
RIMS Kôkyûroku Bessatsu
B34 (2012), 463475

Some aspects of multidimensional continued fraction

algorithms

By

Jun‐ichi Tamura * and Shin‐ichi YASUTOMI**

Abstract

In this paper, we give a resume of our recent works mainly related to algorithms of mul‐

tidimensional continued fraction expansions, which are expected to have periodicity properties
such as Lagrange�s theorem.

§1. Introduction

Many kinds of algorithms of continued fraction expansions of dimension s(\geq 2)
have been studied starting with K.G.J.Jacobi(1804‐1851), for example, see [14]. For

s=1
,

we know Lagrange�s theorem related to periodicl continued fractions and real

quadratic irrationals. But, even for real cubic irrationalities, there appeared no suitable

algorithms (of dimension 2). In this section, we roughly explain why classical algorithms

(the Jacobi‐Perron algorithm, etc.) do not work well related to the periodicity. On the

other hand, in a series of papers, we gave some good candidates of algorithms that

seem to work well related to the periodicity, cf. [1519]. Our objective in this paper is

to introduce our new algorithms announced in [1519] together with some new results

in [7, 20].
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Let K be a real algebraic number field of degree s+1 ,
and \overline{\overline{ $\alpha$}}=(1, $\alpha$^{(1)}, \ldots, $\alpha$^{(s)})

be a \mathbb{Q}- basis of K . Suppose

(1.1) [\overline{a_{0}};\overline{a_{1}}, \overline{a_{2}}, . . .] (\overline{a_{0}}\in \mathbb{Z}^{s}, \overline{a_{n}}\in \mathbb{Z}_{\geq 0}^{s}, n\geq 1)

be a continued fraction of dimension s of \overline{ $\alpha$}=($\alpha$^{(1)}, \ldots, $\alpha$^{(s)}) obtained by a certain

algorithm ALGOR. We define \overline{$\alpha$_{n}}=($\alpha$_{n}^{(1)}, \ldots, $\alpha$_{n}^{(s)})\in K^{s}(n\geq 0) by

(1.2)  $\alpha$=[\overline{a_{0}};\overline{a_{1}}, \overline{a_{2}}, . . . , \overline{a_{n-1}}, \overline{a_{n}}+\overline{$\alpha$_{n}}].

Confer with [11] for the meaning of the continued fraction on the right‐hand side of

(1.2). Notice that we do not assume the convergence of the continued fraction (1.1)
for the definitionn of \overline{$\alpha$_{n}} , and \overline{$\alpha$_{n}}=\overline{$\alpha$_{n}} ( \overline{ $\alpha$} ; ALGOR) depends on \overline{ $\alpha$} and the algorithm
ALGOR. We introduce a function rdh=rdh (  $\alpha$ ; ALGOR)

rdh : \mathbb{Z}_{\geq 0}\rightarrow \mathbb{Q}

which measures a quality of an algorithm ALGOR in a sense related to the periodicity
of the continued fraction (1.1) of \overline{ $\alpha$} obtained by the algorithm, cf. ([1519]). We need

some definitions:

dh(r) :=\displaystyle \max\{\lfloor\log_{10}|p|+1\rfloor, \lfloor\log_{10}|q|+1\rfloor\}

for r=p/q\in \mathbb{Q} (p, q\in \mathbb{Z} are coprime). The function dh can be extended to \mathbb{Q}[x] by

setting

dh( $\phi$) :=0\displaystyle \leq i\leq m\max\{dh (ci) \}

for  $\phi$=\displaystyle \sum_{i=0}^{m}c_{i}x^{i}\in \mathbb{Q}[x] . We put

dh(\overline{$\alpha$_{n}})=dh ( n;\overline{ $\alpha$} ; ALGOR)

:=_{1}\displaystyle \max_{\leq i\leq s}\{dh($\phi$_{$\alpha$_{n}^{(i)}}
rdh(n) :=dh(\overline{$\alpha$_{n}})/dh( $\alpha$)(n\geq 0) ,

where $\phi$_{ $\alpha$}\in \mathbb{Q}[x] denotes the monic minimal polynomial of  $\alpha$\in K . Notice that the

function rdh: \mathbb{Z}_{\geq 0}\rightarrow \mathbb{Q} depends on \overline{ $\alpha$} and an algorithm ALGOR. It is clear that the

set of polynomials p(x)\in \mathbb{Q}[x] such that

deg p(x)\leq d, dh(p(x))\leq M

becomes a finite set for any given numbers d, M
,

so that we have the following
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Claim: The continued fraction (1.1) is periodic if and only if rdh is bounded.

