega$}(z) lie on the real line for every  $\omega$>0 ,

it implies RH by Hurwitz�s

theorem in complex analysis. Conversely, all zeros of A^{ $\omega$}(z) lie on the real line for

 $\omega$\geq 1/2 unconditionally and for 0< $\omega$<1/2 under RH by a result of Lagarias [15]
(see also Li [21] for an unconditional result for 0< $\omega$<1/2 ). We abbreviate to RH(A)
(resp. \mathrm{R}\mathrm{H}(\mathrm{B}) ) the assertion that all zeros of A^{ $\omega$}(z) (resp. B^{ $\omega$}(z) ) lie on the real line,
and abbreviate RH(A) and RH(B) as \mathrm{R}\mathrm{H}(A^{ $\omega$}, B^{ $\omega$}) . Then the above things are stated

as follows:

Proposition 1.1. RH holds if and only if RH(A) holds for all  $\omega$>0.

The latter condition is easier to study in that it is currently known to hold for all

 $\omega$\geq 1/2 . Also it is known to be related to some operators. We will study the latter

problem of finding linear differential equation systems with boundary conditions for

which the zeros of A^{ $\omega$}(z) are eigenvalues, for a suitable range of  $\omega$.

It is believed that a promising way to prove RH is the Hilbert‐Pólya conjecture
which asserts that the non‐trivial zeros of the Riemann zeta function correspond to

eigenvalues of some positive operator if RH is true. Therefore, if we refer to Proposition

1.1, it is an interesting problem to find a canonical way realizing the zeros of A^{ $\omega$}(z)
as the eigenvalues of some positive operator. Fortunately, as shown in [15] (see also

[16]), it is possible for  $\omega$\geq 1/2 unconditionally and for 0< $\omega$<1/2 under RH if we

use the theory of de Branges spaces that are kind of reproducing kernel Hilbert spaces

consisting of entire functions. However, unfortunately, RH is used essentially in [15] to

construct corresponding de Branges spaces for 0< $\omega$<1/2.
According to a general theory of de Branges spaces, there exists a unique canonical

system of linear differential equations associated with a given de Branges space up

to a normalization. And also, it is known that a special class of canonical system is

transformed into a pair of Schrödinger equations endowed with a pair of (distributional)
potentials. At this stage, the validity of RH(A) is encoded in analytic properties of

potentials (see [16], and also [17]). Hence, a possible way to avoid assuming RH in the

construction of the de Branges space arising from A^{ $\omega$}(z) for 0< $\omega$<1/2 is a direct

construction of a pair of potentials without RH. However, in general, it is difficult to
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determine a pair of potentials corresponding to a given de Branges space, and it is so

for the de Branges space arising from A^{ $\omega$}(z) even if  $\omega$\geq 1/2.
A goal of the present paper is to describe unconditionally for  $\omega$>1 ,

a canonical

system and corresponding pair of potentials associated with a de Branges space arising
from A^{ $\omega$}(z) in terms of Fredholm determinants of certain compact integral operators

(Theorem 2.3). The restriction  $\omega$>1 is expected to be relaxed to  $\omega$>0 if RH is true

(see comments after Theorem 2.3 and Section 5 for details).
In order to explain the above things more precisely, we review results on de Branges

spaces, canonical systems and model subspaces.

§1.1. de Branges spaces and canonical system

At first, we review the theory of de Branges spaces according to de Branges [9]
and Lagarias [16, 17] (see also Remling [24]). Let E be an entire function satisfying the

Hermite‐Biehler condition

(1.2) |E(z)|>|E\#(z)| for \Im(z)>0,

where E\#(z)=\overline{E(\overline{z})} . Then entire function E generates the de Branges space

B(E) := {f|f is entire, f/E and f/E\#\in H^{2} }

endowed with norm \Vert f\Vert_{B(E)}:=\Vert f/E\Vert_{L^{2}(\mathbb{R})} ,
where H^{2}=H^{2}() is the Hardy space

in the upper half‐plane \mathbb{C}^{+} which is defined to be the space of all analytic functions f
in \mathbb{C}^{+} endowed with norm \displaystyle \Vert f\Vert_{H^{2}}^{2}:=\sup_{v>0}\int_{\mathbb{R}}|f(u+iv)|^{2}du<\infty . An entire function

 F(z) is called a real entire function if F(z)=F\#(z) \overline{F(\overline{z})}). Condition (1.2) implies
that real entire functions

A(z) :=\displaystyle \frac{1}{2}(E(z)+E\#(z)) , B(z) :=\frac{i}{2}(E(z)-E\#(z))
have real zeros only, and these zeros interlace. Moreover, if E(z)\neq 0 on the real line,
all zeros are simple ([8, Lemma 5]). A de Branges space B(E) has an unbounded

operator (\mathrm{M}, \mathfrak{D}(\mathrm{M})) , multiplication by the independent variable (\mathrm{M}f)(z)=zf(z) with

the domain \mathfrak{D}(\mathrm{M})=\{f\in B(E)|zf(z)\in B(E)\} . The multiplication operator \mathrm{M} is

symmetric and closed, and if \mathrm{D}(\mathrm{M}) is dense in B(E) ,
it has deficiency indices (1, 1),

and hence has a family of self‐adjoint extensions \mathrm{M}_{ $\theta$} parametrized by  $\theta$\in[0,  $\pi$ ). In

particular, \mathrm{M}_{ $\pi$/2} and \mathrm{M}_{0} have pure discrete spectrum located at zeros of A(z) and B(z)
respectively.

We put the normalization E(0)=1 for entire functions E satisfying (1.2) for a

convenience. Then, for a given de Branges space B(E) ,
there exists a chain of de

Branges spaces B(E_{a})\subset B(E) , 0<a\leq c(\leq\infty) ,
endowed with a family of entire

functions E_{a}(z) satisfying (1.2) and E_{a}(0)=1 such that B(E_{a})\subset B(E_{a'}) for a<a',
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and the parametrized pair of real entire functions (A_{a}, B_{a}) :=(\displaystyle \frac{1}{2}(E_{a}+E_{a}\#), \frac{i}{2}(E_{a}-E_{a}\#))
satisfies the canonical system

\displaystyle \frac{\partial}{\partial a}\left\{\begin{array}{l}
A_{a}(z)\\
B_{a}(z)
\end{array}\right\}=z\left\{\begin{array}{ll}
0 & -1\\
1 & 0
\end{array}\right\}H(a)\displaystyle \left\{\begin{array}{l}
A_{a}(z)\\
B_{a}(z)
\end{array}\right\}, H(a)=\left\{\begin{array}{l}
 $\alpha$(a) $\beta$(a)\\
 $\beta$(a) $\gamma$(a)
\end{array}\right\}
of linear differential equations with the initial condition

\displaystyle \lim_{a\rightarrow 0+}(A_{a}(z), B_{a}(z))=(1,0)
for each z\in \mathbb{C} ,

and E_{c}(z)=E(z) (see [9, Theorem 40], but note that it is formulated

in terms of integral equations). Here the matrix H(a) is a measurable and real positive

semidefinite symmetric matrix for almost all 0<a\leq c ,
and which is integrable over the

interval. The matrix H(a) is often called a Hamiltonian of a canonical system. These

properties of H(a) are crucial, because the initial function E can be recovered from

H(a) by solving the canonical system with the above initial condition ([9, Theorem

41]). On the other hand, the spectrum of the extended multiplication operator \mathrm{M}_{ $\theta$}
coincides with the spectrum of the above canonical system with the boundary condition

\displaystyle \lim_{a\rightarrow 0+}(A_{a}(z), B_{a}(z))=(1,0) and A_{c}(z)\sin $\theta$-B_{c}(z)\cos $\theta$=0.
If H(a) is diagonal ( $\beta$(a)=0) and  $\alpha$(a) $\gamma$(a)=1 almost everywhere in (0, c], the

corresponding canonical system is transformed into a pair of Schrödinger equations

(-\displaystyle \frac{d^{2}}{da^{2}}+V^{\pm}(a)) $\psi$(a, z)=z^{2} $\psi$(a, z) , V^{\pm}(a)=\displaystyle \frac{1}{4}(\frac{$\alpha$'(a)}{ $\alpha$(a)})^{2}\pm\frac{1}{2}(\frac{$\alpha$'(a)}{ $\alpha$(a)})',
and the initial E is recovered by solving the pair of Schrödinger equations under the

corresponding initial conditions.

Eventually, condition (1.2) of E is encoded in analytic properties of H(a) or V^{\pm}(a) .

In general, it is difficult to determine H(a) or V^{\pm}(a) for given E except for few special

examples (see Chapter 3 of [9], and also [17, 6]).

§1.2. Spectral realization of zeros of A^{ $\omega$} and B^{ $\omega$}

Suppose that the condition

(1.3) | $\xi$(s+ $\omega$)|>| $\xi$(s- $\omega$)| for \displaystyle \Re(s)>\frac{1}{2}
holds. Then we find that E(z)=E^{ $\omega$}(z) := $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz) satisfies (1.2) by using the

functional equations  $\xi$(s)= $\xi$(1-s) and  $\xi$(s)=\overline{ $\xi$(\overline{s})} . Thus the de Branges space B(E)
is defined, and \mathrm{R}\mathrm{H}(A^{ $\omega$}, B^{ $\omega$}) holds. By a result of [15], condition (1.3) holds for  $\omega$\geq 1/2
unconditionally and for 0< $\omega$<1/2 under RH. This is the reason why RH implies

RH(A) for all  $\omega$>0 . However, for fixed  $\omega$>0 ,
condition (1.3) is only a sufficient
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condition to \mathrm{R}\mathrm{H}(A^{ $\omega$}, B^{ $\omega$}) ,
that is, RH(A) or RH(B) may be true even if condition

(1.3) does not hold.

Anyway, we can regard the zeros of A^{ $\omega$}(z) and B^{ $\omega$}(z) as discrete spectrum of

self‐adjoint extensions of (\mathrm{M}, \mathrm{D}(\mathrm{M})) on B(E) for  $\omega$\geq 1/2 unconditionally and for

0< $\omega$<1/2 under RH. Therefore, a natural problem on RH(A) and a spectral
realization of the zeros of A^{ $\omega$}(z) is to find a way avoiding RH for 0< $\omega$<1/2 . A possible

approach is to construct H(a) or V^{\pm}(a) associated with B(E) without assuming RH,
and recover E^{ $\omega$}, A^{ $\omega$} and B^{ $\omega$} from the canonical system attached to H(a) or the pair of

Schrödinger equations attached to V^{\pm}(a) . We attempt to follow this way by using the

theory of model subspaces.

§1.3. Model subspaces

For further discussions, we review a theory of model spaces according to Havin‐

Mashreghi [12, 13] (see also Baranov [1], MakarovPoltoratski [22]). A function  $\Theta$ is

called an inner function in \mathbb{C}^{+} if it is a bounded analytic function in \mathbb{C}^{+} such that

\displaystyle \lim_{v\rightarrow 0+}| $\Theta$(u+iv)|=1 for almost all u\in \mathbb{R} with respect to Lebesgue measure. If

an inner function  $\Theta$ in \mathbb{C}^{+} is extended to a meromorphic function in \mathbb{C} , it is called a

meromorphic inner function in \mathbb{C}^{+} . It is known that every meromorphic inner function

is expressed as  $\Theta$=E\#/E by using an entire function E satisfying (1.2). For an

inner function  $\Theta$ ,
a model subspace (or coinvariant subspace)  K( $\Theta$) is defined by the

orthogonal complement

(1.4) K( $\Theta$)=H^{2}\ominus $\Theta$ H^{2},

where  $\Theta$ H^{2}=\{ $\Theta$(z)F(z)|F\in H^{2}\} . It has the alternative representation

(1.5) K(\ominus)=H^{2_{\cap\ominus H^{2}}^{-}},

where H^{2}-=H^{2}() is the Hardy space in the lower half‐plane \mathbb{C}^{-} . If  $\Theta$ is a meromor‐

phic inner function such that  $\Theta$=E\#/E ,
the model subspace K( $\Theta$) is isomorphic to the

de Branges space B(E) as a Hilbert space by K( $\Theta$)\rightarrow B(E):f\mapsto fE . In particular,

K( $\Theta$) is a reproducing kernel Hilbert space. The reproducing kernel of K( $\Theta$) is given

by

(1.6) K(z, w)=\displaystyle \frac{1}{2 $\pi$ i}\frac{1-\overline{ $\Theta$(z)} $\Theta$(w)}{\overline{z}-w} (z, w\in \mathbb{C}^{+}) ,

and the reproducing formula f(z)=\langle f, K(z, \cdot)\rangle_{L^{2}(\mathbb{R})}(f\in K( $\Theta$), z\in \mathbb{C}^{+}) remains true

for z\in \mathbb{R} if  $\Theta$ is analytic in a neighborhood of  u
,

where \langle f, g\displaystyle \rangle_{L^{2}(\mathbb{R})}=\int_{\mathbb{R}}f(u)\overline{g(u)}du.
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§1.4. Model subspaces related to A^{ $\omega$} and B^{ $\omega$}

Now we apply the theory of model subspaces to the spaces B(E) of Section 1.2.

For positive real  $\omega$
,

we define the meromorphic function  $\Theta$_{ $\omega$}(z) in \mathbb{C} by

(1.7) $\Theta$_{ $\omega$}(z):=\displaystyle \frac{ $\xi$(\frac{1}{2}- $\omega$-iz)}{ $\xi$(\frac{1}{2}+ $\omega$-iz)}.
Then we have

(1.8) $\Theta$_{ $\omega$}(z)$\Theta$_{ $\omega$}(-z)=1 for z\in \mathbb{C},

(1.9) |$\Theta$_{ $\omega$}(u)|=1 for u\in \mathbb{R},

(1.10) $\Theta$_{ $\omega$}(0)=1,

by functional equations  $\xi$(s)= $\xi$(1-s) and  $\xi$(\overline{s})=\overline{ $\xi$(s)}.
The inequality (1.3) can now be reinterpreted as the condition

(1.11) |$\Theta$_{ $\omega$}(z)|<1 for \Im(z)>0

and vice versa. Recall that condition (1.3) is known to hold for  $\omega$\geq 1/2 unconditionally
and for 0< $\omega$<1/2 under RH. By (1.9), when condition (1.11) holds, it implies that

$\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+} . Therefore, whenever (1.11) holds, we

obtain a model subspace K($\Theta$_{ $\omega$}) which is isomorphic to the de Branges space B(E)
generated by E^{ $\omega$}(z)= $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz) . Here we mention the following equivalence relation.

Proposition 1.2. Let $\omega$_{0}\geq 0 . Then the following are equivalent:

(1)  $\zeta$(s)\neq 0 for \displaystyle \Re(s)>\frac{1}{2}+$\omega$_{0},

(2) $\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+} for every  $\omega$>$\omega$_{0}.

Proof. Assume that 0\leq$\omega$_{0}<1/2 since we have nothing to say for  $\omega$\geq 1/2 . By

applying Theorem 4 of [18], we find that (1) implies that (1.11) holds for every  $\omega$>$\omega$_{0}

Thus we obtain (1)(2). The converse implication (2)(1) is proved by a way similar

to the proof of Theorem 2.3 (1) in [26]. \square 

The changing of consideration from B(E) to K($\Theta$_{ $\omega$}) has the advantage that spaces

$\Theta$_{ $\omega$}H^{2}, $\Theta$_{ $\omega$}H^{2}-, H^{2}\ominus(H^{2}\cap$\Theta$_{ $\omega$}H^{2}) and H^{2}\cap$\Theta$_{ $\omega$}H^{2}- are defined even if $\Theta$_{ $\omega$}(z) is not

necessarily a meromorphic inner function in \mathbb{C}^{+} (see (1.4) and (1.5)), and it allows us

to study these spaces for the range 0< $\omega$<1/2 without assuming RH. (Note that
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 $\Theta$ H^{2}\not\subset H^{2} in general if  $\Theta$ is not necessary a inner function in \mathbb{C}^{+}. ) To make a further

discussion, we use Fourier analysis.

§1.5. An operator related to K($\Theta$_{ $\omega$})

As usual we identify H^{2} and H^{2}- with subspaces of L^{2}() =L^{2}((-\infty, \infty), du) via

nontangential boundary values on the real line such that L^{2}(\mathbb{R})=H^{2}\oplus H^{2}- . Then the

shifted Fourier transform

\mathrm{F}_{1/2}:L^{2}((0, \infty), dx)\rightarrow L^{2}(\mathbb{R}) : (\displaystyle \mathrm{F}_{1/2}f)(z)=\int_{0}^{\infty}f(x)x^{\frac{1}{2}+iz}\frac{dx}{x},
\mathrm{F}_{1/2}^{-1} : L^{2}(\mathbb{R})\rightarrow L^{2}((0, \infty), dx) : (\displaystyle \mathrm{F}_{1/2}^{-1}g)(z)=\frac{1}{2 $\pi$}\int_{-\infty}^{\infty}g(u)x^{-\frac{1}{2}-iu}du

provides an isometry of L^{2} ‐spaces up to a constant such that H^{2}=\mathrm{F}_{1/2}L^{2}((1, \infty), dx)
and H^{2}-=\mathrm{F}_{1/2}L^{2}((0,1), dx) by the Paley‐Wiener theorem.

