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Nonplanar traveling waves

of a bistable reaction‐diffusion equation
in the multi‐dimensional space

By

Yoshihisa Morita *

Abstract

We survey the existence result for nonplanar traveling waves of a bistable reaction‐diffusion

equation in the space \mathbb{R}^{n+1}
,

which gives a heteroclinic connection of the trivial solution and

the unstable standing wave in \mathbb{R}^{n} . Since the problem can be formulated in a monostable case,

the equation allows a continuous family of the traveling waves with the speed in a semi‐infinite

interval.

§1. Introduction

In this article we consider the following scalar reaction‐diffusion equation in the

multi‐dimensional space \mathbb{R}^{n+1} :

(1.1) u_{t}=\triangle u+u_{yy}+f(u) ,

where

x=(x_{1} , \displaystyle \cdots x_{n})\in \mathbb{R}^{n}, y\in \mathbb{R}, u_{t}=\frac{\partial u}{\partial t}, \triangle=\sum_{k=1}\frac{\partial^{2}}{\partial x_{k}^{2}}n, u_{yy}=\frac{\partial^{2}u}{\partial y^{2}}.
We assume that f(u) is C^{2} on an open interval containing [0 ,

1 ] and that f(u) satisfies

(1.2) f(0)=f(a)=f(1)=0, f'(0)<0, f'(a)>0, f'(1)<0,

(1.3) f(u)\neq 0 for u\in(0, a)\cup(a, 1) ,
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where 0<a<1 ,
and

(1.4) f''(u)\geq 0 (0\leq u\leq $\beta$) , f''(u)\leq 0 ( $\beta$\leq u\leq 1)

for a number  $\beta$\in(0,1) . The condition (1.2) implies that constant solutions u=0 ,
1 are

asymptotically stable equilibria of the diffusion free equation of (1.1) while u=a is an

unstable one. The equation (1.1) satisfying (1.2) and (1.3) is called a bistable reaction‐

diffusion equation. It is known that (1.1) with (1.2)-(1.3) allows a planar traveling wave,

that is, there is a solution u= $\phi$(y-ct) satisfying

\left\{\begin{array}{ll}
$\phi$_{zz}+c$\phi$_{z}+f( $\phi$)=0,  $\phi$(z)>0 & (z\in \mathbb{R}) ,\\
\lim_{z\rightarrow-\infty} $\phi$(z)=1, \lim_{z\rightarrow\infty} $\phi$(z)=0. & 
\end{array}\right.
where z=y-ct (for instance, see [7]). Since $\phi$'(z)<0 holds for the solution  $\phi$(z) ,

it is

called a monotone planar traveling wave (solution). Henceforth we assume

\displaystyle \int_{0}^{1}f(u)du>0,
which implies that the speed c is positive.

We note that the stationary equation

\triangle v+f(v)=0 (x\in \mathbb{R}^{n}) , v(x)>0, \displaystyle \lim v(x)=0
|x|\rightarrow\infty

allows a one hump solution  v(x) for n=1 or for n\geq 2 a radially symmetric solution

v(x)= $\Phi$(r)(r=|x|)

(1.5) \left\{\begin{array}{l}
$\Phi$_{rr}+\frac{n-1}{r}$\Phi$_{r}+f( $\Phi$)=0,  $\Phi$(r)>0(0<r<\infty) ,\\
$\Phi$_{r}(0)=0, \lim_{r\rightarrow\infty} $\Phi$(r)=0
\end{array}\right.
with the monotone profile $\Phi$_{r}(r)<0(0<r<\infty) . These solutions v(x) are called

standing wave solutions and they are unique up to translation. Moreover, those are

unstable as equilibrium solutions to

v_{t}=\triangle v+f(v) (x\in \mathbb{R}^{n})

for n=1 and n\geq 2 respectively.
We survey the results for the traveling wave connecting u=1 (at  y=-\infty ) with

 u=v(x) (at  y=\infty ). We look for the solution with the form  u=U (x , y—ct), namely,
we consider the equation