We conjectured that the function rdh is not only unbounded but also the following

explosion phenomenon takes place:

Explosion Phenomenon: \displaystyle \lim_{n\rightarrow\infty}rdh ( n;\overline{ $\alpha$} ; ALGOR) =\infty holds even for some

\overline{ $\alpha$}\in K^{2} with K=\mathbb{Q}(\sqrt[3]{d}) for some classical algorithms (the Jacobi‐Perron algorithm,
the modified Jacobi‐Perron algorithm (that is 2‐dimensional Brun�s algorithm), etc.)

In fact, by numerical experiments by PC, the graph of the function y=rdh(n)
(0\leq n\leq 50000) looks like a line y=cx(c>0) and rdh(50000) attains a few thousands

in some cases. On the other hand we gave some new algorithms for which we can expect

rdh ( n;\overline{ $\alpha$} ; ALGOR) \leq \mathrm{c}(\mathrm{K}) .

Moreover, it seems very likely that the constant c(K) depends only on the degree [K, \mathbb{Q}]
for some algorithms. For instance, we do not have found an example such that rdh(n;\overline{ $\alpha$})
exceeds ten for our algorithms when K is a real cubic field. We also refer in Section

2 some other experiments related to the periodicity of some classical multidimensional

continued fraction algorithms.
In Sections 3‐5 in this paper, we survey our recent works mainly related to periodic

continued fractions. In Section 3, we describe two algorithms AJPA (\deg K\leq 4) and

AJPA(2) (\deg K\leq 5) . We give an algorithm of dimension 2 which generalizes the

so called slow continued fraction algorithm in Section 4. The algorithm given in this

section could play important roles related to 2‐dimensional Sturmian words (or stepped

surfaces), etc.

In Section 5, we refer to continued fractions for quadratic elements over the rational

function field k(t) in the formal Laurent series k((t^{-1})) ,
where k denotes a field.

§2. Numerical experiments for some classical algorithms

The Jacobi‐Perron algorithm is defined as follows. For \mathrm{x}=(x_{1}, \ldots, x_{n})\in[0, 1)^{n}
(1, x_{1}, \ldots, x_{n} are linearly independent over \mathbb{Q} ), we define a transformation \overline{T} by

\overline{T}(x_{1}, \ldots, x_{n})=(u_{1}, \ldots, u_{n}) ,

where

u_{i}:=\left\{\begin{array}{ll}
\frac{1}{x_{1}}-\lfloor\frac{1}{x_{1}}\rfloor, & \mathrm{i}\mathrm{f} i=n,\\
\frac{x_{i+1}}{x_{1}}-\lfloor\frac{x_{i+1}}{x_{1}}\rfloor, & \mathrm{i}\mathrm{f} i\neq n.
\end{array}\right.
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The transformation \overline{T} gives rise to an algorithm, which is the so called Jacobi‐Perron

algorithm. In [4] Elsner and Hasse gave numerical experiments for 36 pairs of cubic

irrationalities on the Jacobi‐Perron algorithm by means of a computer. Among them,

they found periodicity for 14 pairs and did not find any periodicity for the other 22

pairs. From the numerical experiments in [19] we can not expect the periodicity for

(\sqrt{m}+\sqrt{n}-\lfloor\sqrt{m}+\sqrt{n}\rfloor, \sqrt{m}-\sqrt{n}-\lfloor\sqrt{m}-\sqrt{n}\rfloor, \sqrt{mn}-\lfloor\sqrt{mn}\rfloor) by Jacobi‐Perron

Algorithm for all m, n with 2\leq n<m\leq 11 and m, n, m/n\not\in \mathbb{Q}^{\times 2} except m=10 and

n=8 . In [16] we have a similar result about the modified Jacobi‐Perron Algorithm by

Podsypanin [12]. One can find the explosion phenomenon in [16], [19].

§3. AJPA

In [16] we introduce a new multidimensional continued fraction algorithm called

algebraic Jacobi‐Perron algorithm(AJPA) as follows motivated by the algorithms given
in [15]. Let K be a real number field over \mathbb{Q} with deg_{\mathbb{Q}}(K)=d . We mean by X_{K} the

set defined by

X_{K}:=\{($\alpha$_{1}, \ldots, $\alpha$_{d-1})\in(K\cap[0,1])^{d-1}| there exists a integer i with 1\leq i\leq d-1

such that K=\mathbb{Q}($\alpha$_{i}) and 1, $\alpha$_{1} ,
. . .