Fourier analysis on K($\Theta$_{ $\omega$}) and $\Theta$_{ $\omega$}H^{2} enables us to state equivalent or sufficient

conditions that $\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+} (Theorem 2.2).
On the other hand, condition (1.9) allows us to define the Hankel type operator

(\displaystyle \mathrm{H}_{ $\omega$}^{*}f)(x)=\int_{0}^{\infty}h_{ $\omega$}^{*}(xy)f(y)dy
on L^{2}((0, \infty), dx) endowed with the kernel given by

(1.12) h_{ $\omega$}^{*}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-\infty}^{\infty}$\Theta$_{ $\omega$}(u)x^{-\frac{1}{2}-iu}du.
Of course the definition of \mathrm{H}_{ $\omega$}^{*} has only a formal sense because of the problem of the

convergence of integral in (1.12). However h_{ $\omega$}^{*}(x) is going to be identified with the

function h(x) in Section 2, and then \mathrm{H}_{ $\omega$}^{*} is going to be justified as the operator \mathrm{H}_{ $\omega$}
obtained by replacing the kernel h_{ $\omega$}^{*}(x) by h_{ $\omega$}(x) . Moreover the operator \mathrm{H}_{ $\omega$} is extended

to an isometry from L^{2}((0, \infty), dx) to L^{2}((0, \infty), dx) for  $\omega$\geq 1/2 unconditionally, and

for 0< $\omega$<1/2 under RH (see Lemma 4.1).
As developed in Burnol [6] (and his other related works [3, 4, 5]), the Hankel type

operator \mathrm{H}_{ $\omega$} and its kernel h_{ $\omega$}(xy) is quite useful to study a structure of subspaces of

\mathrm{F}_{1/2}^{-1}K($\Theta$_{ $\omega$}) corresponding to de Branges subspaces of B(E^{ $\omega$})\simeq K($\Theta$_{ $\omega$}) . By applying
Burnol�s theory to \mathrm{H}_{ $\omega$} and h_{ $\omega$}(x) ,

we derive a canonical system of B(E) under the

restriction  $\omega$>1 (Theorem 2.3 and studying in Section 4). Recall that the structure of

subspaces of a de Branges space is controlled by its canonical system.

§1.6. Summary of issues

Briefly, we have two issues. The first is to state \mathrm{a} (nice) criterion for the innerness

of $\Theta$_{ $\omega$}(z) . It is directly related to the zero‐free region of  $\zeta$(s) (Proposition 1.2). The
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second is to describe the Hamiltonian H(a) of the canonical system of B(E) explicitly

by assuming that $\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+} if 0< $\omega$<1/2 . If it

is done, we can state that $\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+} if and only
if (A^{ $\omega$}, B^{ $\omega$})=(A_{c}, B_{c}) for the solution (A_{a}, B_{a}) of the canonical system for H(a)
on a\in(0, c] satisfying \displaystyle \lim_{a\rightarrow 0+}(A_{a}, B_{a})=(E^{ $\omega$}(0), 0) . This description explains the

innerness of $\Theta$_{ $\omega$}(z) as a consequence of properties of H_{ $\omega$}(a) ,
and it provides a criterion

for a zero‐free region of  $\zeta$(s) in terms of a family of canonical systems attached to

\{H_{ $\omega$}(a)\}_{ $\omega$>$\omega$_{0}} via Proposition 1.2.

However the second problem is not trivial even if  $\omega$\geq 1/2 . In this paper, we deal

with the case  $\omega$>1 for the second problem as the first attempt.

§1.7. Organization of the paper

The paper is organized as follows. In Section 2, we state main results Theorem

2.2 and Theorem 2.3 after a small preparation of notation. The first one is equivalent
conditions on the Hermite‐Biehler condition (1.11) in terms of the function h(x) for

fixed  $\omega$>0 . This is proved in Section 3. The second one is a result on the canonical

system of B(E^{ $\omega$})\simeq K($\Theta$_{ $\omega$}) under the restriction  $\omega$>1 . It is proved in Section 4 together
with related studies and auxiliary results. In addition, we present more sufficient or

equivalent conditions that $\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+} in Appendix
\mathrm{A} (Theorem A.1).

Here we mention that this paper, particularly Appendix \mathrm{A}
,

is a sequel to [26],
though it is independent and can be read separately. The operator \mathrm{H}_{ $\omega$}^{*} of Section 1.5 is

also justified as the Watson transform:

(\displaystyle \mathrm{H}_{ $\omega$}^{**}f)(x)=\frac{d}{dx}\int_{0}^{\infty}h_{ $\omega$}^{**}(xy)f(y)\frac{dy}{y}, h_{ $\omega$}^{**}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-\infty}^{\infty}\frac{$\Theta$_{ $\omega$}(u)}{\frac{1}{2}-iu}x^{\frac{1}{2}-iu}du,
which gives a linear involution on L^{2}((0, \infty), dx) under (1.8) (only for real z) and

(1.9) (see Titchmarsh [28, §8.5], BochnerChandrasekharan [2, Chap.V, §2]). More‐

over, \mathrm{H}_{ $\omega$}^{**}=\mathrm{H}_{ $\omega$} if $\Theta$_{ $\omega$}(z) is inner in \mathbb{C}^{+} . The Watson transform has the advantage that

h_{ $\omega$}^{**}(x) always exists in L^{2} ‐sense by (1.9), and belongs to L^{2}((0, \infty), dx) . While the

modified function

h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-\infty}^{\infty}\frac{$\Theta$_{ $\omega$}(u)}{-iu}x^{\frac{1}{2}-iu}du
does not belong to L^{2}((0, \infty), dx) although it is justified as a function (Appendix A).
However it is also useful to study the space K($\Theta$_{ $\omega$}) and the operator \mathrm{H}_{ $\omega$} because of

formula (1.6) for the reproducing kernel. In fact, several sufficient or equivalent condi‐

tions that $\Theta$_{ $\omega$}(z) is inner in \mathbb{C}^{+} are stated in terms of h_{ $\omega$}^{\langle 1\rangle}(x) (Theorem A.1) as well as
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Theorem 2.2. Moreover, if $\Theta$_{ $\omega$}(z) is inner in \mathbb{C}^{+} ,
we obtain

(\displaystyle \mathrm{H}_{ $\omega$}f)(x)=\int_{0}^{\infty}h_{ $\omega$}(xy) f(y)dy=\displaystyle \sqrt{x}\frac{d}{dx}\sqrt{x}\int_{0}^{\infty}h_{ $\omega$}^{\langle 1\rangle} (xy ) f(y)dy

for compactly supported smooth functions f ,
and it is extended to L^{2}((0, \infty), dx) (The‐

orem A.2). The function h_{ $\omega$}^{\langle 1\rangle}(x) was introduced and studied in [26] for more general
L‐functions, but a relation with spaces B(E^{ $\omega$})\simeq K($\Theta$_{ $\omega$}) and operators \mathrm{H}_{ $\omega$} were not

mentioned there. In this sense, this paper is a sequel to [26].

§1.8. De Branges� works

Finally, we comment on de Branges� works on B(E^{ $\omega$}) . The de Branges space

B(E) was considered first for the special value  $\omega$=1/2 in de Branges [10, pp.10‐

14], motivating to generalize the Lax‐Phillips scattering theory to the Laplace‐Beltrami

operator, and for  $\omega$\geq 1/2 in the subsequent paper [11, pp.205210]. (Precisely, we

need to replace  $\zeta$(s) by a Dirichlet L‐function L(s,  $\chi$) attached to an even primitive
Dirichlet character  $\chi$ in [10]). De Branges gave a sufficient condition on  B(E) attached

to general entire function E satisfying (1.2) such that the zeros of E(z) lie on the line

\Im(z)=-1/2 ,
which implies the (generalized) RH when E=E^{ $\omega$} for  $\omega$=1/2 . However

Conrey and Li [7] showed that B(E^{ $\omega$})( $\omega$=1/2) does not satisfy de Branges� condition.

For  $\omega$\geq 1/2 de Branges studied the space B(E) by associating it with the weighted

Hardy space \mathcal{F}(W)=WH^{2} for the weight function W(z)=\displaystyle \frac{1}{4}(s+ $\omega$)(s+ $\omega$-1) $\Gamma$(\frac{s+ $\omega$}{2})
with s=\displaystyle \frac{1}{2} —iz, but we omit the details of this topic (see [11], and also [7]).

In any case, de Branges directly related RH with a condition on B(E) for fixed

 $\omega$\geq 1/2 . On the other hand, we reduced RH to the family of spaces \{B(E^{ $\omega$})\}_{ $\omega$>0} ,
and

study each space B(E) depending on a level of difficulty, which is determined by the

value  $\omega$ . This is a major difference with de Branges� approach and ours.

Acknowlegements I heartily thank the reviewer for many detailed and helpful com‐

ments and corrections. In particular, the readability of the paper was quite improved,
and an error of the proof of Lemma 4.3 in the initial version was corrected by comments

of the reviewer.

§2. Main Results

Our first result is to derive an expression for  $\Theta$_{ $\omega$}(z) as a Mellin transform of a

function h(x) defined for  0<x<\infty ,
which is valid for all real  $\omega$>0 (Proposition

2.1). To define this function we first define the numbers

(2.1) c_{ $\omega$}(n) :=n^{ $\omega$}\displaystyle \sum_{d|n}\frac{ $\mu$(d)}{d^{2 $\omega$}}=n^{ $\omega$}\prod_{p|n}(1-\frac{1}{p^{2 $\omega$}})
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for natural numbers n
,

where  $\mu$(n) is the Möbius function, that is,  $\mu$(n)=0 if n is not

a square free number, and  $\mu$(n)=(-1)^{k} if n is a product of k distinct primes. The

arithmetic function n\mapsto J_{2 $\omega$}(n) :=n^{ $\omega$}c_{ $\omega$}(n) is called Jordan�s totient function, which

gives Euler�s totient function  $\varphi$(n) for  $\omega$=1/2.
Next we introduce a function g(x) defined on (0, \infty) by

g_{ $\omega$}(x)=\displaystyle \frac{2$\pi$^{ $\omega$}}{ $\Gamma$( $\omega$)}(x^{2- $\omega$}(1-x^{2})^{ $\omega$-1}- $\omega$ x^{ $\omega$-1}\int_{x^{2}}^{1}t^{\frac{1}{2}- $\omega$}(1-t)^{ $\omega$-1}dt)
for 0<x<1 ,

and g_{ $\omega$}(x)=0 for x>1 . It is continuous on (0,1) and ( 1, \infty) . The

behavior of g_{ $\omega$} near x=1 and x=0 is as follows. We have

(2.2) g_{ $\omega$}(x)=\displaystyle \frac{(2 $\pi$)^{ $\omega$}}{ $\Gamma$( $\omega$)}(1-x)^{ $\omega$-1}+o(1) as x\rightarrow 1^{-}

Therefore g_{ $\omega$} is continuous at x=1 if and only if  $\omega$>1 ,
and it is L^{1} (resp. L^{2} ) at x=1

if  $\omega$>0 (resp.  $\omega$>1/2 ). On the other hand, we have

g_{ $\omega$}(x)=\left\{\begin{array}{ll}
-4 $\omega \pi$^{ $\omega$-1/2} $\Gamma$(3/2- $\omega$)x^{ $\omega$-1}+o(1) , & 0< $\omega$<3/2,\\
4  $\pi$\sqrt{x}(3\log x+4-3\log 2)+o(1) , &  $\omega$=3/2,\\
-6$\pi$^{ $\omega$}(2 $\omega$-3)^{-1} $\Gamma$( $\omega$)^{-1}x^{2- $\omega$}+o(1) , &  $\omega$>3/2,
\end{array}\right. as x\rightarrow 0^{+}.

Thus g_{ $\omega$} is L^{1} (resp. L^{2} ) at x=0 if 0< $\omega$<3 (resp. 1/2< $\omega$<5/2 ). The size of

the singularity at x=1 will be important in the sequel because it influences the type
of operators \mathrm{H}_{ $\omega$,a} below, while there is no need to be careful about the behavior around

x=0 in this paper.

Finally, we define the real‐valued function h_{ $\omega$} on (0, \infty) by

(2.3) h_{ $\omega$}(x)=\displaystyle \frac{1}{x}\sum_{n=1}^{\lfloor x\rfloor}c_{ $\omega$}(n)g_{ $\omega$}(\frac{n}{x})
for x>1 ,

and h_{ $\omega$}(x)=0 for 0<x<1 . The value h(1) may be undefined, since

c_{ $\omega$}(1)=1 and  g_{ $\omega$}(1^{-})=+\infty for  0< $\omega$<1 by (2.2). By definition, h_{ $\omega$} has a support in

[1, \infty) ,
and is L^{1} (resp. L^{2} ) on every finite interval [ 1, b] if  $\omega$>0 (resp.  $\omega$>1/2 ). On

the other hand, the behavior of h_{ $\omega$} at  x=+\infty is not obvious from its definition (see
(4.22) below). Now the first result is stated as follows.

Proposition 2.1. For  $\omega$>0 and \Im(z)>1/2+ $\omega$ ,
we have

(2.4) \displaystyle \int_{0}^{\infty}h_{ $\omega$}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}=$\Theta$_{ $\omega$}(z) ,

where the integral converges absolutely.
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We introduce more notation in order to sate the main results mentioned in the

introduction. By (1.9), F(z)\mapsto$\Theta$_{ $\omega$}(z)F(z) defines a map L^{2}(\mathbb{R})\rightarrow L^{2}(\mathbb{R}) . We denote

it also by $\Theta$_{ $\omega$} if no confusion arises, and define

\hat{ $\Theta$}_{ $\omega$}=\mathrm{F}_{1/2}^{-1}$\Theta$_{ $\omega$}\mathrm{F}_{1/2} : L^{2}((0, \infty), dx)\rightarrow L^{2}((0, \infty), dx) .

If $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} , images $\Theta$_{ $\omega$}H^{2} and \hat{ $\Theta$}_{ $\omega$}L^{2}((1, \infty), ds) are subspaces
of H^{2} and L^{2}((1, \infty), dx) , respectively. Obviously the map \hat{ $\Theta$}_{ $\omega$} is related to the function

h_{ $\omega$} by (2.4). In fact the innerness of $\Theta$_{ $\omega$}(z) is described in terms of h_{ $\omega$} as follows.

Theorem 2.2. Let  $\omega$>0 . The function $\Theta$_{ $\omega$}(z) is a meromorphic inner function
in \mathbb{C}^{+} if and only if one of the following conditions holds:

(1) \hat{ $\Theta$}_{ $\omega$}f=h_{ $\omega$}*f for every f\in L^{2}((1, \infty), dx) ,
where

(h_{ $\omega$}*f)(x)=\displaystyle \int_{0}^{\infty}h_{ $\omega$}(x/y)f(y)\frac{dy}{y}.
(2) \hat{ $\Theta$}_{ $\omega$}f vanishes on (0,1) for every f\in L^{2}((1, \infty), dx) .

(3) h_{ $\omega$}*f belongs to L^{2}((0, \infty), dx) for every f\in L^{2}((1, \infty), dx) .

Suppose that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} . Then

(2.5) (\displaystyle \mathrm{H}_{ $\omega$}f)(x)=\int_{0}^{\infty}h_{ $\omega$}(xy) f(y)dy
defines a bounded operator from L^{2}((0, \infty), dx) to L^{2}((0, \infty), dx) (Lemma 4.1). For

a>0 ,
we denote by \mathrm{P}_{a} the orthogonal projection from L^{2}((0, \infty), dx) to L^{2}((0, a), dx) ,

and define

(2.6) \mathrm{H}_{ $\omega$,a}:=\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a} : L^{2}((0, a), dx)\rightarrow L^{2}((0, a), dx) .

A study of \mathrm{H}_{ $\omega$} and \mathrm{H}_{ $\omega$,a} yields a canonical system as follows:

Theorem 2.3. Suppose that  $\omega$>1 . (It implies automatically that $\Theta$_{ $\omega$} is inner

in \mathbb{C}^{+}.) Then the operator \mathrm{H}_{ $\omega$,a} is a Hilbert‐Schmidt type self‐ adjoint operator with a

continuous kernel for every a>1 ,
and \mathrm{H}_{ $\omega$,a}=0 for 0<a\leq 1 . Moreover 1\pm \mathrm{H}_{ $\omega$,a} are

invertible for every a>0 . Define

m(a):=m_{ $\omega$}(a)=\displaystyle \frac{\det(1+\mathrm{H}_{ $\omega$,a})}{\det(1-\mathrm{H}_{ $\omega$,a})}
by using Fredholm determinants. Then m(a) is real‐valued continuous function on

(0, \infty) ,
and the canonical system

-a\displaystyle \frac{\partial}{\partial a}\left\{\begin{array}{l}
X_{a}(z)\\
Y_{a}(z)
\end{array}\right\}=z\left\{\begin{array}{ll}
0 & -1\\
1 & 0
\end{array}\right\}\displaystyle \left\{\begin{array}{ll}
m(a)^{-2} & 0\\
0 & m(a)^{2}
\end{array}\right\}\left\{\begin{array}{l}
X_{a}(z)\\
Y_{a}(z)
\end{array}\right\} (0<a<\infty)
has the explicit solution (X_{a}, Y_{a})=(A_{a}, B_{a}) given by (4.26) in Section 4 such that
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(1) A(z) and B(z) are real entire functions as a function of z for every fixed a>0,

(2) A_{a}(-z)=A(z) and B_{a}(-z)=-B(z) as a function of z for every fixed a>0,

(3) (A_{1}(z), B_{1}(z))=(A^{ $\omega$}(z), B^{ $\omega$}(z)) and

\displaystyle \lim_{a\rightarrow 1+}(A_{a}(z), B_{a}(z))=\lim_{a\rightarrow 1-}(A_{a}(z), B_{a}(z))=(A^{ $\omega$}(z), B^{ $\omega$}(z))
hold uniformly on every compact subset in \mathbb{C} , where A^{ $\omega$}(z) and B^{ $\omega$}(z) are real entire

functions defined in (1.1).