(1.6) \left\{\begin{array}{l}
\triangle U+U_{zz}+cU_{z}+f(U)=0 ((x, z)\in \mathbb{R}^{n+1}) ,\\
\lim_{z\rightarrow-\infty}U(x, z)=1, \lim_{z\rightarrow\infty}U(x, z)=v(x) .
\end{array}\right.
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Similarly, we can also consider the solution of

\left\{\begin{array}{l}
\triangle U+U_{zz}+cU_{z}+f(U)=0 ((x, z)\in \mathbb{R}^{n+1}) ,\\
\lim_{z\rightarrow-\infty}U(x, z)=0, \lim_{z\rightarrow\infty}U(x, z)=v(x) .
\end{array}\right.
The same argument can apply to the latter case, so we omit the statement for this case,

though the profile of U(x, z) turns to be monotone increasing in z while decreasing in

(1.6).
The problem of (1.6) reminds us of the monostable case as in [15] and [1, 2].

Therefore, we can expect that there is a family of traveling waves with the speed c in a

semi‐infinite interval. We show that this is certainly true in §3.

§2. Stationary problem in \mathbb{R}^{n}

Assume (1.2) and (1.3) and consider

(2.1) \triangle v+f(v)=0 (x\in \mathbb{R}^{n}) ,

For n=1
,

the equation

v(x)>0, \displaystyle \lim v(x)=0.
|x|\rightarrow\infty

(2.2)  v_{xx}+f(v)=0

is converted to a Hamilton system and we can easily obtain a unique solution of (2.1) up

to translation by a homoclinic orbit of the Hamiltonian system. Moreover, the linearized

eigenvalue problem for such a solution v(x)

$\varphi$_{xx}+f'(v(x)) $\varphi$= $\mu \varphi$, \displaystyle \lim $\varphi$(x)=0
|x|\rightarrow\infty

tells that the first eigenvalue is simple and positive while the second one is zero with

the corresponding eigenfunction  $\varphi$=v_{x}(x) .

For n\geq 2 we further assume (1.4). Given a positive R ,
we first consider the

following problem in the ball with the radius R :

(2.3) \triangle v+f(v)=0 (|x|<R) , v=0 (|x|=R)

By the famous result [8] all positive solutions to (2.3) is radially symmetric, so put

v=v(r) , r=|x| ,
and they satisfy

(2.4) v''+\displaystyle \frac{n-1}{r}v'+f(v)=0 (0<r<R) , v'(0)=v(R)=0.
Then the solution satisfies v'(r)<0(0<r<R) . In fact, using the shooting method,
we can classify the positive solutions to (2.4). In addition, the local bifurcation theorem

applied to this case tells the following result:
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Proposition 2.1. ([3], [19]) There is a number R^{*}>0 such that (2.4) with

(1.2)(1.4) has no positive solution for R<R^{*} , exactly one positive solution for
R=R^{*} and for R>R^{*} exactly two positive solutions, denoted by v=v_{R}^{+}, v_{\overline{R}} , sat‐

isfying 0<v_{R}^{-}(r)<v_{R}^{+}(r)<1.

We note that for the linearized eigenvalue problem of a positive solution v_{R} to (2.4),
defined by

(2.5) \mathcal{L}_{R}[w]:=\triangle w+f'(v_{R})w= $\mu$ w (|x|<R) , w=0 (|x|=R) ,

the eigenfunction w corresponding to a positive eigenvalue  $\mu$(>0) is radially symmetric.
This implies that the Morse index for the solution v_{R} in (2.3) coincides with that in

(2.4). Consequently, we have the next result.

Proposition 2.2. ([3], [19]) Assume R>R^{*} . Then the spectrum of the linearized

operator \mathcal{L}_{R} forv=v_{R}^{+} consists of negative eingenvalues while forv=v_{\overline{R}} it consists of
one positive eigenvalue and negative eigenvalues.

Now we consider the problem in the whole space.