, $\alpha$_{d-1} are linearly independent over \mathbb{Q} }.

The function v( $\theta$) is defined for  $\theta$\in K by

(3.1) v( $\theta$) :=\left\{\begin{array}{ll}
\frac{ $\theta$}{|N_{K/\mathbb{Q}}( $\theta$)|^{\frac{1}{d-1}}} & \mathrm{i}\mathrm{f} K=\mathbb{Q}( $\theta$) ,\\
-1 & \mathrm{i}\mathrm{f} K\neq \mathbb{Q}( $\theta$) ,
\end{array}\right.
where N_{K/\mathbb{Q}}( $\theta$) is the norm of  $\theta$ over Q.

For  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{d-1})\in X_{K} ,
we define  $\rho$( $\alpha$) by

 $\rho$( $\alpha$)=\displaystyle \max\{v($\alpha$_{i})|1\leq i\leq d-1\}.

We denote by  $\omega$( $\alpha$) the number i\in\{1, . . . , d-1\} uniquely determined by

$\alpha$_{i}=\displaystyle \max\{$\alpha$_{j}| $\rho$( $\alpha$)=v($\alpha$_{j})\}.

We remark that \#\{$\alpha$_{j}| $\rho$( $\alpha$)=v($\alpha$_{j})\}=1 . We define a transformation T_{(K)} on X_{K} as

follows:

For  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{d-1})\in X_{K}, T_{(K)}( $\alpha$)=($\beta$_{1}, \ldots, $\beta$_{d-1}) with

$\beta$_{i}:=\left\{\begin{array}{ll}
\frac{1}{$\alpha$_{ $\omega$( $\alpha$)}}-\lfloor\frac{1}{$\alpha$_{ $\omega$( $\alpha$)}}\rfloor \mathrm{i}\mathrm{f} i= $\omega$( $\alpha$) , & \\
\frac{$\alpha$_{i}}{$\alpha$_{ $\omega$( $\alpha$)}}-\lfloor\frac{$\alpha$_{i}}{$\alpha$_{ $\omega$( $\alpha$)}}\rfloor \mathrm{i}\mathrm{f} i\neq $\omega$( $\alpha$) & (i=1, \ldots, d-1) .
\end{array}\right.
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The transformation T_{(K)} gives rise to an algorithm of continued fraction of dimen‐

sion d-1
,

which will be also referred to AJPA. In [16] we gave some computer ex‐

periments by which we can expect that the expansion obtained by our algorithm for

\underline{ $\alpha$}=($\alpha$_{1}, \ldots, $\alpha$_{s})\in K^{s} (with some natural conditions on \underline{ $\alpha$}) becomes periodic for any

real number field K as far as s+1=deg_{\mathbb{Q}}(K)\leq 4 . But, it seems very likely that the

algorithm will not work well if deg\mathbb{Q}(K)=5 . For each real valued function v^{*}( $\theta$) on K

instead of the function v( $\theta$) ,
we can define an algorithm in the similar manner as above.

For an algebraic number  $\theta$
,

we mean by  $\phi$_{ $\theta$}\in \mathbb{Q}[x] the monic minimal polynomial of  $\theta$.

In [18] we define v'( $\theta$) for  $\theta$\in K by

(3.2) v'( $\theta$) :=\left\{\begin{array}{ll}
\frac{ $\theta$}{|D( $\theta$)|^{\frac{1}{d-1}}} & \mathrm{i}\mathrm{f} K=\mathbb{Q}( $\theta$) ,\\
-1 & \mathrm{i}\mathrm{f} K\neq \mathbb{Q}( $\theta$) ,
\end{array}\right.
where D( $\theta$)=[\displaystyle \frac{d}{dx}$\phi$_{ $\theta$}(x)]_{x= $\theta$} is the differential coefficient of $\phi$_{ $\theta$}(x) at  x= $\theta$ . We

introduced the algorithm AJPA2, which is associated with  v' . From the numerical

experiments in [18] we can expect that the resulting expansion of \underline{ $\alpha$}\in X_{K} by AJPA2

always becomes periodic for any real number field K with deg_{\mathbb{Q}}(K)=s+1\leq 5 . But,
it seems very likely that the algorithm will not work well if deg_{\mathbb{Q}}(K)=6.