Furthermore, the canonical system can be transfO rmed into the pair of Schödinger equa‐

tions

(-a\displaystyle \frac{\partial}{\partial a} a \displaystyle \frac{\partial}{\partial a}+V^{\pm}(a))$\psi$^{\pm}(a, z)=z^{2}$\psi$^{\pm}(a, z)
with the pair of potentials

V^{\pm}(a)=(\displaystyle \frac{1}{m(a)}a\frac{\partial}{\partial a}m(a))^{2}\mp a\frac{\partial}{\partial a}(\frac{1}{m(a)}a\frac{\partial}{\partial a}m(a))
by taking $\psi$^{+}(a, z)=m^{-1}(a)A(z) and $\psi$^{-}(a, z)=m(a)B_{a}(z) .

The assumption  $\omega$>1 in Theorem 2.3 is required to obtain a continuity of the

kernel h(xy) in the proof in Section 4.3 and 4.4, since h(x) has a singularity at

x=n\in \mathbb{Z}_{>0} for 0< $\omega$\leq 1 . However, we observed that singularities at x=n\in \mathbb{Z}>0

are in L^{2} exactly for  $\omega$>1/2 ,
and are in L^{1} for all  $\omega$>0 . This implies that that the

function h(x) on any interval [x_{0}, x_{1}] with  0<x_{0}<x_{1}<\infty lies in the same function

spaces, and it affects the behavior of associated \mathrm{H}_{ $\omega$,a} . In fact, \mathrm{H}_{ $\omega$,a} is a Hilbert‐Schmidt

type self‐adjoint operator such that 1\pm \mathrm{H}_{ $\omega$,a} are invertible for every a>0 if  $\omega$>1/2
(Lemma 4.2 and 4.4 below), and is a compact self‐adjoint operator for all  $\omega$>0 . In

addition, the type of singularities at x=n\in \mathbb{Z}>0 presumably affects the canonical

system since it is given by determinants of 1\pm \mathrm{H}_{ $\omega$,a} if  $\omega$>1.

On the other hand, as mentioned in Section 1.2 and 1.4, $\Theta$_{ $\omega$}(z) is an inner function

in \mathbb{C}^{+} for all  $\omega$\geq 1/2 unconditionally, and for all  $\omega$>0 under RH.

Therefore, it is plausible that all results of Theorem 2.3 can be extended to  $\omega$>1/2
unconditionally without essential difficulties. Moreover, it is expected that Theorem 2.3

is generalized to  $\omega$>0 if we assume RH for  $\zeta$(s) . See Section 5 for further comments

on the validity of Theorem 2.3.

Finally, we emphasize that the limit behavior \displaystyle \lim_{a\rightarrow+\infty}(A_{a}(z), B(z)) is still open

even if  $\omega$>1 . The expected result is \displaystyle \lim_{a\rightarrow+\infty}(E^{ $\omega$}(0), 0)=( $\xi$(\frac{1}{2}+ $\omega$), 0) if we note

that E is normalized as E(0)=1 in Section 1.1. Provably, this limit behavior is related

to the arithmetic properties of  $\zeta$(s) in more deep level, because we need information
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for all \{c_{ $\omega$}(n)\}_{n\geq 1} to understand it differ from the situation that we need only finitely

many c_{ $\omega$}(n) �s to understand \mathrm{H}_{ $\omega$,a} for a finite range of a . However, we do not touch this

problem further in this paper.

§3. Proof of Proposition 2.1 and Theorems 2.2

§3.1. Proof of Proposition 2.1

For convenience, we use variable s=1/2-iz . Put  $\gamma$(s)=\displaystyle \frac{1}{2}s(s-1)$\pi$^{-s/2} $\Gamma$(s/2) so

that  $\xi$(s)= $\gamma$(s) $\zeta$(s) . Then

\displaystyle \frac{ $\gamma$(s- $\omega$)}{ $\gamma$(s+ $\omega$)}=$\pi$^{ $\omega$}\frac{ $\Gamma$(\frac{s- $\omega$}{2}+1)}{ $\Gamma$(\frac{s+ $\omega$}{2}+1)}-\frac{2 $\omega \pi$^{ $\omega$}}{s+ $\omega$-1}\frac{ $\Gamma$(\frac{s- $\omega$}{2}+1)}{ $\Gamma$(\frac{s+ $\omega$}{2}+1)}.
We have

(3.1) \displaystyle \frac{ $\Gamma$(\frac{s- $\omega$}{2}+1)}{ $\Gamma$(\frac{s+ $\omega$}{2}+1)}=\frac{2}{ $\Gamma$( $\omega$)}\int_{0}^{1}x^{2- $\omega$}(1-x^{2})^{ $\omega$-1}x^{s}\frac{dx}{x}
for \Re(s+2)> $\omega$>0 by [23, (5.35) of p.195], and

(3.2) \displaystyle \frac{1}{s+ $\omega$-1}=\int_{0}^{1}x^{ $\omega$-1}x^{s}\frac{dx}{x}
for \Re(s)>1- $\omega$ . Applying Theorem 44 of [28] to (3.1) and (3.2) together with

\displaystyle \frac{2}{ $\Gamma$( $\omega$)}\int_{y}^{1}x^{2- $\omega$}(1-x^{2})^{ $\omega$-1}(y/x)^{ $\omega$-1}\frac{dx}{x}=\frac{y^{ $\omega$-1}}{ $\Gamma$( $\omega$)} $\beta$(y^{2}, \frac{3}{2}- $\omega$,  $\omega$) ,

we obtain

\displaystyle \int_{0}^{\infty}g_{ $\omega$}(x)x^{s}\frac{dx}{x}=\int_{0}^{1}g_{ $\omega$}(x)x^{s}\frac{dx}{x}=\frac{ $\gamma$(s- $\omega$)}{ $\gamma$(s+ $\omega$)}
for \displaystyle \Re(s)>\max( $\omega$-2,1- $\omega$) . On the other hand, we have

\displaystyle \frac{ $\zeta$(s- $\omega$)}{ $\zeta$(s+ $\omega$)}=\sum_{m=1}^{\infty}\frac{ $\mu$(m)m^{- $\omega$}}{m^{s}}\sum_{n=1}^{\infty}\frac{n^{ $\omega$}}{n^{s}}=\sum_{n=1}^{\infty}\frac{1}{n^{s}}\sum\frac{ $\mu$(d)}{d^{ $\omega$}}(\frac{n}{d})^{ $\omega$}=\sum_{n=1}^{\infty}\frac{c_{ $\omega$}(n)}{n^{s}}d|n

by definition (2.1), where the series converges absolutely for \Re(s)>1+ $\omega$ . By definition

(2.3), we have formally

\displaystyle \int_{0}^{\infty}h_{ $\omega$}(x)x^{1-s}\frac{dx}{x}=\sum_{n=1}^{\infty}c_{ $\omega$}(n)\int_{0}^{\infty}x^{-1}g_{ $\omega$}(n/x)x^{1-s}\frac{dx}{x}
=\displaystyle \sum_{n=1}^{\infty}\frac{c_{ $\omega$}(n)}{n^{s}}\int_{0}^{\infty}g_{ $\omega$}(n/x)(n/x)^{s}\frac{dx}{x}=\frac{ $\gamma$(s- $\omega$)}{ $\gamma$(s+ $\omega$)}\frac{ $\zeta$(s- $\omega$)}{ $\zeta$(s+ $\omega$)},
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and it is justified by Fubini�s theorem for \Re(s)>1+ $\omega$ . Replacing  s by 1/2-iz ,
we

obtain (2.4).

§3.2. Proof of Theorem 2.2

It is sufficient to prove the following three assertions:

i) condition (1) is equivalent that $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} , ii) condition (2) implies that $\Theta$_{ $\omega$}
is inner in \mathbb{C}^{+} ,

and iii) condition (3) implies that $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} ,
since (1) implies

(2) and (3) by definition of \hat{ $\Theta$}_{ $\omega$} and h_{ $\omega$} . We prove them after the following lemma.

Lemma 3.1. Assume that $\Theta$_{ $\omega$}H^{2}\subset H^{2} . Then $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+}.

Proof. Let  $\delta$>0 . We find that $\Theta$_{ $\omega$}(z) is uniformly bounded on the upper half‐

plane \Im(z)\geq 1/2+ $\omega$+ $\delta$ by using a usual estimate for the Dirichlet series  $\zeta$(s- $\omega$)/ $\zeta$(s+ $\omega$)
and the Stirling formula for the gamma‐function. On the other hand, we know (1.9), and

the assumption implies that $\Theta$_{ $\omega$} has no poles in \mathbb{C}^{+} . Hence, by applying the Phragmén‐
Lindelöf convexity principle to $\Theta$_{ $\omega$} in the strip  0\leq\Im(z)\leq 1/2+ $\omega$+ $\delta$ ,

we find that  $\Theta$_{ $\omega$}
is bounded on  0\leq\Im(z)\leq 1/2+ $\omega$+ $\delta$ . Therefore  $\Theta$_{ $\omega$} is a bounded analytic function is

\mathbb{C}^{+} satisfying (1.9). This is the definition of an inner function in \mathbb{C}^{+}. \square 

i) Suppose that $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} . Then $\Theta$_{ $\omega$}F\in H^{2} for every F\in H^{2} . Thus the

inverse (shifted) Fourier transform along the line \Im(z)=c

\displaystyle \hat{ $\Theta$}_{ $\omega$}f(x)=\frac{1}{2 $\pi$}\int_{\Im(z)=c}$\Theta$_{ $\omega$}(z)F(z)x^{-\frac{1}{2}-iz}dz
is independent of c>0 ,

and belongs to L^{2}((1, \infty), dx) ,
where f=\mathrm{F}_{1/2}^{-1}F and the integral

converges in the sense of L^{2} . On the other hand

(h_{ $\omega$}*f)(x)=\displaystyle \frac{1}{2 $\pi$}\int_{\Im(z)=c'}$\Theta$_{ $\omega$}(z)F(z)x^{-\frac{1}{2}-iz}dz
for  c'>1/2+ $\omega$ by Proposition 2.1 and [28, Theorem 65], where the integral converges

also in the sense of  L^{2} . Comparing these two formula for large c
,

we obtain (1).
Conversely, suppose that (1) holds. Write g=\hat{ $\Theta$}_{ $\omega$}f=h_{ $\omega$}*f for arbitrary fixed

f\in L^{2}((1, \infty), dx) . Then g belongs to L^{2}((0, \infty), dx) ,
since \hat{ $\Theta$}_{ $\omega$} maps L^{2}((0, \infty), dx) to

L^{2}((0, \infty), dx) by definition. In addition, g has a support in [1, \infty ), since both  h_{ $\omega$} and f
have support in [1, \infty ). Therefore  g belongs to L^{2}((1, \infty), dx) . Because f was arbitrary,
we have $\Theta$_{ $\omega$}H^{2}\subset H^{2} . Hence $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} by Lemma 3.1. \square 

ii) Suppose that (2) holds. Then it implies \hat{ $\Theta$}_{ $\omega$}L^{2}((1, \infty), dx)\subset L^{2}((1, \infty), dx) ,

since \hat{ $\Theta$}_{ $\omega$} maps L^{2}((0, \infty), dx) to L^{2}((0, \infty), dx) by its definition. It means $\Theta$_{ $\omega$}H^{2}\subset H^{2}
by definition of \hat{ $\Theta$}_{ $\omega$} . Hence $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} by Lemma 3.1 \square 
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iii) Suppose that (3) holds. Then h_{ $\omega$}*f belongs to L^{2}((1, \infty), dx) for every f in

L^{2}((1, \infty), dx) ,
since h_{ $\omega$}*f has a support in [1, \infty ) by its definition. Therefore

\displaystyle \int_{0}^{\infty}h_{ $\omega$}*f(x)x^{\frac{1}{2}+iz}\frac{dx}{x}\in H^{2}
Additionally, we suppose that f belongs to the dense subset L^{1}((1, \infty), dx)
\cap L^{2}((1, \infty), dx) . Then

\displaystyle \int_{0}^{\infty}h_{ $\omega$}*f(x)x^{\frac{1}{2}+iz}\frac{dx}{x}=$\Theta$_{ $\omega$}(z)F(z)
for \Im(z)>1/2+ $\omega$ by [28, Theorem 44]. Therefore

\hat{ $\Theta$}_{ $\omega$}(L^{1}((1, \infty), dx)\cap L^{2}((1, \infty), dx))\subset L^{2}((1, \infty), dx) ,

This implies that \hat{ $\Theta$}_{ $\omega$}L^{2}((1, \infty), dx)\subset L^{2}((1, \infty), dx) ,
since \hat{ $\Theta$}_{ $\omega$} is continuous by its

definition. Therefore $\Theta$_{ $\omega$}H^{2}\subset H^{2} by definition of \hat{ $\Theta$}_{ $\omega$} ,
and hence $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} by

Lemma 3.1. \square 

§4. Proof of Theorem 2.3

In this section, we study operators (2.5), (2.6), and their kernels toward Theorem

2.3 referring to Burnol [6]. However here we use classical arguments rather than the

theory of distributions used in [6].

§4.1. Fredholm integral equations

Lemma 4.1. Suppose that $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} . Define Hf by integral (2.5) for

compactly supported smooth functions f . Then Hf belongs to L^{2}((0, \infty), dx) ,
and the

linear map f\mapsto \mathrm{H}_{ $\omega$}f is extended to the isometry \mathrm{H}_{ $\omega$} : L^{2}((0, \infty), dx)\rightarrow L^{2}((0, \infty), dx)
satisfy ing

(4.1) (\mathrm{F}_{1/2}\mathrm{H}_{ $\omega$}f)(z)=$\Theta$_{ $\omega$}(z)(Ff)(z)

forz\in \mathbb{R} . Moreover, (4.1) holds for \Im(z)\geq 0 , if f\in L^{2}((0, \infty), dx) has a support in

[0, b] for some b>0.

Remark. This is applied unconditionally to  $\omega$\geq 1/2 ,
and also to 0< $\omega$<1/2

under RH by discussion in Section 1.2 and 1.4.

Proof. If f is a compactly supported smooth function, we have

(\displaystyle \mathrm{F}_{1/2}\mathrm{H}_{ $\omega$}f)(z)=\int_{0}^{\infty}\int_{0}^{\infty}h_{ $\omega$} (xy) x^{\frac{1}{2}+iz}\displaystyle \frac{dx}{x}f(y)dy
=\displaystyle \int_{0}^{\infty}h_{ $\omega$}(y)x^{\frac{1}{2}+iz}\frac{dx}{x}\int_{0}^{\infty}f(y)y^{\frac{1}{2}-iz}\frac{dy}{y}= $\Theta$(z)F(-z) (F=\mathrm{F}_{1/2}f)
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for \Im(z)>1/2+ $\omega$ by Proposition 2.1, and  F(z) is an entire function satisfying

F(-z)=O(|z|^{-n}) as |z|\rightarrow\infty in any horizontal strip  c_{1}\leq\Im(z)\leq c_{2} for arbitrary fixed

n>0 . Therefore, we find that Hf belongs to L^{2}((0, \infty), dx) by applying the Fourier

inversion formula to $\Theta$_{ $\omega$}(z)F(z) along a line \Im(z)=c>1/2+ $\omega$ and then moving the

path of integration to the real line \Im(z)=0 ,
since $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} by assumption.

Moreover

\Vert \mathrm{H}_{ $\omega$}f\Vert=\Vert$\Theta$_{ $\omega$}(\cdot)F(-\cdot)\Vert=\Vert F\Vert=\Vert f\Vert

by (1.9). Recall that the set of all compactly supported smooth function in  L^{2}((0, \infty), dx)
is dense in L^{2}((0, \infty), dx) . Therefore f\mapsto \mathrm{H}_{ $\omega$}f is extended to all f\in L^{2}((0, \infty), dx) by

continuity, and the extended operator is obviously isometric.

