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Abstract

We discuss two different semi‐implicit numerical schemes based on the finite volume

method for approximation of the regularised mean curvature flow level set equation. The first,
CVS scheme, is based on co‐volume strategy and nonlinear terms, given by absolute value of

gradient, are evaluated on pixel sides using splitted diamond‐cell approach [11, 7, 8, 2, 6]. In

the second, EHM scheme, the absolute values of gradients are evlauated inside the pixels by
the Stokes formula and the scheme is obtained by imposing the continuity of fluxes on pixel
sides [4]. Results concerning numerical analysis of the schemes are presented and a comparison
of these numerical approximations on several representative examples are discussed including
performance in image filtering. On testing examples with exact solutions the schemes behave

similarly in solution error, but the EHM scheme has higher precision in gradient error. Finite

volume numerical schemes also perform better in the filtering of a strong salt & pepper noise

as the results obtained using finite difference method [10].

§1. Introduction

The standard mean curvature flow level set equation with the initial condition and

the boundary conditions has the following form:

(1.1) u_{t}-|\displaystyle \nabla u|\mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla u}{|\nabla u|})=0 ,
a.e. (x, t)\in $\Omega$\times(0, T) ,

(1.2) u(x, 0)=u_{0}(x) ,
a.e. x\in $\Omega$,

(1.3) u(x, t)=0 ,
a.e. (x, t) \in @  $\Omega$\times \mathbb{R}+ ;
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where

 $\Omega$ be a polyhedral open bounded connected subset of \mathbb{R}^{d}
,

with d\in \mathbb{N},

(1.4) and @  $\Omega$= \overline{ $\Omega$}\backslash  $\Omega$ its boundary;  v is the outward normal unit vector to @:

The model (1.1)-(1.3) can be considered also with zero Neumann boundary condi‐

tion.

We use two regularizations of equation to overcome the zero value in the denomina‐

tor. According to [5], we consider the regularization of the form f(|\nabla u|)=\sqrt{|\nabla u|^{2}+a^{2}},
for given real number a>0 ,

which is further modified in [4] by considering

(1.5) f(|\displaystyle \nabla u|)=\min(\sqrt{|\nabla u|^{2}+a^{2}}, b) ,

for given real numbers 0<a\leq b . The first part of (1.5) is the same as in the previous
case and use of the additional bound b is in accordance with the image processing

applications. Indeed, on discrete grids, the gradient norms are lower than \displaystyle \frac{Q}{h} ,
where Q

is a quantisation parameter and h is the side length of a pixel.
Then we substitute the equation (1.1) with the regularized one:

(1.6) u_{t}-f(\displaystyle \mathrm{u})\mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla u}{f(|\nabla u|)})=0 ,
a.e. (x, t)\in $\Omega$\times(0, T) .

Denition 1.1. (Weak solution of (1.6)-(1.2)-(1.3) ) Let  $\Omega$ be as in (1.4),
 u_{0}\in H_{0}^{1} () . We say that u is a weak solution of (1.6)-(1.2)-(1.3) if, for all T>0,

1. u\in L^{2}(0, T;H_{0}^{1} and u_{t}\in L^{2}( $\Omega$\times(0, T)) (hence u\in C^{0}(0, T;L^{2}

2. u 0)=u_{0}

3. the following holds

(1.7)

\displaystyle \int_{0}^{T}\int_{ $\Omega$}(\frac{u_{t}(x,t)v(x,t)}{f(|\nabla u(x,t)|)}+\frac{\nabla u(x,t)\cdot\nabla v(x,t)}{f(|\nabla u(x,t)|)}) dxdt =0, \forall v\in L^{2}(0, T;H_{0}^{1}( $\Omega$)) .

In this paper we compare the results obtained by two numerical schemes based

on finite volume method. The first, CVS scheme, is based on co‐volume strategy and

nonlinear terms, given by absolute value of gradient, are evaluated in pixel sides using

splitted diamond‐cell approach [11, 7, 8, 2, 6]. In the second, EHM scheme, the absolute

values of gradients are evlauated inside the pixels by the Stokes formula and the scheme

is obtained by imposing the continuity of fluxes on pixel sides [4]. Our co‐volume

strategy motivated by [11] was first introduced in [7] and then improved by the splitted
diamond cell approach in [8] for 2\mathrm{D} and in [2] for 3\mathrm{D} problems. The theoretical results
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on CVS scheme were obtained in [6]. The second numerical scheme was proposed in [4]
recently. We present numerical experiments where the exact solution is known and we

compare the results obtained by both schemes with respect to accuracy, experimental
order of convergence and CPU time points of view. Further numerical experiments are

dealing with image filtering, were we present also a comparison with the classical finite

difference scheme by Osher and Sethian [10].

§2. Numerical schemes

In order to construct the numerical scheme we choose a uniform discrete time

step  $\tau$=\displaystyle \frac{T}{N} and replace the time derivative in (1.6) by the backward difference. The

nonlinear terms of the equation are treated from the previous time step while the linear

ones are considered on the current time level, this means semi‐implicitness of the time

discretization.

Semi‐implicit in time discretization: Let  $\tau$ be given time step, and  u^{0} be a given
initial level set function. Then, forn=1 ,

. .