§4. Slow continued fraction algorithm

In this section we report some of the results announced in [7]. We define a trans‐

formation T on the interval [0 ,
1 ] as follows:

T(x):=\left\{\begin{array}{l}
\frac{x}{1-x} \mathrm{i}\mathrm{f} x\in I_{0},\\
\frac{2x-1}{x} \mathrm{i}\mathrm{f} x\in I_{1},
\end{array}\right.
where I_{0}=[0, \displaystyle \frac{1}{2}] and I_{1}= (\displaystyle \frac{1}{2},1 ].  $\dagger$ : [0,1]\rightarrow\{0,1\} is defined by x\in I_{ $\epsilon$(x)} . The

algorithm (T,  $\dagger$, [0,1]) are considered by many authors (for example see [10]). (T,  $\dagger$, [0,1])
is related to the continued fraction algorithm. The transformation F on [0 ,

1 ] defines

 F(x)=\displaystyle \frac{1}{x}-\mathrm{L}\frac{1}{x}\rfloor . Let  x=[0, k_{1}, k_{2}, . . .] be the regular continued fraction expansion
of x . Then, we see that T^{k_{1}+k_{2}}(x)=F^{2}(x) . Therefore, (T,  $\dagger$, [0,1]) is a kind of slow

continued fraction algorithm. (T,  $\dagger$, [0,1]) is also related to Farey partitions. Let L

be a real quadratic number field. We can also define the algorithm (T,  $\dagger$, [0,1]\cap L) .

Then, every element in [0, 1]\cap L is eventually periodic. In [7] we extend the algorithm

(T,  $\dagger$, [0,1]\cap L) to certain multidimensional algorithms. Let K be a real cubic field. Let
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\triangle_{K}= { (x, y)\in K^{2}|1, x, y are lineally independent over \mathrm{Q} , 0<x, y and x+y<1 }.
We put

Ind=\{(i, j)|i, j\in\{0, 1, 2\}, i\neq j\}.

We denote by \triangle and \triangle(i, j) for (i, j)\in Ind the regions

\triangle:=\{(x, y)\in \mathbb{R}^{2}|x, y\geq 0, x+y\leq 1\},

\triangle(1,2):=\{(x, y)\in\triangle|x\geq y\},

\triangle(2,1):=\{(x, y)\in\triangle|x\leq y\},

\triangle(0,1) :=\{(x, y)\in\triangle|2x+y-1\leq 0\},

\triangle(1,0) :=\{(x, y)\in\triangle|2x+y-1\geq 0\},

\triangle(0,2) :=\{(x, y)\in\triangle|x+2y-1\leq 0\},

\triangle(2,0) :=\{(x, y)\in\triangle|x+2y-1\geq 0\}.

(0,
1)(0,1)

(\displaystyle \frac{1}{2}, \frac{1}{2})
\triangle(2,1)

(1, 0)
\triangle(1,2)

(0,0) ( 1, 0) (0,0)

(0,
1)

(0,
(2, 0)

(0,
2)

(0,0) ( 1, 0)
Figure

(\displaystyle \frac{1}{2},0) ( 1, 0)
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For each (i, j)\in Ind ,
let us introduce the maps Ti_{ij} : \triangle(i, j)\rightarrow\triangle as follows:

 T_{12}(x, y):=(\displaystyle \frac{x-y}{1-y}, \frac{y}{1-y}) ,

T_{21}(x, y):=(\displaystyle \frac{x}{1-x}, \frac{y-x}{1-x}) ,

T_{10}(x, y):=(\displaystyle \frac{2x+y-1}{x+y}, \frac{y}{x+y}) ,

T_{01}(x, y):=(\displaystyle \frac{x}{1-x}, \frac{y}{1-x}) ,

T_{20}(x, y):=(\displaystyle \frac{x}{x+y}, \frac{x+2y-1}{x+y}) ,

T_{02}(x, y):=(\displaystyle \frac{x}{1-y}, \frac{y}{1-y})
We define the value v( $\alpha$,  $\beta$, i, j) for r\in \mathbb{R}^{+}, ( $\alpha$,  $\beta$)\in\triangle_{K} and i, j\in\{0 , 1, 2 \} with