Equality (4.1) holds for real z by the continuity. Suppose that f\in L^{2}((0, \infty), dx)
has a support in [0, b] for some b>0 . Then Hf belongs to L^{2}((0, \infty), dx) and has

a support in [1/b, \infty ). Therefore the left‐hand side of (4.1) is defined by the shifted

Fourier integral and analytic in \mathbb{C}^{+} . On the other hand, (Ff)(z) in the right‐hand
side of (4.1) is also defined by the shifted Fourier integral and analytic in \mathbb{C}^{+} ,

since f has

a support in [0, b] by the assumption. Hence both sides of (4.1) are analytic functions

in \mathbb{C}^{+} ,
and they are equal on the real line. Thus equality (4.1) holds for \Im(z)\geq 0. \square 

Lemma 4.2. Suppose that  $\omega$>1/2 . (It implies automatically that $\Theta$_{ $\omega$} is inner

in \mathbb{C}^{+}.) Then the operator \mathrm{H}_{ $\omega$,a}=\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a} defined in (2.6) is a self‐ adjoint Hilbert‐

Schmidt type operator if a>1 ,
and \mathrm{H}_{ $\omega$,a}=0 if 0<a\leq 1.

Proof. If 0<a\leq 1 and 0<x<a ,
we have

\displaystyle \mathrm{H}_{ $\omega$}\mathrm{P}_{a}f(x)=\int_{0}^{a}h_{ $\omega$}(xy)f(y)dy=0,
since h_{ $\omega$}(x)=0 for 0<x<1 ,

and 0\leq xy<a^{2}\leq 1 . Hence \mathrm{H}_{ $\omega$,a}=0 if 0<a\leq 1.

Denote by K(x, y)=h_{ $\omega$}(xy) the kernel of \mathrm{H}_{ $\omega$,a} . We have K(x, y)=\overline{K(y,x)} ,
since

h_{ $\omega$}(xy) is real‐valued. Thus \mathrm{H}_{ $\omega$,a} is self‐adjoint. For a>1 ,
we have

\displaystyle \int_{0}^{a}\int_{0}^{a}|K(x, y)|^{2}dxdy=\int_{1/a}^{a}\int_{1/a}^{a}|h_{ $\omega$}(xy)|^{2}dxdy
\displaystyle \leq\int_{1/a}^{a}\frac{dy}{y}\int_{1/a^{2}}^{a^{2}}|h_{ $\omega$}(x)|^{2}dx=2\log a\int_{1}^{a^{2}}|h_{ $\omega$}(x)|^{2}dx.

Here \displaystyle \int_{1}^{a^{2}}|h_{ $\omega$}(x)|^{2}dx<\infty if  $\omega$>1/2 ,
since h(x) has only finitely many singularities

at x=n(1\leq n\leq\lfloor a^{2}\rfloor) in [ 1, a^{2}] ,
and h_{ $\omega$}(x)\ll|x-n|^{ $\omega$-1} around x=n by (2.2) and

(2.3). Hence, K(x, y)=h_{ $\omega$}(xy) is a Hilbert‐Schmidt kernel if a>1 and  $\omega$>1/2. \square 

Lemma 4.3. Let a>0 . Suppose that  $\omega$>1/2 . Then the support of HPf is

not compact for f\in L^{2}((0, \infty), dx) unless HPf =0.
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Proof. We prove this by contradiction. Suppose that HPf \neq 0 and has a com‐

pact support. Then FHPf is an entire function of exponential type by the Paley‐
Wiener theorem. On the other hand, we have

\mathrm{F}_{1/2}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}f(z)=$\Theta$_{ $\omega$}(z) \mathrm{F}_{1/2}\mathrm{P}_{a}f(-z) .

This implies that G(z) :=\displaystyle \mathrm{P}_{a}f(-z)/ $\xi$(\frac{1}{2}+ $\omega$-iz) is entire, because (1.2) holds uncondi‐

tionally for the denominator E(z)= $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz) of $\Theta$_{ $\omega$} defined in (1.7), and E(z)\neq 0
on \Im(z)=0 . Thus, we have

\displaystyle \mathrm{F}_{1/2}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}f(z)= $\xi$(\frac{1}{2}- $\omega$-iz)\cdot G(z) ,

where the right‐hand side is a product of entire functions. The point is that the zeros

in the numerator of $\Theta$_{ $\omega$} can not kill the poles of the denominator, which therefore must

be killed by zeros of \mathrm{P}_{a}f(-z) . This allows  $\xi$(\displaystyle \frac{1}{2}- $\omega$-iz) to be factored out.

The entire function on the right‐hand side has at least \displaystyle \frac{1}{ $\pi$}T\log T zeros in the disk of

radius T around the origin, as  T\rightarrow\infty ([27, Theorem 9.4]). However all entire functions

of exponential type have at most  O(T) zeros in the disk of radius T around the origin,
as  T\rightarrow\infty

,
because of the Jensen formula ( [20, §2.5 (15)] ) . This is a contradiction. (The

proof contained an error in the first version, but it was revised by the reviewer.) \square 

Lemma 4.4. Let  $\omega$>1/2 and a>1 . We have i) \mathrm{H}_{ $\omega$,a}f=0 for every  f\in

 L^{2}((0,1/a), dx) ,
ii ) \Vert \mathrm{H}_{ $\omega$,a}f\Vert<\Vert f\Vert for every  0\neq f\in L^{2}((0, a), dx) ,

and iii) \Vert \mathrm{H}_{ $\omega$,a}\Vert<1.
In particular, 1\pm \mathrm{H}_{ $\omega$,a} are invertible operator on L^{2}((0, a), dx) .

Proof. If 0<x<1/a ,
we have

\displaystyle \mathrm{H}_{ $\omega$}\mathrm{P}_{a}f(x)=\int_{0}^{a}h_{ $\omega$}(xy)f(y)dy=0,
since h_{ $\omega$}(x)=0 for 0<x<1 ,

and 0\leq xy<1 . Hence i) is proved.
To prove ii), it is sufficient to show \Vert \mathrm{H}_{ $\omega$,a}f\Vert\neq\Vert f\Vert unless  f=0 ,

because \Vert \mathrm{H}_{ $\omega$}\Vert=1,
\Vert \mathrm{H}_{ $\omega$,a}\Vert\leq\Vert \mathrm{P}_{a}\Vert\cdot\Vert \mathrm{H}_{ $\omega$}\Vert\cdot\Vert \mathrm{P}_{a}\Vert=1 ,

and \Vert \mathrm{H}_{ $\omega$,a}f\Vert\leq\Vert \mathrm{H}_{ $\omega$,a}\Vert\cdot\Vert f\Vert\leq\Vert f\Vert . Here \Vert \mathrm{H}_{ $\omega$,a}f\Vert\neq\Vert f\Vert
is equivalent to \Vert \mathrm{P}_{a}\mathrm{H}_{ $\omega$}f\Vert\neq\Vert f\Vert ,

since Pf =f for f\in L^{2}((0, a), dx) . Suppose that

\Vert \mathrm{P}_{a}\mathrm{H}_{ $\omega$}f\Vert=\Vert f\Vert for some  0\neq f\in L^{2}((0, a), dx) . Then it implies \Vert \mathrm{P}_{a}\mathrm{H}_{ $\omega$}f\Vert=\Vert \mathrm{H}_{ $\omega$}f\Vert by

\Vert \mathrm{H}_{ $\omega$}f\Vert=\Vert f\Vert . Therefore

\displaystyle \int_{0}^{a}|\mathrm{H}_{ $\omega$}f(x)|^{2}dx=\int_{0}^{\infty}|\mathrm{H}_{ $\omega$}f(x)|^{2}dx.
Thus \mathrm{H}_{ $\omega$}f(x)=0 for almost every x>a . On the other hand, we have

\displaystyle \mathrm{H}_{ $\omega$}f(x)=\int_{0}^{a}h_{ $\omega$}(xy)f(y)dy=\int_{1/x}^{a}h_{ $\omega$}(xy)f(y)dy=0
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for 0<x<1/a by f\in L^{2}((0, a), dx) . Hence Hf has a compact support contained in

[1/a, a] . However, it is impossible for any f\neq 0 by Lemma 4.3. As the consequence

\Vert \mathrm{H}_{ $\omega$,a}f\Vert<\Vert f\Vert for  0\neq f\in L^{2}((1/a, a), dx) .

Finally, we prove iii). By Lemma 4.2, \mathrm{H}_{ $\omega$,a} is a self‐adjoint compact operator.

Therefore, \mathrm{H}_{ $\omega$,a} has purely discrete spectrum which has no accumulation points except

for 0 ,
and one \mathrm{o}\mathrm{f}\pm\Vert \mathrm{H}_{ $\omega$,a}\Vert is an eigenvalue of \mathrm{H}_{ $\omega$,a} . However, by ii), every eigenvalue of

\mathrm{H}_{ $\omega$,a} has an absolute value less than 1. Hence \Vert \mathrm{H}_{ $\omega$,a}\Vert<1. \square 

Lemma 4.5. Let  $\omega$>1/2, a>1 and  $\epsilon$\in\{\pm 1\} . Then the integral equation

(4.2) X(x)+ $\epsilon$\displaystyle \int_{0}^{a}h_{ $\omega$}(xy)X(y)dy=h_{ $\omega$}(ax)
has unique solution X=$\phi$_{a}^{ $\epsilon$} in L^{2}((0, a), dx) ,

which is real‐valued almost everywhere in

[0, a] and vanishes almost everywhere in [0, 1/a].
Moreover, if  $\omega$>1 ,

the solution $\phi$_{a}^{ $\epsilon$} is a real‐valued continuous function on [0, a]
vanishing on [0, 1/a].

Proof. By Lemmas 4.2 and 4.4, \mathrm{H}_{ $\omega$,a} is a compact operator such that \pm 1 be‐

long to its resolvent set. Therefore, integral equation (4.2) has unique solution $\phi$_{a}^{ $\epsilon$} in

L^{2}((0, a), dx) by the Fredholm alternative. We have h_{ $\omega$}(ax)=0 and \displaystyle \int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy
=0 for almost every 0<x<1/a ,

since 0<xy<1 for 0<y\leq a ,
and h_{ $\omega$}(x)=0 for

0<x<1.

On the other hand, if  $\omega$>1 ,
the integral \displaystyle \int_{0}^{a}h_{ $\omega$}(xy)f(y)dy defines a continuous

function on [0, a] which vanishes on [0, 1/a] for every f\in L^{2}((0, a), dx) ,
since the kernel

h_{ $\omega$}(xy) is continuous on [0, a]\times[0, a] by (2.2). Hence $\phi$_{a}^{ $\epsilon$} is continuous on [0, a] and

$\phi$_{a}^{ $\epsilon$}(x)=0 for 0\leq x\leq 1/a . Obviously $\phi$_{a}^{ $\epsilon$} is real‐valued, since h(x) is real‐valued, \square 

Lemma 4.6. Let  $\omega$>1/2, a>1 and  $\epsilon$\in\{\pm 1\} . Then the integral equation

(4.2) has unique extended solution X=\tilde{ $\phi$}_{a}^{ $\epsilon$} in L^{2}((0, b), dx) for arbitrary b>a ,
which is

real‐valued almost everywhere in [0, b] ,
and \tilde{ $\phi$}_{a}^{ $\epsilon$}(x)=$\phi$_{a}^{ $\epsilon$}(x) for almost every 0<x<a.

Moreover, if $\omega$>1 ,
the integral equation (4.2) has unique extended solution X=\tilde{ $\phi$}_{a}^{ $\epsilon$}

in C^{0}(0, \infty) ,
which is real‐valued on [0, \infty ) and satisfies \tilde{ $\phi$}_{a}^{ $\epsilon$}(x)=$\phi$_{a}^{ $\epsilon$}(x) for0<x<a.

Proof. The solution $\phi$_{a}^{ $\epsilon$} of Lemma 4.5 is extended to the solution \tilde{ $\phi$}_{a}^{ $\epsilon$} on (0, b) by

(4.3) \displaystyle \tilde{ $\phi$}_{a}^{ $\epsilon$}(x)=h_{ $\omega$}(ax)- $\epsilon$\int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy.
The right‐hand side belongs to L^{2}((0, b), dx) by the Cauchy‐Schwartz inequality, since

h(x) belongs to L^{2}((0, b'), dx) for every  0<b'<\infty when  $\omega$>1/2 and the integral on

the right‐hand side vanishes for almost every 0<x<1/a . Clearly, \tilde{ $\phi$}_{a}^{ $\epsilon$}(x)=$\phi$_{a}^{ $\epsilon$}(x) for
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almost every 0<x<a . Conversely, equality (4.3) shows that every solution of (4.2) on

(0, b) is determined by its restriction on (0, a) . Hence the uniqueness of solutions follows

from Lemma 4.5. By the way of the extension, \tilde{ $\phi$}_{a}^{ $\epsilon$} is real‐valued almost everywhere.
If  $\omega$>1 ,

we obtain unique extended continuous solution \tilde{ $\phi$}_{a}^{ $\epsilon$} on (0, \infty) by (4.3),
since h_{ $\omega$}(x) is continuous on (0, \infty) and C^{0}(0, a)\subset L^{2}((0, a), dx) . \square 

In what follows, we denote by $\phi$_{a}^{ $\epsilon$} the extended solution \tilde{ $\phi$}_{a}^{ $\epsilon$} for a>1 if no confusion

arise. For 0<a\leq 1 ,
we take the convention that

$\phi$_{a}^{+}(x)=$\phi$_{a}^{-}(x)=h_{ $\omega$}(ax) x\in(0, \infty) .

Obviously, these are continuous on (0, \infty) if  $\omega$>1 . This convention is compatible with

Lemma 4.5 and 4.6, since integral equation (4.2) for 0<a\leq 1 should be X(x)=h_{ $\omega$}(ax)
by Lemma 4.2, and h_{ $\omega$}(ax)=0 on (0, a) for 0<a\leq 1 . Then its extension \tilde{ $\phi$}_{a}^{ $\epsilon$}(x) to

(0, \infty) should be h_{ $\omega$}(ax) by (4.3).

§4.2. Differentiability of the solution

In this part, we handle the differentiability of the extended solution $\phi$_{a}^{ $\epsilon$}(x) with

respect to x and a under the restriction to the parameter  $\omega$>1 . This restriction is

required in order to obtain the continuity of the kernel K(x, y)=h_{ $\omega$}(xy) .

Let a>1 . The solution $\phi$_{a}^{ $\epsilon$} of (4.2) is related to the kernel of the resolvent (1−
 $\lambda$ \mathrm{H}_{ $\omega$,a})^{-1} as follows. The kernel K(x, y)=h_{ $\omega$}(xy) of \mathrm{H}_{ $\omega$,a} is continuous on [0, a]\times[0, a]
by the assumption  $\omega$>1 . Then there exists a continuous function R(x, y; $\lambda$;a) for

(x, y,  $\lambda$)\in[0, a]\times[0, a]\times \mathbb{C} satisfying integral equations

R(x, y; $\lambda$;a)- $\lambda$\displaystyle \int_{0}^{a}K(x, z)R(z, y; $\lambda$;a)dz=K(x, y) ,

(4.4)

R(x, y; $\lambda$;a)- $\lambda$\displaystyle \int_{0}^{a}K(z, y)R(x, z; $\lambda$;a)dz=K(x, y)
(see Smithies [25, Chap. V], Lax [19, Chap. 24], for example). By taking y=a and

 $\lambda$=- $\epsilon$ in the first equation of (4.4), we have

 R(x, a;- $\epsilon$;a)+ $\epsilon$\displaystyle \int_{0}^{a}h_{ $\omega$}(xz)R(z, a;- $\epsilon$;a)dz=h_{ $\omega$}(ax) .

Therefore, we obtain

(4.5) $\phi$_{a}^{ $\epsilon$}(x)=R(x, a;- $\epsilon$;a)

for 0<x<a by the uniqueness of solutions of (4.2). In particular, we obtain the

continuity of $\phi$_{a}^{ $\epsilon$}(x) for x again, and

(4.6) \displaystyle \lim_{a\rightarrow 1+}$\phi$_{a}^{ $\epsilon$}(a)=\lim_{a\rightarrow 1+}R(a, a;- $\epsilon$;a)=0
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by Lemma 4.2. We investigate the differentiability of $\phi$_{a}^{ $\epsilon$}(x) by using the resolvent kernel

R(x, y; $\lambda$;a) . The following inequality is going to be used often.

Hadamard�s inequality (see [25, Theorem 5.2.1], for example). Let A=(a_{ij}) be a

n\times n complex matrix. If |a_{ij}|\leq M(1\leq i, j\leq n) ,
then |\det A|^{2}\leq n^{n}M^{2n}.