(2.6) \displaystyle \triangle v+f(v)=0 (x\in \mathbb{R}^{n}) , v(x)>0, \lim v(x)=0.
|x|\rightarrow\infty

By the argument in [9] we see that a positive solution to (2.6) must be radially sym‐

metric. In fact, we have more properties for the solution to (2.6).

Theorem 2.3. ([3], [19]) Assume (1.2)(1.4). Then there is a positive solution to

(2.6) which is radially symmetric and unique up to translation. For the solution denoted

by  $\Phi$(|x|) ,
consider the spectrum  $\sigma$(\mathcal{L}) of

(2.7) \mathcal{L}:=\triangle+f'( $\Phi$):H^{2}(\mathbb{R}^{n})\rightarrow L^{2}(\mathbb{R}^{n}) .

Then the following properties hold:

(i)  $\sigma$(\mathcal{L})=$\sigma$_{p}(\mathcal{L})\cup$\sigma$_{e}(\mathcal{L}) , where $\sigma$_{p}(\mathcal{L}) is the point spectrum and $\sigma$_{e}(\mathcal{L}) is the essential

spectrum.

(ii) $\sigma$_{e}(\mathcal{L})=(-\infty, f'(0)], $\sigma$_{p}(\mathcal{L})\subset(f'(0), \infty) .

(iii) For  $\mu$\in$\sigma$_{p}(\mathcal{L}) the corresponding eigenfu nction  $\psi$ satises

| $\psi$(x)|\leq C_{ $\epsilon$}e^{-\sqrt{(-f'(0)+ $\mu$+ $\epsilon$)/2}|x|}

for any  $\epsilon$>0 and a constant C_{ $\epsilon$}>0 depending on  $\epsilon$.
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(iv) For  $\mu$\in(0, \infty)\cap$\sigma$_{p}(\mathcal{L}) the corresponding eigenfu nction is radially symmetric.

(v) The principal eigenvalue $\lambda$_{1}>0 is simple and the corresponding eigenfunction can

be chosen positive.

(vi) The second eigenvalue is $\lambda$_{2}=0 and the eigenspace for $\lambda$_{2}=0 is spanned by

\displaystyle \frac{\partial $\Phi$}{\partial x_{i}} (i=1,2, \cdots, n) .

We remark that as  R\rightarrow\infty ,
the solution  v_{R}^{+} to (2.4) converges to v=1 uniformly

in any compact set while v_{\overline{R}} converges to the solution  $\Phi$ of (1.5).

§3. Nonplanar traveling waves

By [6], [10], [11, 12, 13] and [17, 18] the existence and the stability of nonplanar

traveling waves, called  V‐shaped waves and conical waves, have been extensively studied.

Moreover, the existence of pyramidal shaped fronts is also given in [20, 21]. Here we

introduce another type of traveling waves studied in [14] and [16].
For n=1

,
as mentioned in the previous section, the stationary problem (2.2)

is converted to a Hamiltonian system, thus we see that it has a family of periodic
solutions \{v_{p}(x;T)\}_{ $\omega$<T<\infty}( $\omega$:=2 $\pi$\sqrt{f'(a)}) ,

where T is the period of the solution,
and a homoclinic solution v_{h}(x) . Then v_{p} T ) \rightarrow a as T\rightarrow $\omega$+0 ,

while as T\rightarrow\infty,

v_{p} T)\rightarrow v() in any compact set.

The authors of [14] prove that (1.1) with (1.2) and (1.3) allows a heteroclinic

connection between u=1(y\rightarrow-\infty) and u=v_{p} T ) (y\rightarrow\infty) . More precisely, for each

T\in( $\omega$, \infty) ,
there is a positive number c_{\min}(T) such that the equation allows a traveling

wave solution given by solving (1.6) with v=v_{p} T ) if and only if  c\in[c_{\min}(T), \infty ).
Moreover, the solution is unique up to translation.