i\neq j as follows:

v( $\alpha$,  $\beta$, i, j):=\left\{\begin{array}{l}
\frac{|$\alpha$^{5/2}$\beta$^{5/2}|}{|N( $\alpha$)N( $\beta$)|}, \mathrm{i}\mathrm{f} \{i, j\}=\{1, 2\},\\
\frac{|$\alpha$^{5/2}(1- $\alpha$- $\beta$)^{5/2}|}{|N( $\alpha$)N(1- $\alpha$- $\beta$)|}, \mathrm{i}\mathrm{f} \{i, j\}=\{0, 1\},\\
\frac{|$\beta$^{5/2}(1- $\alpha$- $\beta$)^{5/2}|}{|N( $\beta$)N(1- $\alpha$- $\beta$)|}, \mathrm{i}\mathrm{f} \{i, j\}=\{0, 2\}.
\end{array}\right.
We remark that the element (i_{0}, j_{0})\in Ind is uniquely determined by an equality

 v( $\alpha$,  $\beta$, i_{0}, j_{0})=\displaystyle \max\{v( $\alpha$,  $\beta$, i, j We define  $\dagger$( $\alpha$,  $\beta$) for ( $\alpha$,  $\beta$)\in\triangle_{K} by

$\epsilon$_{K}( $\alpha$,  $\beta$):=\left\{\begin{array}{l}
(1, 2), \mathrm{i}\mathrm{f} \{i_{0}, j_{0}\}=\{1, 2\} \mathrm{a}\mathrm{n}\mathrm{d} ( $\alpha$,  $\beta$)\in\triangle(1,2) ,\\
(2, 1), \mathrm{i}\mathrm{f} \{i_{0}, j_{0}\}=\{1, 2\} \mathrm{a}\mathrm{n}\mathrm{d} ( $\alpha$,  $\beta$)\in\triangle(2,1) ,\\
(1, 0) , \mathrm{i}\mathrm{f} \{i_{0}, j_{0}\}=\{0, 1\} \mathrm{a}\mathrm{n}\mathrm{d} ( $\alpha$,  $\beta$)\in\triangle(1,0) ,\\
(0,1) , \mathrm{i}\mathrm{f} \{i_{0}, j_{0}\}=\{0, 1\} \mathrm{a}\mathrm{n}\mathrm{d} ( $\alpha$,  $\beta$)\in\triangle(0,1) ,\\
(2, 0) , \mathrm{i}\mathrm{f} \{i_{0}, j_{0}\}=\{0, 2\} \mathrm{a}\mathrm{n}\mathrm{d} ( $\alpha$,  $\beta$)\in\triangle(2,0) ,\\
(0,2) , \mathrm{i}\mathrm{f} \{i_{0}, j_{0}\}=\{0, 2\} \mathrm{a}\mathrm{n}\mathrm{d} ( $\alpha$,  $\beta$)\in\triangle(0,2) .
\end{array}\right.
Notice that $\epsilon$_{K}( $\alpha$,  $\beta$) is well‐defined since 1,  $\alpha$,  $\beta$ is linearly independent over \mathbb{Q} . We

define a transformation T_{K} on \triangle_{K} by

T_{K}( $\alpha$,  $\beta$):=T_{i_{0}j\mathrm{o}}( $\alpha$,  $\beta$) ,
if $\epsilon$_{K}( $\alpha$,  $\beta$)=(i_{0}, j_{0}) .

Thus, we have seen that an algorithm (, T_{K},  $\dagger$) can be defined.
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Conjecture 4.1 ([7]). Every element in \triangle_{K} is eventually periodic by the algo‐
rithm (T_{K},  $\dagger$, \triangle_{K}) for every real cubic field K.

The algorithm (T,  $\dagger$, [0,1]) has connection with substitutions on Sturmian sequences.

We define the substitution $\phi$_{i}(i=0,1) by

$\phi$_{0}:\left\{\begin{array}{l}
0\rightarrow 0\\
1\rightarrow 01,
\end{array}\right. $\phi$_{1}:\left\{\begin{array}{l}
0\rightarrow 01\\
1\rightarrow 1.
\end{array}\right.
For x\in[0 ,

1 ], S(x) is defined to be an infinite word  s_{1}s_{2}\ldots sn. .

.,
where  s_{n}=\lfloor nx\rfloor-

\lfloor(n-1)x\rfloor . The word  S(x) is referred to as a homogeneous Sturmian sequence.