We introduce the notation

K\left(\begin{array}{lll}
x_{1},x_{2} & \cdots & x_{n}\\
y_{1},y_{2} & \cdots & y_{n}
\end{array}\right)=\det\left(\begin{array}{lll}
K(x_{1},y_{1})K(x_{1},y_{2}) & \cdots & K(x_{1},y_{n})\\
K(x_{2},y_{1})K(x_{2},y_{2}) & \cdots & K(x_{2},y_{n})\\
\vdots\vdots & \ddots & \vdots\\
\vdots K(x_{n},y_{1})K(x_{n},y_{2})\cdot & .\cdot & K(x_{n},y_{n})
\end{array}\right)
as usual. The Fredholm determinant d( $\lambda$;a) and the first Fredholm minor D(x, y; $\lambda$;a)
of the continuous kernel K(x, y) on $\Omega$_{a}=[0, a]\times[0, a] are defined as follows:

(4.7) d( $\lambda$;a)=\displaystyle \sum_{n=0}^{\infty}d_{n}(a)$\lambda$^{n},
(4.8) D(x, y; $\lambda$;a)=\displaystyle \sum_{n=0}^{\infty}D_{n}(x, y;a)$\lambda$^{n},
where d_{0}(a)=1, D_{0}(x, y;a)=K(x, y) and

(4.9) d_{n}(a)=\displaystyle \frac{(-1)^{n}}{n!}\int_{0}^{a}\cdots\int_{0}^{a}K\left(\begin{array}{lll}
x_{1},x_{2} & \cdots & x_{n}\\
x_{1},x_{2} & \cdots & x_{n}
\end{array}\right)dx_{l}\displaystyle \ldots dx_{n} (n\geq 1) ,

(4.10)  D_{n}(x, y;a)=\displaystyle \frac{(-1)^{n}}{n!}\int_{0}^{a}\cdots\int_{0}^{a}K(_{y,x_{1}'}^{x,x_{1}},\cdot\cdot  x_{n}x_{n)} dx 1. . . dx_{n} (n\geq 1) .

The kernel D_{n}(x, y;a) are clearly continuous in (x, y) . It is well‐known that the series

(4.8) converges uniformly and absolutely in (x, y,  $\lambda$) when  $\lambda$ is confined in a compact

subset of \mathbb{C} , and D(x, y; $\lambda$;a) is a continuous function on $\Omega$_{a} for every  $\lambda$\in \mathbb{C} (see [25,
Theorem 5.3.1], for example). If d( $\lambda$;a)\neq 0 ,

the resolvent kernel R(x, y; $\lambda$;a) is given

by

(4.11) R(x, y; $\lambda$;a)=\displaystyle \frac{D(x,y; $\lambda$;a)}{d( $\lambda$;a)}.
Note that d(\pm 1;a)\neq 0 for every a>1 when K(x, y)=h_{ $\omega$}(xy) and  $\omega$>1/2 by Lemma

4.4 and Theorem 5.6.1 of [25].

Lemma 4.7. Let  $\omega$>1, a>1 and  $\epsilon$\in\{\pm 1\} . Then the extended solution $\phi$_{a}^{ $\epsilon$}(x)
is continuously differentiable on  x\in[0, \infty ) \backslash \{n/a|n\in \mathbb{N}\}.
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Proof. By (4.3), (4.5) and (4.11), it is sufficient to prove that the Fredholm minor

D(x, y; $\lambda$;a) for the kernel K(x, y)=h_{ $\omega$}(xy) on $\Omega$_{a}=[0, a]\times[0, a] is continuously
differentiable on x\in D_{a} :=[0, a]\backslash \{n/a|n\in \mathbb{N}\} for every fixed y\in[0, a] ,

since h_{ $\omega$} (ax)
is continuously differentiable on  x\in[0, \infty ) \backslash \{n/a|n\in \mathbb{N}\} ,

and |\displaystyle \frac{\partial}{\partial x}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)| is

integrable on [0, a] . To prove it, we modify the proof of Theorem 5.3.1 in [25]. We have

K(_{y,x_{1}'}^{x,x_{1}},\cdot\cdot \cdot x_{n}x_{n)}=\det\left(\begin{array}{lllll}
K(x,y) & K(x,x_{1}) & \cdots & \cdots & K(x,x_{n})\\
K(x_{1},y)K(x_{1},x_{1}) & \cdots & \cdots & \cdots & K(x_{1},x_{n})\\
\vdots\vdots &  &  & \ddots & \vdots\\
\vdots K(x_{n},y)K(x_{n},x_{1})\cdots &  &  &  & K(x_{n},x_{n})
\end{array}\right)
=K(x, y)K\left(\begin{array}{lll}
x_{1} & \cdots & x_{n}\\
x_{1} & \cdots & x_{n}
\end{array}\right)+\det\left(\begin{array}{llll}
K(x,x_{1})0 & \cdots & \cdots & K(x,x_{n})\\
K(x_{1},y)K(x_{1},x_{1}) & \cdots & \cdots & K(x_{1},x_{n})\\
\vdots\vdots &  & \ddots & \vdots\\
\vdots K(x_{n},y)K(x_{n},x_{1})\cdot & .\cdot &  & K(x_{n},x_{n})
\end{array}\right)

Therefore, by (4.9) and (4.10), we have

\displaystyle \frac{\partial}{\partial x}D_{n}(x, y;a)=d_{n}(a)\frac{\partial}{\partial x}K(x, y)

+\displaystyle \frac{(-1)^{n}}{n!}\int_{0}^{a}\cdots\int_{0}^{a}\det\left(\begin{array}{llll}
\frac{\partial}{\partial x}K(x,x_{1})0\cdots &  &  & \frac{\partial}{\partial x}K(x,x_{n})\\
K(x_{1},y)K(x_{1},x_{1}) & \cdots & \cdots & K(x_{1},x_{n})\\
\vdots\vdots &  & \ddots & \vdots\\
\vdots K(x_{n},y)K(x_{n},x_{1}) & \cdots & \cdots & K(x_{n},x_{n})
\end{array}\right)dx_{1}\displaystyle \ldots dx_{n}
=d_{n}(a)\displaystyle \frac{\partial}{\partial x}K(x, y)+D_{n} $\dagger$(x, y;a) ,

say. Then, we obtain

\displaystyle \frac{\partial}{\partial x}D(x, y; $\lambda$;a)=d( $\lambda$;a)\frac{\partial}{\partial x}K(x, y)+\sum_{n=0}^{\infty}D_{n} $\dagger$(x, y;a)$\lambda$^{n}
by (4.8). The first term on the right‐hand side is continuous on x\in D_{a} . Therefore,
in order to prove the existence and the continuity of \displaystyle \frac{\partial}{\partial x}D(x, y; $\lambda$;a) on x\in D_{a} ,

it is

sufficient to prove that the series on the right‐hand side converges uniformly on every

compact subset in D_{a} . Put

M_{1}(a)=a\displaystyle \sup_{(x,y)\in$\Omega$_{a}}|K(x, y)|, M_{2}(a)=\sup_{x\in[0,a]}\int_{0}^{a}|\frac{\partial}{\partial x}K(x, y)|dy.
The second constant M(a) is well‐defined, since \displaystyle \int_{0}^{a}|\frac{\partial}{\partial x}K(x, y)|dy=\int_{0}^{a}|h_{ $\omega$}'(xy)|ydy
is continuous on [0, a] (by  $\omega$>1 ). Using the row expansion of the determinant and
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Hadamard�s inequality, we have

|\det\left(\begin{array}{ll}
\frac{\partial}{\partial x}K(x,x_{1})0 & \frac{\partial}{\partial x}K(x,x_{n})\\
K(x_{1},y)K(x_{1},x_{1}) & K(x_{1},x_{n})\\
K(x_{n},y)K(x_{n},x_{1}) & K(x_{n},x_{n})
\end{array}\right) \displaystyle \leq n^{\frac{1}{2}n}(\frac{M_{1}(a)}{a})^{n}\sum_{j=1}^{n}|\frac{\partial}{\partial x}K(x, x_{j})|
Therefore, we obtain

|D_{n} $\dagger$(x, y;a)|\displaystyle \leq\frac{n^{\frac{1}{2}n}}{n!}(\frac{M_{1}(a)}{a})^{n}\int_{0}^{a}\cdots\int_{0}^{a}\sum_{j=1}^{n}|\frac{\partial}{\partial x}K(x, x_{j})|dx_{1}\ldots dx_{n}
=\displaystyle \frac{n^{\frac{1}{2}n}}{an!}M_{1}(a)^{n}\sum_{j=1}^{n}\int_{0}^{a}|\frac{\partial}{\partial x}K(x, x_{j})|dx_{j}\leq\frac{M_{2}(a)}{a}\frac{n^{\frac{1}{2}n}M_{1}(a)^{n}}{(n-1)!}.

Therefore, the series \displaystyle \sum_{n=0}^{\infty}D_{n} $\dagger$(x, y;a)$\lambda$^{n} converges uniformly and absolutely in (x, y,  $\lambda$)
\in$\Omega$_{a}\times \mathbb{C} ,

when  $\lambda$ is contained in a compact subset of \mathbb{C} . Hence, for fixed y\in[0, a],
D(x, y; $\lambda$;a)-d( $\lambda$;a)K(x, y) is a continuously differentiable function on [0, a] such that

\displaystyle \frac{\partial}{\partial x}(D(x, y; $\lambda$;a)-d( $\lambda$;a)K(x, y))=\sum_{n=0}^{\infty}D_{n} $\dagger$(x, y)$\lambda$^{n}
We complete the proof of the lemma. \square 

Lemma 4.8. Let  $\omega$>1 and  $\epsilon$\in\{\pm 1\} . Then the extended solution $\phi$_{a}^{ $\epsilon$}(x) is con‐

tinuous in a\in(1, \infty) for every fixed x>0 . In addition, it is continuously differentiable
with respect to a in ( 1, \infty)\backslash \{n/x, \sqrt{n}|n\in \mathbb{N}\}.

Proof. The continuity in a follows from (4.3) and (4.5). Before the proof of the

differentiability, we note that d( $\lambda$, a) is continuous in a . In fact, we have

|d_{n}(a)|\displaystyle \leq\frac{n^{\frac{1}{2}n}M_{1}(a)^{n}}{n!} (M_{1}(a)=a\sup_{(x,y)\in$\Omega$_{a}}|K(x, y)|)
by definition (4.9) and Hadamard�s inequality, and hence the series of (4.7) converges

absolutely and uniformly on a compact subset of ( $\lambda$, a)\in \mathbb{C}\times(1, \infty) .

Let  $\lambda$\in \mathbb{C} such that d( $\lambda$;a)\neq 0 for every a>1 . We have

\displaystyle \frac{\partial}{\partial a}R(x, a; $\lambda$;a)=\frac{\frac{\partial}{\partial a}D(x,a; $\lambda$;a)d( $\lambda$;a)-D(x,a; $\lambda$;a)\frac{\partial}{\partial a}d( $\lambda$;a)}{d( $\lambda$;a)^{2}}
by (4.11). Therefore, in order to prove the lemma, we need (i) the existence and the

continuity of \displaystyle \frac{\partial}{\partial a}d( $\lambda$;a) and (ii) the existence, the continuity and the integrability of

\displaystyle \frac{\partial}{\partial a}D(x, a; $\lambda$;a) by (4.3), (4.5) and

\displaystyle \frac{\partial}{\partial a}\int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy=h_{ $\omega$}(ax)$\phi$_{a}^{ $\epsilon$}(a)+\int_{0}^{a}h_{ $\omega$} (xy ) \displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(y)dy.
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We prove (i). By definition (4.7) and (4.9), we have

\displaystyle \frac{\partial}{\partial a}d( $\lambda$;a)=- $\lambda$ K(a, a)+\sum_{n=2}^{\infty}\frac{(- $\lambda$)^{n}}{n!}\{\int_{0}^{a}\cdot\cdot\int_{0}^{a}K\left(\begin{array}{lll}
a,x_{2} & \cdots & x_{n}\\
a,x_{2} & \cdots & x_{n}
\end{array}\right) dx2. . . dx_{n}

+\displaystyle \sum_{k=2}^{n-1}\int_{0}^{a}\cdot\int_{0^{a}}K\left(\begin{array}{lllll}
x_{1} & \cdots & x_{k-1},a,x_{k+1} & \cdots & x_{n}\\
x_{1} & \cdots & x_{k-1},a,x_{k+1} & \cdots & x_{n}
\end{array}\right)dx_{l}\displaystyle \ldots dx_{k-1}dx_{k+1}\ldots dx_{n}
+\displaystyle \int_{0}^{a}\cdot\cdot\int_{0}^{a}K\left(\begin{array}{lll}
x_{1},x_{2} & \cdots & x_{n-1},a\\
x_{1},x_{2} & \cdots & x_{n-1},a
\end{array}\right)dx_{1}\displaystyle \ldots dx_{n-1}\}

Clearly, each term in the series is continuous in a
,

since K(x, y) is continuous. By using
Hadamard�s inequality,

|\displaystyle \frac{\partial}{\partial a}d( $\lambda$;a)|\leq\sum_{n=1}^{\infty}\frac{| $\lambda$|^{n}}{n!}n^{\frac{1}{2}n}(\frac{M_{1}(a)}{a})^{n}na^{n-1}=\frac{1}{a}\sum_{n=1}^{\infty}\frac{n^{\frac{1}{2}n}}{(n-1)!}(| $\lambda$|M_{1}(a))^{n}
The series on the right‐hand side converges uniformly on a compact subset of ( $\lambda$, a)\in
\mathbb{C}\times[0, \infty) . Hence d( $\lambda$;a) is continuously differentiable for a.

Successively, we prove (ii). we have

\displaystyle \frac{\partial}{\partial a}D(x, a; $\lambda$;a)=D_{y}(x, a; $\lambda$;a)+D_{a}(x, a; $\lambda$;a) ,

where D_{y} (resp. D_{a} ) means the partial derivative with respect to the second (resp. the

fourth) variable. We find that D(x, y; $\lambda$;a) is continuously differentiable with respect

to y\in[0, \infty)\backslash \{n/a|n\in \mathbb{N}\} ,
and D_{y}(x, y; $\lambda$;a) is a continuous function on (x, y) \in

[0, \infty)\times([0, \infty)\backslash \{n/a|n\in \mathbb{N}\}) by a way similar to the proof of Lemma 4.7. Thus

D_{y}(x, a; $\lambda$;a) is continuous on a\in(1, \infty)\backslash \{\sqrt{n}|n\in \mathbb{N}\} for fixed x
,

and |D_{y}(x, a; $\lambda$;a)|
is integrable on [0, a] with respect to x . On the other hand, by definition (4.8) and

(4.10),

\displaystyle \frac{\partial}{\partial a}D(x, y; $\lambda$;a)=- $\lambda$ K(a, a)K(x, y)+ $\lambda$ K(x, a)K(a, y)

+\displaystyle \sum_{n=2}^{\infty}\frac{(- $\lambda$)^{n}}{n!}\{\int_{0}^{a}\cdots\int_{0}^{a}K\left(\begin{array}{lll}
x,a,x_{2} & \cdots & x_{n}\\
y,a,x_{2} & \cdots & x_{n}
\end{array}\right) dx2. . . dx_{n}

+\displaystyle \sum_{k=2}^{n-1}\int_{0}^{a}\cdots\int_{0}^{a}K\left(\begin{array}{lllll}
x,x_{1} & \cdots & x_{k-1},a,x_{k+1} & \cdots & x_{n}\\
y,x_{1} & \cdots & x_{k-1},a,x_{k+1} & \cdots & x_{n}
\end{array}\right)dx_{1}\displaystyle \ldots dx_{k-1}dx_{k+1}\ldots dx_{n}
+\displaystyle \int_{0}^{a}\cdots\int_{0}^{a}K\left(\begin{array}{lll}
x,x_{1} & \cdots & x_{n-1},a\\
y,x_{1} & \cdots & x_{n-1},a
\end{array}\right)dx_{1}\displaystyle \ldots dx_{n-1}\}

Clearly, each term in the series is continuous in (x, y, a) ,
since K(x, y) is continuous.
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By the row expansion of the determinant and Hadamard�s inequality, we obtain

|\displaystyle \frac{\partial}{\partial a}D(x, y; $\lambda$;a)|\leq\sum_{n=1}^{\infty}\frac{| $\lambda$|^{n}}{n!}n^{\frac{1}{2}n}(\frac{M_{1}(a)}{a})^{n}\int_{0}^{a}\cdots\int_{0}^{a}\sum_{j=1}^{n}|K(x, x_{j})|dx_{1}\ldots dx_{n-1}
=\displaystyle \frac{1}{a^{2}}\int_{0}^{a}|K(x, x_{1})|dx_{1}\sum_{n=1}^{\infty}\frac{n^{\frac{1}{2}n}}{(n-1)!}(| $\lambda$|M_{1}(a))^{n}

when 0\leq y\leq a . The series on the right‐hand side converges uniformly on a compact

subset of ( $\lambda$, a)\in \mathbb{C}\times(1, \infty) . Thus D_{a}(x, a; $\lambda$;a) is continuous in a . In addition, the

right‐hand side shows that |D_{a}(x, a; $\lambda$;a)| is integrable on [0, a] with respect to x.

Hence \displaystyle \frac{\partial}{\partial a}R(x, a; $\lambda$;a) is continuous on a\in(1, \infty)\backslash \{\sqrt{n}|n\in \mathbb{N}\} for fixed x
,

and

|\displaystyle \frac{\partial}{\partial a}R(x, a; $\lambda$;a)| is integrable on [0, a] with respect to x . As a consequence we obtain

the lemma by (4.3) and (4.5). \square 

§4.3. The first order differential system

As in the previous section, we assume that  $\omega$>1 . Then $\Theta$_{ $\omega$} is an inner function

in \mathbb{C}^{+} ,
the kernel h_{ $\omega$}(xy) of \mathrm{H}_{ $\omega$} or \mathrm{H}_{ $\omega$,a} is continuous, and $\phi$_{a}^{ $\epsilon$}(x) is continuously differ‐

entiable with respect to x and a outside loci ax=k(k\in \mathbb{N}) . Under this situation, we

derive a first order differential system arising from $\phi$_{a}^{ $\epsilon$}(a>1,  $\epsilon$\in\{\pm 1\}) start from

(4.12) $\phi$_{a}^{ $\epsilon$}(x)+ $\epsilon$\displaystyle \int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy=h_{ $\omega$}(ax) .