They also prove that  c_{\min}(T)\rightarrow c^{*}(T\rightarrow $\omega$+0) for a number c_{\min}>0 and that

for each c>c^{*} ,
the solution denoted by U(x, z;c, T) , converges to the planer traveling

wave of (1.1), say U^{1a}(z;c) , connecting u=1(z\rightarrow-\infty) with u=a(z\rightarrow\infty) .

On the other hand, there is c_{\min}>0 such that c_{\min}(T)\rightarrow c_{\min}(T\rightarrow\infty) and for

each c>c_{\min} the solution U(x, z;c, T) converges to U ;c) of (1.6) with v=v_{h} as

 T\rightarrow\infty with an appropriate shift.

In sequel they succeed to prove the existence of the traveling wave together with

the characterization of the minimum speed for the solution to (1.6).

Theorem 3.1. ([14]) Assume (1.2) and (1.3). For  n=1 there is a solution U=

U(x, z;c) to (1.6) satisfy ing U(-x, z;c)=U(x, z;c) , U_{z}(, z;c)<0 if and only if  c\in

[c_{\min}, \infty) . This solution is unique up to z translation.
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As for the higher dimensional case we have the next result.

Theorem 3.2. ([16]) Let  $\Phi$ be the positive solution to (1.5) which is unique. Then

there is a solution to (1.6) satisfy ing  U_{z}(x, z)\leq 0 if c\geq 2\sqrt{ $\kappa$} , where

 $\kappa$:=\displaystyle \max\{_{0}\max_{\leq u\leq 1}|f'(u)|, $\lambda$_{1}\}
( $\lambda$_{1} is the first eigenvalue of \mathcal{L} dened in (2.7)).

The proof is done by the comparison method, that is, constructing appropriate
subsolution and supersolutionl. Unfortunately, this result is not so strong as Theorem

3.1 since the existence of the minimum speed is not discussed. Namely, c\geq 2\sqrt{ $\kappa$} is a

technical condition to ensure the existence of the traveling wave. The uniqueness of the

solution to (1.6) up to translation is neither discussed.

To apply the similar argument in [14] for n\geq 2 ,
it is natural to consider the

equation in the cylindrical domain given by

(3.1) \left\{\begin{array}{l}
\triangle W+W_{zz}+cW_{z}+f(w)=0 ((x, z)\in\{|x|<R\}\times \mathbb{R}) ,\\
\lim_{z\rightarrow-\infty}W(x, z)=v_{R}^{+}(x) , \lim_{z\rightarrow\infty}W(x, z)=v_{R}^{-}(x) ,
\end{array}\right.
where v_{R}^{+}(r) and v_{R}^{-}(r) are the stable solution and the unstable solution of (2.4) with

(1.2)(1.4) respectively. As mentioned in the previous section, those solutions are

radially symmetric and ordered as 0<v_{R}^{-}(r)<v_{R}^{+}(r) . Moreover,

\displaystyle \lim_{R\rightarrow\infty}v_{R}^{-}(r)= $\Phi$(r) , \displaystyle \lim_{R\rightarrow\infty}v_{r}^{+}(r)=1 (in any bounded interval [0, K] )

hold. By the results of the previous section and applying the results found in [4] or

[22, 23], we obtain the next result.

Lemma 3.3. Assume (1.2)(1.4). Then there is a number c_{m}^{R}>0 such that for
each  c\in[c_{m}^{R}, \infty ) the equation (3.1) allows a unique solution  W(r, z) (r=|x|) satisfy ing

W_{z}<0 up to translation in z.

Thus, the solution u_{R}(x, y, t) :=W(|x|, y-ct) gives the traveling wave connecting

u_{R}=v_{R}^{+}(y=-\infty) and u_{R}=v_{\overline{R}}(y\rightarrow\infty) in the cylindrical domain.

In conclusion we need a further discussion to prove the convergence of the minimum

speed c_{m}^{R} as  R\rightarrow\infty ,
which is a future work.

lThe denition of  $\kappa$ in [16] should be corrected as in the above theorem.
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