The following theorem is given by many authors (for example see [10]).

Theorem 4.2. For x\in[0 ,
1 ], $\phi$_{ $\epsilon$(x)}(S(T(x)))=S(x) holds.

Theorem 4.2 is naturally extended to Theorem 4.3 using the algorithm (T_{2},  $\dagger$, \triangle)
and stepped surfaces introduced in [8] and [1].

For x=\in \mathbb{Z}^{3}, i=0 , 1, 2, we mean by (x=, i^{*}) a unit square defined by

(x=, i^{*}):=\{x=+te_{j}=+ue_{k}=|t, u\in[0, 1], \{i, j, k\}=\{0, 1, 2\}\}

where e_{i}=(i=0,1,2) is the canonical basis of \mathbb{R}^{3}.

(=0, 0^{*}) (=0, 1^{*}) (=0, 2^{*})

\displaystyle \sum_{i=0}^{2}(=0, i^{*})

Figure 2. (0i^{*}) , i=0 , 1, 2 and \displaystyle \sum_{i=0}^{2}(0i^{*}) .

We denote by \mathcal{G} the \mathbb{Z}‐free module generated by all the squares:

\displaystyle \mathcal{G}:=\{\sum m_{\overline{\overline{x}},i}(x=, i^{*})|x=\in \mathbb{Z}^{3}, i\in\{0, 1, 2\}, m_{\overline{\overline{x}},i}\in \mathbb{Z}\}.
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Let  $\alpha$==t($\alpha$^{(0)}, $\alpha$^{(1)}, $\alpha$^{(2)})\in \mathbb{R}_{>0}^{3} and $\alpha$^{(0)}, $\alpha$^{(1)}, $\alpha$^{(2)} be linearly independent over

\mathbb{Q} . Notice that without loss of generality, we may assume $\alpha$^{(0)}+$\alpha$^{(1)}+$\alpha$^{(2)}=1.
We put

\mathscr{P}_{\overline{\overline{ $\alpha$}}}:=\{^{=}x\in \mathbb{R}^{3}|\langle^{=} $\alpha$, x=\rangle=0\}

where \rangle means the inner product. The so‐called �stepped surfa ce� \mathscr{S}_{\overline{\overline{ $\alpha$}}} is defined by

\mathscr{S}_{\overline{\overline{ $\alpha$}}}:=\cup^{2}\{(x=, i^{*})|\langle $\alpha$=, x=\rangle\geq 0, \langle $\alpha$=, (x=-e_{i}=)\rangle<0\}
j=0

Let  $\sigma$ be a substitution over \{0 , 1, 2 \} and M_{ $\sigma$} be its incidence matrix of  $\sigma$ . We

suppose that  $\sigma$ is unimodular, i.e., \det M_{ $\sigma$}=\pm 1.
The dual substitution $\Theta$_{ $\sigma$} of  $\sigma$

,
which is an endomorphism on \mathcal{G} introduced in [1],

can be defined by

(4.1) $\Theta$_{ $\sigma$}(x=, i^{*}):=M_{ $\sigma$}^{-1}(x=)+\displaystyle \sum_{j=0}^{2}\sum_{S: $\sigma$(j)=PiS}(M_{ $\sigma$}^{-1}(f(S)), j^{*}) ,

$\Theta$_{ $\sigma$}(\displaystyle \sum(^{=}x, i^{*})):=\sum($\Theta$_{ $\sigma$}(^{=}x, i^{*}))

for i=0 , 1, 2, where f(w) :=t(|w|_{0}, |w|_{1}, |w|_{2})(|w|_{i} is the number of occurrences of

a symbol i appearing in a finite word w\in\{0, 1, 2\}^{*} ), and P (resp. S ) means that the

prefix (resp. suffix) of i of  $\sigma$(j)=PiS respectively.
We consider six substitutions $\sigma$_{ $\epsilon$} for  $\epsilon$\in Ind defined by