Firstly, we operate a\displaystyle \frac{\partial}{\partial a} on both side of (4.12). Then,

a\displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x)+ $\epsilon$ a\frac{\partial}{\partial a}\int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy=a\frac{\partial}{\partial a}h_{ $\omega$} (ax );

a\displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x)+ $\epsilon$ a$\phi$_{a}^{ $\epsilon$}(a)h_{ $\omega$}(ax)+ $\epsilon$\int_{0}^{a}h_{ $\omega$}(xy)a\frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(y)dy=a\frac{\partial}{\partial a}h_{ $\omega$} (ax );

(4.13)  a\displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x)+ $\epsilon$\int_{0}^{a}h_{ $\omega$}(xy)a\frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(y)dy=- $\epsilon$  a $\phi$_{a}^{ $\epsilon$}(a)h_{ $\omega$}(ax)+a\displaystyle \frac{\partial}{\partial a}h_{ $\omega$} (ax).

Secondly, we operate x\displaystyle \frac{\partial}{\partial x} on both side of (4.12):

x\displaystyle \frac{\partial}{\partial x}$\phi$_{a}^{ $\epsilon$}(x)+ $\epsilon$ x\frac{\partial}{\partial x}\int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy=x\frac{\partial}{\partial x}h_{ $\omega$}(ax)=a\frac{\partial}{\partial a}h_{ $\omega$} (ax ).

Using the identity x\displaystyle \frac{\partial}{\partial x}h_{ $\omega$}(xy)=y\frac{\partial}{\partial y}h(xy) and then applying integration by parts to

the integral of the left‐hand side, we have

 x\displaystyle \frac{\partial}{\partial x}$\phi$_{a}^{ $\epsilon$}(x)+ $\epsilon$ a  $\phi$_{a}^{ $\epsilon$}(a)h_{ $\omega$}(ax)- $\epsilon$\displaystyle \int_{0}^{a}h_{ $\omega$} (xy) \displaystyle \frac{\partial}{\partial y}(y$\phi$_{a}^{ $\epsilon$}(y))dy=a\frac{\partial}{\partial a}h_{ $\omega$} (ax).
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Putting $\delta$_{x}=x\displaystyle \frac{\partial}{\partial x}+\frac{1}{2}=\frac{\partial}{\partial x}x-\frac{1}{2} ,
we obtain

$\delta$_{x}$\phi$_{a}^{ $\epsilon$}(x)-\displaystyle \frac{1}{2}$\phi$_{a}^{ $\epsilon$}(x)- $\epsilon$\int_{0}^{a}h_{ $\omega$} (xy ) ($\delta$_{y}$\phi$_{a}^{ $\epsilon$}(y)+\displaystyle \frac{1}{2}$\phi$_{a}^{ $\epsilon$}(y))dy
(4.14)

=- $\epsilon$ a  $\phi$_{a}^{ $\epsilon$}(a)h_{ $\omega$}(ax)+a\displaystyle \frac{\partial}{\partial a}h_{ $\omega$} (ax).

Next, we rewrite the left‐hand side of (4.14) as follows by using (4.12) for the second

term of the left‐hand side:

(4.15)

$\delta$_{x}$\phi$_{a}^{ $\epsilon$}(x)-\displaystyle \frac{1}{2}(h_{ $\omega$}(ax)- $\epsilon$\int_{0}^{a}h_{ $\omega$}(xy)$\phi$_{a}^{ $\epsilon$}(y)dy)- $\epsilon$\int_{0}^{a}h_{ $\omega$} (xy) ($\delta$_{y}$\phi$_{a}^{ $\epsilon$}(y)+\displaystyle \frac{1}{2}$\phi$_{a}^{ $\epsilon$}(y))dy
=$\delta$_{x}$\phi$_{a}^{ $\epsilon$}(x)-\displaystyle \frac{1}{2}h_{ $\omega$}(ax)- $\epsilon$\int_{0}^{a}h_{ $\omega$}(xy)$\delta$_{y}$\phi$_{a}^{ $\epsilon$}(y)dy.

Substituting the right‐hand side of (4.15) for the left‐hand side of (4.14) and rearranging,
we obtain

(4.16) $\delta$_{x}$\phi$_{a}^{ $\epsilon$}(x)- $\epsilon$\displaystyle \int_{0}^{a}h_{ $\omega$}(xy)$\delta$_{y}$\phi$_{a}^{ $\epsilon$}(y)dy=(\frac{1}{2}- $\epsilon$ a$\phi$_{a}^{ $\epsilon$}(a))h_{ $\omega$}(ax)+a\frac{\partial}{\partial a}h_{ $\omega$} (ax).

Subtracting (4.16) with choice - $\epsilon$ from (4.13) with  $\epsilon$ , we obtain

\displaystyle \{a\frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x)-$\delta$_{x}$\phi$_{a}^{- $\epsilon$}(x)\}+ $\epsilon$\int_{0}^{a}h_{ $\omega$} (xy ) \displaystyle \{a\frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(y)-$\delta$_{y}$\phi$_{a}^{- $\epsilon$}(y)\}dy
(4.17)

=-(\displaystyle \frac{1}{2}+ $\epsilon \mu$(a))h_{ $\omega$} (ax),

where

(4.18)  $\mu$(a)=a$\phi$_{a}^{+}(a)+a$\phi$_{a}^{-}(a) .

By (4.6), Lemma 4.7 and 4.8, the function  $\mu$(a) is continuous on ( 1, \infty) ,
which satisfies

\displaystyle \lim_{a\rightarrow 1+} $\mu$(a)=0 ,
and is continuously differentiable on ( 1, \infty)\backslash \{\sqrt{n}|n\in N\}.

Equality (4.17) shows that a\displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x)-$\delta$_{x}$\phi$_{a}^{- $\epsilon$}(x) is a continuous solution of (4.12).
Hence, by comparing (4.12) with (4.17), we obtain

(4.19) a\displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x)-$\delta$_{x}$\phi$_{a}^{- $\epsilon$}(x)=-(\frac{1}{2}+ $\epsilon \mu$(a))$\phi$_{a}^{ $\epsilon$}(x) ( $\epsilon$\in\{\pm 1\})
by the uniqueness of solutions (Lemmas 4.5 and 4.6). We use (4.19) in the form

(4.20) (a\displaystyle \frac{\partial}{\partial a}+\frac{1}{2}+ $\epsilon \mu$(a))$\phi$_{a}^{ $\epsilon$}(x)=$\delta$_{x}$\phi$_{a}^{- $\epsilon$}(x) ( $\epsilon$\in\{\pm 1\}) .
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Now we introduce two special functions

\displaystyle \tilde{A}_{a}(z):=\frac{a^{iz}}{2}+\frac{\sqrt{a}}{2}\int_{a}^{\infty}$\phi$_{a}^{+}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}=\frac{a^{iz}}{2}+\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}(1-\mathrm{P}_{a})$\phi$_{a}^{+}(z) ,

(4.21)

-i\displaystyle \tilde{B}_{a}(z):=\frac{a^{iz}}{2}-\frac{\sqrt{a}}{2}\int_{a}^{\infty}$\phi$_{a}^{-}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}=\frac{a^{iz}}{2}-\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}(1-\mathrm{P}_{a})$\phi$_{a}^{-}(z)
for \Im(z)\gg 0 and a>1 . These functions are defined as analytic functions for large

\Im(z)>0 by integrals, since $\phi$_{a}^{\pm} are continuous and have at most polynomial growth at

+\infty by (4.12) and the rough estimate

(4.22)  h_{ $\omega$}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-U+ic}^{U+ic}$\Theta$_{ $\omega$}(z)x^{-\frac{1}{2}-iz}dz+O(x^{c-\frac{1}{2}}U^{1- $\omega$}) (c>1/2+ $\omega$)
=O(x^{c-\frac{1}{2}}U)+O(x^{c-\frac{1}{2}}U^{1- $\omega$})=O(x^{ $\omega$+ $\epsilon$}) .

As shown below, \tilde{A}_{a} and \tilde{B}_{a} are analytically continuable to meromorphic functions in

\mathbb{C} . We put it off a little and derive a differential system satisfied by \tilde{A}_{a} and \tilde{B}_{a} . Using

(4.20), we have

(a\displaystyle \frac{\partial}{\partial a}+ $\mu$(a))\tilde{A}_{a}(z)=(iz+ $\mu$(a))\frac{a^{iz}}{2}+(a\frac{\partial}{\partial a}+ $\mu$(a))\frac{\sqrt{a}}{2}\int_{a}^{\infty}$\phi$_{a}^{+}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}
=(iz+ $\mu$(a))\displaystyle \frac{a^{iz}}{2}-\frac{\sqrt{a}}{2}$\phi$_{a}^{+}(a)a^{\frac{1}{2}+iz}+\frac{\sqrt{a}}{2}\int_{a}^{\infty}(a\frac{\partial}{\partial a}+\frac{1}{2}+ $\mu$(a))$\phi$_{a}^{+}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}
=(iz+ $\mu$(a))\displaystyle \frac{a^{iz}}{2}-\frac{\sqrt{a}}{2}$\phi$_{a}^{+}(a)a^{\frac{1}{2}+iz}+\frac{\sqrt{a}}{2}\int_{a}^{\infty}(x\frac{\partial}{\partial x}+\frac{1}{2})$\phi$_{a}^{-}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}
=iz\displaystyle \frac{a^{iz}}{2}-iz\frac{\sqrt{a}}{2}\int_{a}^{\infty}$\phi$_{a}^{-}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}=z\tilde{B}_{a}(z)

for large \Im(z)>0 ,
and then it holds for all z\in \mathbb{C} by meromorphic continuation (below).

We obtain a similar formula for (a\displaystyle \frac{\partial}{\partial a}+ $\mu$(a))\tilde{B}_{a} . As a result, we obtain the first order

differential system

(4.23) -\left\{a\frac{\partial}{\partial a} & + $\mu$(a)0 & 0a\frac{\partial}{\partial a}- $\mu$(a)\right\}\left\{\begin{array}{l}
\tilde{A}_{a}(z)\\
\tilde{B}_{a}(z)
\end{array}\right\}=z\left\{\begin{array}{ll}
0 & -1\\
1 & 0
\end{array}\right\}\left\{\begin{array}{l}
\tilde{A}_{a}(z)\\
\tilde{B}_{a}(z)
\end{array}\right\} (a>1) .

We extend the system to a>0 by taking the convention that

(4.24)  $\mu$(a)=0

and

\displaystyle \tilde{A}_{a}(z)=\frac{a^{iz}}{2}+\frac{\sqrt{a}}{2}\int_{1/a}^{\infty}h_{ $\omega$} (ax ) x^{\frac{1}{2}+iz}\displaystyle \frac{dx}{x}=\frac{1}{2}(a^{iz}+$\Theta$_{ $\omega$}(z)a^{-iz}) ,

(4.25)

-i\displaystyle \tilde{B}_{a}(z)=\frac{a^{iz}}{2}-\frac{\sqrt{a}}{2}\int_{1/a}^{\infty}h_{ $\omega$} (ax ) x^{\frac{1}{2}+iz}\displaystyle \frac{dx}{x}=\frac{1}{2}(a^{iz}-$\Theta$_{ $\omega$}(z)a^{-iz})



A canonical system 0F differential equations 423

for 0<a\leq 1 . Actually the convention (4.24) and (4.25) for 0<a\leq 1 is compatible
with Lemma 4.2 and the convention mentioned in the end of Section 4.1.

For a>0 ,
we define

A_{a}(z)=m(a) $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)\tilde{A}_{a}(z) ,

(4.26)

B_{a}(z)=\displaystyle \frac{1}{m(a)} $\xi$(\frac{1}{2}+ $\omega$-iz)\tilde{B}_{a}(z)
with

(4.27) m(a)=\displaystyle \exp(\int_{1}^{a} $\mu$(b)\frac{db}{b}) ( $\mu$(a)=a\frac{d}{da}\log m(a))
under (4.24) and (4.25). Note that m(a) is real‐valued by its definition. Then we can

verify that system (4.23) implies that (A_{a}, B_{a}) satisfies the canonical system

(4.28) -a\displaystyle \frac{\partial}{\partial a}\left\{\begin{array}{l}
X_{a}(z)\\
Y_{a}(z)
\end{array}\right\}=z\left\{\begin{array}{ll}
0 & -1\\
1 & 0
\end{array}\right\}\displaystyle \left\{\begin{array}{ll}
m(a)^{-2} & 0\\
0 & m(a)^{2}
\end{array}\right\}\left\{\begin{array}{l}
X_{a}(z)\\
Y_{a}(z)
\end{array}\right\} (0<a<\infty)
by elementary ways. It is concluded that (4.28) is the canonical system of Theorem 2.3

if formula

m(a)=\displaystyle \frac{\det(1+\mathrm{H}_{ $\omega$,a})}{\det(1-\mathrm{H}_{ $\omega$,a})}
is proved for a>1 ,

since \displaystyle \frac{\det(1+\mathrm{H}_{ $\omega$,a})}{\det(1-\mathrm{H}_{ $\omega$,a})}=1 for 0<a\leq 1 by Lemma 4.2. This will follow

from showing

$\phi$_{a}^{+}(a)=\displaystyle \frac{d}{da}\log\det(1+\mathrm{H}_{ $\omega$,a}) ,

(4.29)

$\phi$_{a}^{-}(a)=-\displaystyle \frac{d}{da}\log\det(1-\mathrm{H}_{ $\omega$,a})
by definition (4.18) and (4.27). This is a well‐known formula for an integral operator

defined on a finite interval with a continuous kernel. In fact, it is proved by a way similar

to the proof of Theorem 12 of Chapter 24 in [19]. (This also holds for 0<a<1 ,
since

$\phi$_{a}^{\pm}(a)=h_{ $\omega$}(a^{2})=0 by the convention in the end of Section 4.1 and \log\det(1\pm \mathrm{H}_{ $\omega$,a})=0
by Lemma 4.2.)

For every fixed 0<a\leq 1, A_{a} and B_{a} are real entire functions satisfying A_{a}(-z)=
A(z) and B_{a}(-z)=-B_{a}(z) , respectively, by (4.25), (4.26) and functional equations

 $\xi$(s)= $\xi$(1-s) and  $\xi$(s)=\overline{ $\xi$(\overline{s})} . Successively, we prove that A_{a} and B_{a} have these

properties for a>1.
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§4.4. Meromorphic continuation and functional equations

Under assumptions and notations of Section 4.3, we define

\tilde{E}_{a}(z):=\tilde{A}_{a}(z)-i\tilde{B}_{a}(z)

=a^{iz}+\displaystyle \frac{\sqrt{a}}{2}\int_{a}^{\infty}($\phi$_{a}^{+}(x)-$\phi$_{a}^{-}(x))x^{\frac{1}{2}+iz}\frac{dx}{x}
=a^{iz}+\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}(1-\mathrm{P}_{a})($\phi$_{a}^{+}-$\phi$_{a}^{-})(z)

(4.30)
\tilde{E}_{a}^{*}(z):=\tilde{A}_{a}(z)+i\tilde{B}_{a}(z)

=\displaystyle \frac{\sqrt{a}}{2}\int_{a}^{\infty}($\phi$_{a}^{+}(x)+$\phi$_{a}^{-}(x))x^{\frac{1}{2}+iz}\frac{dx}{x}
=\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}(1-\mathrm{P}_{a})($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)

for \Im(z)\gg 0 and a>1 . We deal with A_{a}, B_{a} via \tilde{E}_{a}(z) and \tilde{E}_{a}^{*}(z) .

Lemma 4.9. Let  $\omega$>1 and a>1 . Define

(4.31) $\Psi$_{a}(z)=\displaystyle \int_{a}^{\infty}($\phi$_{a}^{+}(x)-$\phi$_{a}^{-}(x))x^{\frac{1}{2}+iz}\frac{dx}{x}.
Then integral of (4.31) converges absolutely for \Im(z)>0 and converges in the L^{2} ‐sense

on \Im(z)=0 . Moreover $\Psi$_{a}(z) is extended to a meromorphic function in \mathbb{C} which is

analytic in \mathbb{C}^{+}.