$\sigma$_{(1,0)}:\left\{\begin{array}{l}
0\rightarrow 0\\
1\rightarrow 01,\\
2\rightarrow 2
\end{array}\right. $\sigma$_{(2,1)}:\left\{\begin{array}{l}
0\rightarrow 0\\
1\rightarrow 1 ,\\
2\rightarrow 12
\end{array}\right. $\sigma$_{(0,2)}:\left\{\begin{array}{l}
0\rightarrow 20\\
1\rightarrow 1 ,\\
2\rightarrow 2
\end{array}\right.
$\sigma$_{(2,0)}:\left\{\begin{array}{l}
0\rightarrow 0\\
1\rightarrow 1 ,\\
2\rightarrow 02
\end{array}\right. $\sigma$_{(0,1)}:\left\{\begin{array}{l}
0\rightarrow 10\\
1\rightarrow 1 ,\\
2\rightarrow 2
\end{array}\right. $\sigma$_{(1,2)}:\left\{\begin{array}{l}
0\rightarrow 0\\
1\rightarrow 21\\
2\rightarrow 2
\end{array}\right.

Then, in view of (4.1), we have the dual substitutions $\Theta$_{ $\epsilon$} on \mathcal{G} of $\sigma$_{ $\epsilon$} ,
which are



472 JuN‐ichi Tamura AND SHIN‐ichi Yasutomi

given by

$\Theta$_{(1,0)}:\left\{\begin{array}{l}
(=0, 0^{*})\mapsto(=0, 0^{*})+(e_{1}=-e_{0}=,1^{*})\\
\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{\mapsto\mapsto\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{ ,
\end{array}\right.
$\Theta$_{(2,1)}:\left\{\begin{array}{l}
(=0, 0^{*})\mapsto(=0, 0^{*})\\
\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{\mapsto\mapsto\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{+(e_{2}=-e_{1}=,2^{*}) ,
\end{array}\right.
$\Theta$_{(0,2)}:\{\left\{\begin{array}{l}
00^{*}\\
01^{*}\\
02^{*}
\end{array}\right\}\mapsto\mapsto\mapsto\left\{\begin{array}{ll}
0 & 0^{*}\\
0 & 1^{*}\\
0 & 2^{*}
\end{array}\right\}+(e_{0}=-e_{2}=,0^{*}) �

$\Theta$_{(2,0)}:\left\{\begin{array}{l}
(=0, 0^{*})\mapsto(=0, 0^{*})+(e_{2}=-e_{0}=,2^{*})\\
\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{\mapsto\mapsto\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{ .
\end{array}\right.
$\Theta$_{(0,1)}:\left\{\begin{array}{l}
(=0, 0^{*})\mapsto(=0, 0^{*})\\
\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{\mapsto\mapsto\}_{\overline{0},2^{*}}^{0,1^{*}}=-\{+(e_{0}=-e_{1}=,0^{*}) ,
\end{array}\right.
$\Theta$_{(1,2)}:\{\left\{\begin{array}{l}
00^{*}\\
01^{*}\\
02^{*}
\end{array}\right\}\mapsto\mapsto\mapsto\left\{\begin{array}{l}
00^{*}\\
01^{*}\\
02^{*}
\end{array}\right\}+(e_{1}=-e_{2}=,1^{*})

Theorem 4.3 ([7]). Let (x, y)\in\triangle_{K} . Let (u, v)=T_{K}(x, y) . Then, $\Theta$_{$\epsilon$_{K}(x,y)}
gives a bijection from S_{(u,v,1-u-v)} to S_{(x,y,1-x-y)} for every real cubic field K.

We remark that multidimensional continued fraction algorithms and substitutions

on stepped surfaces are considered in [6], [8], [9], [3] and [5].

§5. Formal power series

Let k be a field. Throughout the paper, t denotes an indeterminate. For 0\neq $\alpha$=

\displaystyle \sum_{i=-\infty}^{m}b_{i}t^{i}\in k((t^{-1})) with b_{m}\neq 0 we define | $\alpha$| and \lfloor $\alpha$\rfloor by

| $\alpha$|:=e^{m}(|0|:=0) ,

\lfloor $\alpha$\rfloor :=\displaystyle \sum_{i=0}^{m}b_{i}t^{i} ( \lfloor $\alpha$\rfloor :=0 for m<0 ).