Proof. By (4. 12), we have

(4.32) $\phi$_{a}^{+}-$\phi$_{a}^{-}=-\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-}) ,

where \mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-}) has compact support in [1/a, a] . Therefore $\phi$_{a}^{+}-$\phi$_{a}^{-} belongs to

L^{2}(( $\alpha$, \infty), dx) for every  $\alpha$>0 . Hence integral (4.31) converges absolutely for \Im(z)>0
and defines a function of H^{2} ([29, Chap. II, §10]). Using (4.32), we have

$\Psi$_{a}(z)=\mathrm{F}_{1/2}(1-\mathrm{P}_{a})($\phi$_{a}^{+}-$\phi$_{a}^{-})(z)
=-\mathrm{F}_{1/2}(1-\mathrm{P}_{a})\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)
=-\mathrm{F}_{1/2}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)+\mathrm{F}_{1/2}\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)

for \Im(z)\gg 0 . Here \mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-}) and \mathrm{P}\mathrm{H}\mathrm{P}($\phi$_{a}^{+}+$\phi$_{a}^{-}) have compact support in (0, \infty) .

Therefore, we obtain

(4.33) $\Psi$_{a}(z)=-$\Theta$_{ $\omega$}(z)\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(-z)+\mathrm{F}_{1/2}\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z) ,

where \mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z) and \mathrm{F}_{1/2}\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z) are entire functions. Hence

$\Psi$_{a}(z) is extended to a meromorphic function on \mathbb{C} , and is analytic in \mathbb{C}^{+} by (4.33),
since $\Theta$_{ $\omega$}(z) is a meromorphic inner function in \mathbb{C}^{+}. \square 
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Lemma 4.10. Let  $\omega$>1 and a>1 . Functions \tilde{E}_{a} and \tilde{E}_{a}^{*} of (4.30) are ana‐

lytically continuable to meromorphic functions in \mathbb{C} satisfy ing \tilde{E}_{a}^{*}(z)=$\Theta$_{ $\omega$}(z)\tilde{E}_{a}(-z) ,

and they are analytic in \mathbb{C}^{+} . Moreover, both  $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)\tilde{E}_{a}(z) and  $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)\tilde{E}_{a}^{*}(z)
are entire functions.

Proof. We have

(4.34) \mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}-$\phi$_{a}^{-})(x)=2h_{ $\omega$}(ax) -$\phi$_{a}^{+}(x)-$\phi$_{a}^{-}(x)

by (4.12). Using (1.8), (4.32), and (4.33), we have

$\Theta$_{ $\omega$}(z)\displaystyle \tilde{E}_{a}(-z) = $\Theta$_{ $\omega$}(z)a^{-iz}+$\Theta$_{ $\omega$}(z)\frac{\sqrt{a}}{2}$\Psi$_{a}(-z)
(4_{=^{33)}$\Theta$_{ $\omega$}(z)a^{-iz}-$\Theta$_{ $\omega$}(z)$\Theta$_{ $\omega$}(-z)\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}}+$\phi$_{a}^{-})(z)

+\displaystyle \frac{\sqrt{a}}{2}$\Theta$_{ $\omega$}(z)\mathrm{F}_{1/2}\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)
(1.8)=$\Theta$_{ $\omega$}(z)a^{-iz}-\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)

+$\Theta$_{ $\omega$}(z)\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)
(4_{=^{32)}$\Theta$_{ $\omega$}(z)a^{-iz}-\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}}+$\phi$_{a}^{-})(z)

-$\Theta$_{ $\omega$}(z)\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}-$\phi$_{a}^{-})(z)
for z\in \mathbb{C} ,

since \mathrm{P}_{a}($\phi$_{a}^{+}\pm$\phi$_{a}^{-}) ,
and \mathrm{P}\mathrm{H}\mathrm{P}($\phi$_{a}^{+}+$\phi$_{a}^{-}) have compact support. Further,

by Proposition 2.1, Lemma 4.1, and (4.34), we have

$\Theta$_{ $\omega$}(z)\tilde{E}_{a}(-z) =$\Theta$_{ $\omega$}(z)a^{-iz}-\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)
-$\Theta$_{ $\omega$}(z)\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}-$\phi$_{a}^{-})(z)

(4.1)=$\Theta$_{ $\omega$}(z)a^{-iz}-\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)-\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}-$\phi$_{a}^{-})(z)
(4_{=^{34)}$\Theta$_{ $\omega$}(z)a^{-iz}-\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}}+$\phi$_{a}^{-})(z)

-\displaystyle \sqrt{a}\mathrm{F}_{1/2}(h_{ $\omega$}(ax))(z)+\frac{\sqrt{a}}{2}\mathrm{F}_{1/2}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)
(2.4)=$\Theta$_{ $\omega$}(z)a^{-iz}-\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)

-$\Theta$_{ $\omega$}(z)a^{-iz}+\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)
=\displaystyle \frac{\sqrt{a}}{2}\mathrm{F}_{1/2}(1-\mathrm{P}_{a})($\phi$_{a}^{+}+$\phi$_{a}^{-})(z)=\tilde{E}_{a}^{*}(z)
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for \Im(z)\gg 0 ,
since $\phi$_{a}^{+}+$\phi$_{a}^{-} is identically zero on (0,1/a) and has polynomial growth

at  x=+\infty . Hence \tilde{E}_{a}^{*}(z)=$\Theta$_{ $\omega$}(z)\tilde{E}_{a}(z) for \Im(z)\gg 0 . By Lemma 4.9, \tilde{E}_{a}(z) is

meromorphic in \mathbb{C} , therefore, \tilde{E}_{a}^{*}(z) is also analytically continuable to a meromorphic
function in \mathbb{C} . Moreover, \tilde{E}_{a}(z)=$\Theta$_{ $\omega$}(z)( entire) +(entire) from the proof of Lemma

4.9. Thus

\tilde{E}_{a}^{*}(z)= $\Theta$(z)\tilde{E}_{a}(-z)=(entire) +$\Theta$_{ $\omega$}(\mathrm{z}) (entire)

by (1.8), and hence \tilde{E}_{a}^{*}(z) is analytic in \mathbb{C}^{+} . Simultaneously, these equalities show that

 $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)\tilde{E}_{a}(z) and  $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)\tilde{E}_{a}^{*}(z) are entire by definition of $\Theta$_{ $\omega$}(z) . \square 

Lemma 4.10 implies the following immediately.

Lemma 4.11. Let  $\omega$>1 and a>1 . Then Ã(z) and \tilde{B}_{a}(z) are analytically
continuable to meromorphic functions in \mathbb{C} , and they are analytic in \mathbb{C}^{+} . Also, A_{a}(z)
and B(z) are both entire functions. In addition, we have functional equations

$\Theta$_{ $\omega$}(z)\tilde{A}_{a}(-z)=\tilde{A}_{a}(z) , $\Theta$_{ $\omega$}(z)\tilde{B}_{a}(-z)=-\tilde{B}_{a}(z) ,

A_{a}(-z)=A_{a}(z) , B_{a}(-z)=-B_{a}(z) .

Proof. We have 2\tilde{A}_{a}=\tilde{E}_{a}+\tilde{E}_{a}^{*} and -2i\tilde{B}_{a}=\tilde{E}_{a}-\tilde{E}_{a}^{*} by definition (4.30).
Therefore, they are analytically continuable to meromorphic function in \mathbb{C} and satisfy

2\tilde{A}_{a}(z)=\tilde{E}_{a}(z)+$\Theta$_{ $\omega$}(z)\tilde{E}_{a}(z) and -2i\tilde{B}_{a}(z)=\tilde{E}_{a}(z)-$\Theta$_{ $\omega$}(z)\tilde{E}_{a}(z) by Lemma 4.10.

That imply the functional equations stated in the lemma. Other things are consequences

of Lemma 4.10. \square 

Lemma 4.12. Let  $\omega$>1 and a>1 . Then A(z) and B(z) are real entire

functions.

Proof. At first, we note that if F(z)=\mathrm{F}_{1/2}(f(x))(z) for \Im(z)\gg 0 ,
then F\#(z)=

\mathrm{F}_{1/2}(x^{-1}\overline{f(x^{-1}}))(z) and F(-z)=\mathrm{F}_{1/2}(x^{-1}f(x^{-1}))(z) for \Im(z)\ll 0 . Therefore, if f(x)
(resp. if (x) ) is real‐valued, F(z) is analytically continued to a meromorphic function

in \mathbb{C} , and F(-z)=F(z) (resp. F(-z)=-F(z) ), then F\#(z)=F(z) holds for z\in \mathbb{C}.

Let

 $\phi$(x) :=\displaystyle \frac{1}{2}\frac{d}{dx}(x^{2}\frac{d}{dx} $\theta$(x^{2}))=2\sum_{n=1}^{\infty}(2$\pi$^{2}n^{4}x^{4}-3 $\pi$ n^{2}x^{2})\exp(- $\pi$ n^{2}x^{2}) .

Then  $\phi$(1/x)=x $\phi$(x) and  $\xi$(s)=\displaystyle \int_{0}^{\infty} $\phi$(x)x^{s}\frac{dx}{x} for every s\in \mathbb{C} ([27, §10.1]). Hence

 $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)=\mathrm{F}_{1/2}(x^{- $\omega$} $\phi$(x))(z) for z\in \mathbb{C} . On the other hand, by (4.21), \~{A}(z)=
\displaystyle \mathrm{F}_{1/2}(\frac{\sqrt{a}}{2}($\delta$_{a}+(1-\mathrm{P}_{a})$\phi$_{a}^{+}))(z) and \displaystyle \tilde{B}_{a}(z)=\mathrm{F}_{1/2}(\frac{i\sqrt{a}}{2}($\delta$_{a}-(1-\mathrm{P}_{a})$\phi$_{a}^{-}))(z) for \Im(z)\gg 0
,

where $\delta$_{a}(x) is the Dirac delta‐function at x=a . Therefore A_{a}(z)=\mathrm{F}_{1/2}(f^{+}(x))(z)
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and B_{a}(z)=\mathrm{F}_{1/2}(f^{-}(x))(z) for

f^{+}(x):=\displaystyle \frac{m(a)\sqrt{a}}{2}\int_{0}^{\infty}(x/y)^{- $\omega$} $\phi$(x/y)($\delta$_{a}(y)+(1-\mathrm{P}_{a})$\phi$_{a}^{+}(y))\frac{dy}{y}
=\displaystyle \frac{m(a)x^{- $\omega$}}{2}(a^{ $\omega$-\frac{1}{2}} $\phi$(x/a)+\sqrt{a}\int_{a}^{\infty} $\phi$(x/y)$\phi$_{a}^{+}(y)y^{ $\omega$-1}dy) ,

f^{-}(x):=\displaystyle \frac{i\sqrt{a}}{2m(a)}\int_{0}^{\infty}(x/y)^{- $\omega$} $\phi$(x/y)($\delta$_{a}(y)-(1-\mathrm{P}_{a})$\phi$_{a}^{-}(y))\frac{dy}{y}
=\displaystyle \frac{ix^{- $\omega$}}{2m(a)}(a^{ $\omega$-\frac{1}{2}} $\phi$(x/a)-\sqrt{a}\int_{a}^{\infty} $\phi$(x/y)$\phi$_{a}^{-}(y)y^{ $\omega$-1}dy)

if \Im(z)\gg 0 . Here f^{+}(x) and if^{-}(x) are both real‐valued, since m(a) is real, and  $\phi$(x) ,

$\phi$_{a}^{\pm}(x) are real‐valued. In addition, A_{a}(-z)=A_{a}(z) and B_{a}(-z)=-B(z) for z\in \mathbb{C}

by Lemma 4.11. Hence A_{a}\#=A_{a} and B_{a}\#=B_{a}. \square 

Now we complete the proof of Theorem 2.3 (1), (2). The remaining assertion is

(3). In order to prove it, we show the following lemma.

Lemma 4.13. Let  $\omega$>1 . Then

(4.35) \displaystyle \lim_{a\rightarrow 1+}A_{a}(z)=A^{ $\omega$}(z) , \displaystyle \lim_{a\rightarrow 1+}B_{a}(z)=B^{ $\omega$}(z)
hold uniformly on every compact subset in \mathbb{C}.

Proof. By (4.2) and (4.3), $\phi$_{a}^{\pm}(x)\rightarrow h(x) uniformly on [1/2, 3/2] as a\rightarrow 1^{+}.

Therefore, by (4.30) and (4.33), \tilde{E}_{a}(z) converges to a meromorphic function in \mathbb{C}

uniformly on every compact subset in \mathbb{C} as a\rightarrow 1^{+}
,

since \mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z) and

\mathrm{P}_{a}\mathrm{H}_{ $\omega$}\mathrm{P}_{a}($\phi$_{a}^{+}+$\phi$_{a}^{-})(z) both have support in [1/a, a] . On the other hand, we have

(4.36) $\phi$_{a}^{+}(x)-$\phi$_{a}^{-}(x)=-\displaystyle \int_{1/a}^{a}h_{ $\omega$} (xz ) ($\phi$_{a}^{+}(z)+$\phi$_{a}^{-}(z))dz

by (4.12), since $\phi$_{a}^{\pm}(x)=0 for 0<x<1/a . Multiplying by x^{-v} on both sides of (4.36),
and then tending a\rightarrow 1^{+}

,
we have

\displaystyle \lim_{a\rightarrow 1+}($\phi$_{a}^{+}(x)-$\phi$_{a}^{-}(x))x^{-v}=0
uniformly on ( 1, \infty) if v>0 is large, since h_{ $\omega$} is of polynomial growth at +\infty . Hence

\displaystyle \lim_{a\rightarrow 1+}\tilde{E}_{a}(z)=1 uniformly on every compact subset in \Im(z)>v . As a consequence

\displaystyle \lim_{a\rightarrow 1+}\tilde{E}_{a}(z)=1 ,
and

\displaystyle \lim_{a\rightarrow 1+}\tilde{A}_{a}(z)=\frac{1}{2}(1+$\Theta$_{ $\omega$}(z)) , \lim_{a\rightarrow 1+}\tilde{B}_{a}(z)=\frac{i}{2}(1-$\Theta$_{ $\omega$}(z))
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uniformly on every compact subset in \mathbb{C} . Multiplying by  $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz) on both sides of

these equalities, we obtain (4.35) by (4.6) and (4.26). \square 

By definition, we have m(a)=1 and

A_{a}(z)= $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)a^{iz}+ $\xi$(\frac{1}{2}- $\omega$-iz)a^{-iz},
B_{a}(z)= $\xi$(\displaystyle \frac{1}{2}+ $\omega$-iz)a^{iz}- $\xi$(\frac{1}{2}- $\omega$-iz)a^{-iz}

for 0 < a \leq 1. This shows (A_{1}, B_{1}) = (A^{ $\omega$}, B^{ $\omega$}) and \displaystyle \lim_{a\rightarrow 1-}(A_{a}(z), B_{a}(z)) =

(A^{ $\omega$}(z), B^{ $\omega$}(z)) uniformly on every compact subset in \mathbb{C} . Together with Lemma 4.13,
we obtain Theorem 2.3 (3), and hence we complete the proof of Theorem 2.3.

§5. Comments on the validity of Theorem 2.3

In this section, we comment on a range of  $\omega$>0 where Theorem 2.3 is expected
to be extended. There might be three levels of difficulties at least: (i)  $\omega$>1/2 , (ii)
 $\omega$=1/2 , (iii) 0< $\omega$<1/2.

It is natural to expect that Theorem 2.3 is proved unconditionally for the range (i)
as mentioned after Theorem 2.3. In fact, all lemmas in Section 4.1 are already proved
for  $\omega$>1/2 . Therefore, the remaining problems are a proof of the differentiability of

$\phi$_{a}^{ $\epsilon$}(x) with respect to x and a
,

and formula of m(a) by determinants. However, if we

understand partial derivatives \displaystyle \frac{\partial}{\partial x}$\phi$_{a}^{ $\epsilon$}(x) and \displaystyle \frac{\partial}{\partial a}$\phi$_{a}^{ $\epsilon$}(x) in the sense of distributions as in

Burnol [6], and if we use the theory of Fredholm determinants for L^{2} ‐kernels ([25, Chap.

VI]), then most of Section 4.3 and 4.4 have reasonable meaning, and we may obtain

Theorem 2.3 for  $\omega$>1/2 . This way is plausible, and must be carried out after a suitable

preparation for the theory of distributions.

The case (ii) have more difficulties, because the kernel of \mathrm{H}_{ $\omega$,a} is no longer Hilbert‐

Schmidt type. However, $\Theta$_{ $\omega$}(z) is still inner function in \mathbb{C}^{+} unconditionally. Therefore,

problems may be restricted to the theory of integral operators, its determinants, and the

theory of integral equations only as well as the case (i). See the later half of comments

on (iii) below.

It is easily predicted that it is very hard to generalize Theorem 2.3 to the range

(iii) unconditionally. A reason of difficulties is that problems of arithmetic and analysis
are mixed in this range. However, if we assume RH, the function $\Theta$_{ $\omega$} is inner in \mathbb{C}^{+} for

every  $\omega$>0 ,
and hence remaining problems may be restricted to the theory of integral

operators and the theory of integral equations only. Such analytic problems may be

solved without essential difficulties.
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In fact, if $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+}, \mathrm{H}_{ $\omega$} is extended to an isometry on

L^{2}((0, \infty), dx) by Lemma 4.1. On the other hand, \mathrm{H}_{ $\omega$,a} is a compact operator on

L^{2}((0, a), dx) even for (iii) (and (ii)) because its kernel is a sum of finitely many weakly

singular kernels. Therefore, in particular, the Fredholm alternative holds. Hence we may

obtain reasonable generalization of results in Section 4.1 for  $\omega$>0 under RH, and then

throughout distribution theoretic dealing of Section 4.3 and 4.4, we may arrive at the

generalization of Theorem 2.3 for the range (iii) (and (ii)) under RH. In this strategy, it

is necessary to note that $\phi$_{a}^{ $\epsilon$}(x) have some possible singularities, which affect definition

(4.18) of  $\mu$(a) and definition (4.27) of m(a) ,
and that the definition of determinants

\det(1\pm \mathrm{H}_{ $\omega$,a}) should be changed as in König [14].

We leave a justification of the above argument for a future study.

§ Appendix A.

Suppose that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} . (It holds unconditionally for  $\omega$\geq

 1/2 ,
and also for 0< $\omega$<1/2 under RH.) Then it defines the reproducing kernel Hilbert

space K($\Theta$_{ $\omega$}) which is isomorhic to the de Branges space B(E) (see Section 1.3 and

1.4). According to the theory of de Branges [9], the structure of B(E) is determined

by associated canonical system, which was described in terms of the shifted Fourier

inversion h(x) of $\Theta$_{ $\omega$}(z) under the restriction  $\omega$>1 . On the other hand, the structure

of B(E) is also determined by the reproducing kernel of K($\Theta$_{ $\omega$}) :

K_{ $\omega$}(z, w)=\displaystyle \frac{1}{2 $\pi$ i}\frac{1-\overline{$\Theta$_{ $\omega$}(z)}$\Theta$_{ $\omega$}(w)}{\overline{z}-w} (z, w\in \mathbb{C}^{+})
(see Section 1.3). We find that K_{ $\omega$}(0, *) belongs to L() by (1.9) and (1.10), and thus

its shifted Fourier inversion \mathrm{F}_{1/2}^{-1}K_{ $\omega$}(0, *) belongs to L^{2}((0, \infty), dx) .

However, if we obtain \mathrm{F}_{1/2}^{-1}K_{ $\omega$}(0, *) explicitly enough, we may define \mathrm{F}_{1/2}^{-1}K_{ $\omega$}(0, *)
regardless whether $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} . In fact, it is carried out by using
the weighted summatory function h_{ $\omega$}^{\langle 1\rangle}(x) defined below. Then sufficient or equivalent
conditions for $\Theta$_{ $\omega$}(z) to be an inner function in \mathbb{C}^{+} are given in terms of h_{ $\omega$}^{\langle 1\rangle}(x) as in

Theorem 2.2. This is the main result in the appendix.
The function h_{ $\omega$}^{\langle 1\rangle}(x) is not only directly related to RH via the innerness of $\Theta$_{ $\omega$}(z) ,

but also directly related to the operator \mathrm{H}_{ $\omega$} (Theorem A.2). The above discussion

clarifies the meaning of a part of functions studied in [26] (see the remark after Theorem

A.1).

A.1. Notation and Results

Let B(z;p, q) be the incomplete beta function defined by

B(z;p, q)=\displaystyle \int_{0}^{z}x^{p-1}(1-x)^{q-1}dx (0\leq z\leq 1, \Re(p)>0, \Re(q)>0) .
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We use the notation

 $\beta$(z;p, q):=B(p, q)-B(z;p, q)=\displaystyle \int_{z}^{1}x^{p-1}(1-x)^{q-1}dx,
and understand that  $\beta$(z;p, q) is defined by the integral on the right‐hand side if \Re(p)\leq
 0, \Re(q)>0 ,

and 0<z<1 . For example, g_{ $\omega$} of (2.2) can be written as

g_{ $\omega$}(x)=\displaystyle \frac{2$\pi$^{ $\omega$}}{ $\Gamma$( $\omega$)}[x^{2- $\omega$}(1-x^{2})^{ $\omega$-1}- $\omega$ x^{ $\omega$-1} $\beta$(x^{2}, \frac{3-2 $\omega$}{2},  $\omega$)] .

We define the real‐valued function g_{ $\omega$}^{\langle 1\rangle} on (0, \infty) by

(A.1) g_{ $\omega$}^{\langle 1\rangle}(x) :=\displaystyle \int_{x}^{1}\sqrt{\frac{y}{x}}g_{ $\omega$}(y)\frac{dy}{y}
for 0<x<1 ,

and g_{ $\omega$}^{\langle 1\rangle}(x)=0 for x>1 . Then we have

g_{ $\omega$}^{\langle 1\rangle}(x)=

\left\{\begin{array}{l}
\frac{4 $\omega$}{2 $\omega$-1}\frac{$\pi$^{ $\omega$}}{ $\Gamma$( $\omega$)}\{x^{ $\omega$-1} $\beta$(x^{2}, \frac{3-2 $\omega$}{2},  $\omega$)-\frac{2 $\omega$+1}{4 $\omega$}x^{-1/2} $\beta$(x^{2}, \frac{5-2 $\omega$}{4},  $\omega$)\},  $\omega$\neq\frac{1}{2},\\
\frac{2}{\sqrt{x}}(2\sqrt{1-x^{2}}+\log x-\log(1+\sqrt{1-x^{2}})) ,  $\omega$=\frac{1}{2}
\end{array}\right.
for 0<x<1 by elementary ways. Using g_{ $\omega$}^{\langle 1\rangle} and c(n) of (2.1), we define the real‐

valued function h_{ $\omega$}^{\langle 1\rangle} on (0, \infty) by

(A.2) h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{x}\sum_{n=1}^{\lfloor x\rfloor}c_{ $\omega$}(n)g_{ $\omega$}^{\langle 1\rangle}(\frac{n}{x})
for x>1 ,

and h_{ $\omega$}^{\langle 1\rangle}(x)=0 for 0<x<1 . Then h_{ $\omega$}^{\langle 1\rangle} is well‐defined on (0, \infty) and has a

support in [1, \infty ) as well as  h_{ $\omega$} . We also have

(A.3) h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \int_{1}^{x}\sqrt{\frac{y}{x}}h_{ $\omega$}(y)\frac{dy}{y}
for x>1 by definition (A.1). The function h_{ $\omega$}^{\langle 1\rangle} is related to K_{ $\omega$}(z, w) and $\Theta$_{ $\omega$} as follows.

Theorem A.1. Let  $\omega$>0.

(1) If $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} , we have

F_{1/2}^{-1}K_{ $\omega$}(0, *)(z)=\displaystyle \frac{1}{2 $\pi$}(x^{-\frac{1}{2}}1_{(1,\infty)}(x)-h_{ $\omega$}^{\langle 1\rangle}(x)) ,

where 1_{(1,\infty)} is the characteristic function of ( 1, \infty) .
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(2) $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} if and only if (x^{-\frac{1}{2}}1_{(1,\infty)}(x)-h_{ $\omega$}^{\langle 1\rangle}(x)) belongs to

L^{2}((1, \infty), dx) .

(3) Assume that there exists x_{ $\omega$}\geq 1 such that h_{ $\omega$}^{\langle 1\rangle}(x) has a single sign for every x\geq x_{ $\omega$}.

Then $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+}.

(4) Assume that \displaystyle \lim_{x\rightarrow\infty}\sqrt{x}h_{ $\omega$}^{\langle 1\rangle}(x) exists. Then $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+}.

(5) Assume that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} for all  $\omega$>0 . Then we have

\sqrt{x}h_{ $\omega$}^{\langle 1\rangle}(x)=1+o(1)

as  x\rightarrow+\infty for all  $\omega$>0.

Remark. The case \displaystyle \lim_{x\rightarrow\infty}\sqrt{x}h_{ $\omega$}^{\langle 1\rangle}(x)=0 is allowed in (4), though it does not

hold by (5) if RH holds for  $\zeta$(s) .

Remark. Functions h(x) of (2.3) and h_{ $\omega$}^{\langle 1\rangle}(x) of (A.2) were introduced and stud‐

ied in [26] for more general L‐functions, but notation is different a little. The function

h_{ $\omega$}^{\langle 1\rangle}(x) (resp. h(x) ) was denoted by x^{-\frac{1}{2}}h_{1, $\omega$}^{\langle 1\rangle}(x) (resp. x^{-\frac{1}{2}}h_{1, $\omega$}^{\langle 0\rangle}(x) ) in [26].

Theorem A.2. Suppose that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} . We define

(\displaystyle \tilde{\mathrm{H}}_{ $\omega$}f)(x)=\sqrt{x}\frac{d}{dx}\sqrt{x}\int_{0}^{\infty}h_{ $\omega$}^{\langle 1\rangle} (xy ) f(y)dy

for compactly supported smooth functions f . Then \tilde{\mathrm{H}}_{ $\omega$}f belongs to L^{2}((0, \infty), dx) ,
and

f\mapsto\tilde{\mathrm{H}}_{ $\omega$}f is extended to the isometry on L^{2}((0, \infty), dx) satisfy ing \tilde{\mathrm{H}}_{ $\omega$}f=\mathrm{H}_{ $\omega$}f.

A.2. Proof of Theorem A.1

We prove each statement of Theorem A.1 separately. At first, we note the following:

Proposition A.3. For  $\omega$>0 and \Im(z)>1/2+ $\omega$ ,
we have

(A.4) \displaystyle \int_{0}^{\infty}h_{ $\omega$}^{\langle 1\rangle}(x)x^{\frac{1}{2}+iz}\frac{dx}{x}=\frac{i}{z}$\Theta$_{ $\omega$}(z) ,

where the integral converges absolutely.

Proof. This is proved by a way similar to the proof of Proposition 2.1 in Section

3.1 (see also Lemma 4.2 of [26]). \square 

(3): By the assumption and a theorem of Landau (e.g. Widder [29, Chap.II�5]),
the integral in (A.4) converges for \Im(z)>v_{0} ,

where iv_{0} is the first pure imaginary
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singularity of $\Theta$_{ $\omega$}(z)/z . On the other hand, $\Theta$_{ $\omega$}(z) has no singularities on the imaginary

axis, because it is known that  $\xi$(s) has no real zeros. Hence $\Theta$_{ $\omega$}(z) is regular in \mathbb{C}^{+} . It

implies that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} by a way similar to the proof of Lemma

3.1. \square 

(1) and (2): Suppose that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} . We have

h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{2 $\pi$}\lim_{U\rightarrow\infty}\int_{-U+ic}^{U+ic}\frac{$\Theta$_{ $\omega$}(z)}{-iz}x^{-\frac{1}{2}-iz}dz (c>1/2+ $\omega$)
for x>1 by the Mellin inversion formula (e.g. [28, Theorem 28]), since the integral
in (2.4) converges absolutely for \Im(z)>1/2+ $\omega$ and  h_{ $\omega$}^{\langle 1\rangle}(x) is in C^{1}(1, \infty) . By the

Stirling formula, we have $\Theta$_{ $\omega$}(u+iv)\ll_{ $\omega$,v}u^{- $\omega$} for a fixed  v>1/2+ $\omega$ . Therefore

 h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-U+ic}^{U+ic}\frac{$\Theta$_{ $\omega$}(z)}{-iz}x^{-\frac{1}{2}-iz}dz+O(x^{c-\frac{1}{2}}U^{- $\omega$}) (c>1/2+ $\omega$) .

Using the well‐known formula

x^{-\frac{1}{2}}=\displaystyle \frac{1}{2 $\pi$}\int_{-U+ic}^{U+ic}\frac{1}{-iz}x^{-\frac{1}{2}-iz}dz+O(x^{c-\frac{1}{2}}(\log x)^{-1}U^{-1})
for x>1 and large U>1 ,

we have

x^{-\frac{1}{2}}-h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-U+ic}^{U+ic}\frac{1-$\Theta$_{ $\omega$}(z)}{-iz}x^{-\frac{1}{2}-iz}dz+O(x^{c-\frac{1}{2}}U^{- $\omega$})+O(x^{c-\frac{1}{2}}(\log x)^{-1}U^{-1}) .

Here the integrand (1-$\Theta$_{ $\omega$}(z))/z is bounded on \mathbb{C}^{+}\cup \mathbb{R} . Thus the residue theorem

gives

x^{-\frac{1}{2}}-h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-U}^{U}\frac{1-$\Theta$_{ $\omega$}(z)}{-iz}x^{-\frac{1}{2}-iz}dz+O(x^{c-\frac{1}{2}}U^{- $\omega$})+O(x^{c-\frac{1}{2}}(\log x)^{-1}U^{-1}) ,

since integrals on \displaystyle \int_{\pm U+i0}^{\pm U+ic} are bounded by x^{c-\frac{1}{2}}(\log x)^{-1}U^{-1} . Tending U to +\infty for

fixed  x>1 ,
we have

(A.5) x^{-\frac{1}{2}}-h_{ $\omega$}^{\langle 1\rangle}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{-\infty}^{\infty}\frac{1-$\Theta$_{ $\omega$}(u)}{-iu}x^{-\frac{1}{2}-iu}du (x>1) .

This implies that x^{-\frac{1}{2}}1_{(1,\infty)}(x)-h_{ $\omega$}^{\langle 1\rangle}(x) belongs to L^{2}((1, \infty), dx) ,
since (1-$\Theta$_{ $\omega$}(u))/u

belongs to L^{2}() by (1.9) and (1.10). In addition, (A.5) implies (1).
Suppose that x^{-1/2}1_{(1,\infty)}-h_{ $\omega$}^{\langle 1\rangle} belongs to L^{2}((1, \infty), dx) . Then the integral

(A.6) \displaystyle \int_{0}^{\infty}[x^{-\frac{1}{2}}1_{(1,\infty)}(x)-h_{ $\omega$}^{\langle 1\rangle}(x)]x^{\frac{1}{2}+iz}\frac{dx}{x}
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converges on the real line in L^{2} ‐sense, and converges absolutely for \Im(z)>0 ([29,
Chap.II, §10]). Hence integral (A.6) defines an analytic function in \mathbb{C}^{+} . By Proposition

A.3, integral (A.6) is equal to (1-$\Theta$_{ $\omega$}(z))/(iz) for \Im(z)>1/2+ $\omega$ . Hence we find that

 $\Theta$_{ $\omega$}(z) is an analytic function in \mathbb{C}^{+} ,
and it implies that $\Theta$_{ $\omega$}(z) is an inner function in

\mathbb{C}^{+} as well as the proof of (3). \square 

(4): By formula (A.3), the assumption implies that the integral of (2.4) converges at

z=0 in the sense

\displaystyle \lim_{T\rightarrow\infty}\int_{1}^{T}h_{ $\omega$}(x)x^{\frac{1}{2}+i0}\frac{dx}{x}.
This implies that the integral of (2.4) converges for \Im(z)>0 ,

and defines an analytic
function in \mathbb{C}^{+} ([29, Chap.II, §1]). Hence $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} by (1.9). \square 

(5): If $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} for all  $\omega$>0 , RH(A) holds for all  $\omega$>0.

Hence RH holds by Proposition 1.1. Then we obtain (5) by a way similar to the proof
of Theorem 2.3 (2‐b) in [26]. \square 

A.3. Proof of Theorem A.2

Suppose that $\Theta$_{ $\omega$}(z) is an inner function in \mathbb{C}^{+} . Let f be a compactly supported
smooth function. Put F=\mathrm{F}_{1/2}f and define

g(x)=\displaystyle \frac{1}{2 $\pi$}\int_{c-i\infty}^{c+i\infty}$\Theta$_{ $\omega$}(z)F(-z)x^{-\frac{1}{2}-iz}dz
for c\geq 0 . Then the right‐hand side is independent of c\geq 0 by the assumption, and

defines an member of L^{2}((0, \infty), dx) by (1.9). Moreover, we have

\displaystyle \int_{0}^{x}\frac{g(u)}{\sqrt{u}}du=\frac{1}{2 $\pi$}\int_{c-i\infty}^{c+i\infty}$\Theta$_{ $\omega$}(z)F(-z)\frac{x^{-iz}}{-iz}dz.
for c>0 . On the other hand, by Proposition A.4, we obtain

\displaystyle \int_{0}^{\infty}h_{ $\omega$}^{\langle 1\rangle} (xy ) f(y)dy=\displaystyle \frac{1}{2 $\pi$}\int_{c'-i\infty}^{c'+i\infty}\frac{$\Theta$_{ $\omega$}(z)}{-iz}F(-z)x^{-\frac{1}{2}-iz}dz
for c'\gg 0 . Hence

\displaystyle \frac{1}{\sqrt{x}}\int_{0}^{x}\frac{g(u)}{\sqrt{u}}du=\int_{0}^{\infty}h_{ $\omega$}^{\langle 1\rangle} (xy ) f(y)dy.

This implies that g=\tilde{\mathrm{H}}_{ $\omega$}f . Thus \tilde{\mathrm{H}}_{ $\omega$}f is defined almost everywhere and belongs to

L^{2}((0, \infty), dx) ,
since g belongs to L^{2}((0, \infty), dx) . Moreover we obtain g= Hf by the

definition of g and the latter half of the proof of Lemma 4.1. Hence \tilde{\mathrm{H}}_{ $\omega$}f=\mathrm{H}_{ $\omega$}f ,
and it

implies the extension of \tilde{\mathrm{H}}_{ $\omega$} to L^{2}((0, \infty), dx) . \square 
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