One can consider an algorithm of simple continued fraction expansion in k((t^{-1})) as

well as in \mathbb{R} (see, for example [2], [13]). For  $\alpha$\in k((t^{-1})) we set

$\alpha$_{0}= $\alpha$, a_{0}=\lfloor$\alpha$_{0}\rfloor,

$\alpha$_{i+1}=\displaystyle \frac{1}{$\alpha$_{i}-a_{i}}, a_{i+1}=\lfloor$\alpha$_{i+1}\rfloor.
Then, we get

 $\alpha$=a_{0}+\displaystyle \frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+}}}=[a_{0};a_{1}, a_{2}, ]( $\alpha$\in k((t^{-1}))\backslash k(t), a_{n}\in k[t])
.
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If there exist m, n\in \mathbb{Z}_{\geq 0} with m\neq n and  $\epsilon$\in k such that $\alpha$_{m}= $\epsilon \alpha$_{n} ,
we call  $\alpha$\in k((t^{-1}))

pseudoperiodic. W. M. Schmidt gave the following criterion whether  $\alpha$\in k((t^{-1})) is

pseudoperiodic or not:

Theorem 5.1 (Schmidt [13]). Suppose char k\neq 2 . Suppose  $\alpha$ is quadratic over

 k(t) and satisfies

A$\alpha$^{2}+B $\alpha$+C=0

where A, B, C are relatively prime. The discriminant of this equation is D=B^{2}-4AC.

Then  $\alpha$ has a pseudoperiodic continued fraction if and only if the relation

 Y^{2}-DZ^{2}\in k^{\times}

has a nontrivial solution, i.e., a solution Y, Z\in k[t] with Z\neq 0.

As a consequence of the theorem, Schmidt showed that for a field k of characteristic

0 there are quadratic elements in k((t^{-1})) whose continued fraction is not pseudoperi‐
odic. The same is true when char k=p(\neq 0) and k is transcendental over \mathrm{F}_{p} . In [17]
we investigated what continued fraction expansions quadratic elements in k((t^{-1})) have.

We introduced there a new class C of continued fractions which contains the pseudope‐
riodic continued fractions and we gave a conjecture which says that if an element  $\alpha$ of

 k((t^{-1})) is quadratic over \mathbb{Q}(t) then  $\alpha$ belongs to the new class  C . We gave some exam‐

ples which support our conjecture. The following Theorem 5.2 is one of these examples.
We remark that the following element  $\sigma$\in \mathbb{Q}((t^{-1})) in the theorem is quadratic over

\mathbb{Q}(t) and its continued fraction expansion \in C is not pseudoperiodic.

Theorem 5.2 ([17]). Let  $\sigma$= $\sigma$(t) be the element in \mathbb{Q}((t^{-1})) satisfy ing

(5.1) $\sigma$^{2}-(t^{2}+1)=0

such that the coefficient of t in  $\sigma$ is 1. Let  t^{3} $\sigma$=[A_{0};A_{1}, A_{2}, . . .] be the simple continued

fraction expansion of  t^{3} $\sigma$ . Let  $\tau$_{n}=[0;A_{n}, A_{n+1}, . . .] (n\in \mathbb{Z}_{\geq 0}) .

1. Then,

A_{0}=t^{4}+\displaystyle \frac{1}{2}t^{2}-\frac{1}{8},

for n\geq 1

(5.2) A_{n}=\displaystyle \frac{$\gamma$_{n+1}((4n^{2}+4n)t^{2}+2n^{2}+2n+1)}{8(n^{4}+2n^{3}+n^{2})},
where \{$\gamma$_{j}\}_{j=1}^{\infty} is defined by as follows: $\gamma$_{1}=-1 and forj\geq 1

(5.3) $\gamma$_{j}$\gamma$_{j+1}=-64j^{4}
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2.

(5.4) $\tau$_{n}=\displaystyle \frac{$\gamma$_{n}(8n^{2}t^{3} $\sigma$-8n^{2}t^{4}-4n^{2}t^{2}+1)}{8(4n^{4}-4n^{3})t^{2}-8n^{2}}.
There are many multidimensional continued fraction algorithms on formal power

series (see [21]). But it seems to be difficult to get Lagrange type theorems related to

continued fractions obtained by any known algorithms for elements in the field \mathbb{Q}((t^{-1})) .

In [20] we consider AJPA in k((t^{-1})) in the similar manner to number fields on \mathbb{Q} . In [20]
we give an example ( $\alpha$,  $\beta$) ,

where  $\alpha$,  $\beta$\in \mathbb{Q}((t^{-1})) are elements of a cubic field on \mathbb{Q}(t)
and the expansion of ( $\alpha$,  $\beta$) by AJPA is not eventually periodic, but we can describe the

expansion such as Theorem 5.2. In [20] we give some conjectures related to Lagrange

type theorem by AJPA.
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