:,
N

,
we look for a function u^{n}

,
solution of

the equation

(2.1) \displaystyle \frac{1}{f(|\nabla u^{n-1}|)}\frac{u^{n}-u^{n-1}}{ $\tau$}=\nabla. (\frac{\nabla u^{n}}{f(|\nabla u^{n-1})|}) .

In what follows we propose two diffrent fully discretized numerical schemes, both based

on finite volume method.

§2.1. Finite volume scheme based on co‐volume strategy (CVS)

Let us introduce now the fully discrete scheme as in [7, 8, 2, 6]. In the image

processing applications, a digital image is given on a structure of pixels with rectangular

shape in general (solid gray rectangles in Figure 1). We have to evaluate gradient of

the level set function at the previous step |\nabla u^{n-1}| ,
so we put a triangulation (dashed

lines in Figure 1) onto the computational domain and then take a piecewise linear

approximation of the level set function on this triangulation. Such approach will give a

constant value of the gradient per triangle, allowing simple, fast and clear construction

of fully‐discrete system of equations. As can be seen in Figure 1, in our method the

centers of pixels are connected by a new rectangular mesh and every new rectangle is

splitted into four triangles. The centers of pixels will be called degree of freedom (DF)
nodes. By this procedure we also get further nodes (at crossing of gray lines in Figure 1)
which, however, will not represent degrees of freedom. We will call them non‐degree of

freedom (NDF) nodes. Let a function u be given by discrete values in DF nodes. Then

in additional NDF nodes we take the average value of the neighboring DF nodal values.
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Figure 1. The co‐volumes (solid gray lines), the triangulation for the co‐volume method

(dashed lines), and the degree of freedom (DF) nodes (round points), the part of bound‐

ary @  $\Omega$ (gray lines on the left and on the bottom of the figure) and the points where

Dirichlet boundary condition is prescribed (black full points).

By such defined values in NDF nodes, a piecewise linear approximation  u_{h} of u on the

triangulation can be built. For triangulation \mathcal{T}_{h} , given by the previous construction, we

construct a complementary (dual) mesh. We modify a basic approach given in [11, 7]
in such a way that our co‐volume mesh will consist of cells p associated only with DF

nodes p of \mathcal{T}_{h} , say p=1 ,
.

::,
M . Since there will be one‐to‐one correspondence between

co‐volumes and DF nodes, without any confusion, we use the same notation for them.

For each DF node p of \mathcal{T}_{h} ,
let N(p) denote the set of all DF nodes q connected to

the node p by an edge. We denote cardinality of this set by N_{p} . The edge connecting

p and q will be denoted by $\sigma$_{pq} and its length by h_{pq} . Then every co‐volume p is

bounded by the lines (co‐edges) e_{pq} that bisect and are perpendicular to the edges

$\sigma$_{pq}, q\in N(p) . By this construction, the co‐volume mesh corresponds exactly to the

pixel structure of the image inside the computational domain  $\Omega$ . We denote by \mathcal{E}_{pq} the

set of triangles having $\sigma$_{pq} as an edge. In a situation depicted in Figure 1, every \mathcal{E}_{pq}
consists of two triangles. For each T\in \mathcal{E}_{pq} let c_{pq}^{T} be the length of the portion of e_{pq}

that is in T
, i.e., c_{pq}^{T}=m(e_{pq}\cap T) ,

where m is a measure in 1R^{d-1} . Let \mathcal{N}_{p} be the set

of triangles that have DF node p as a vertex. Let u_{h} be a piecewise linear function on

triangulation \mathcal{T}_{h} . We will denote a constant value of |\nabla u_{h}| on T\in \mathcal{T}_{h} by |\nabla u_{T}| . We

will use the notation u_{p}=u_{h}(x_{p}) ,
where x_{p} is the coordinate of \mathrm{a} (DF or NDF) node of

triangulation \mathcal{T}_{h} ,
and also u_{p}^{n}=u_{h, $\tau$}(x_{p}, t_{n}) where u_{h, $\tau$} is our piecewise linear in space

and time approximation of the solution to the regularized level set equation. Let u_{h}^{0} be

piecewise linear interpolation of the initial function u^{0} on triangulation \mathcal{T}_{h}.
With these notations we are ready to derive the co‐volume spatial discretization.
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As it is usual in finite volume methods, we integrate (1.6) over every co‐volume p, p=

1
,

. . .

,
M

,
and then using divergence theorem we get an integral formulation of (1.6)

(2.2) \displaystyle \int_{p}\frac{1}{|\nabla u^{n-1}|}\frac{u^{n}-u^{n-1}}{ $\tau$}dx=\sum_{q\in N(p)_{e}}\int_{pq}\frac{1}{|\nabla u^{n-1}|}\frac{\partial u^{n}}{\partial v}ds
where v is a unit outer normal to the boundary of p . Now using a piecewise linear

reconstruction of u^{n-1} on triangulation \mathcal{T}_{h} we get for the right hand side of (2.2)

(2.3) \displaystyle \sum_{q\in N(p)}(\sum_{e_{pq}\in \mathcal{E}}c_{pq}^{T}\frac{1}{|\nabla u_{T}^{n-1}|})\frac{u_{q}^{n}-u_{p}^{n}}{h_{pq}}.
For the left‐hand side of (2.2) we use

(2.4) m(p)\displaystyle \sum_{ $\tau$\in \mathcal{N}_{p}}\frac{m(T\cap p)}{m(p)}\frac{1}{|\nabla u_{T}^{n-1}|}\frac{u_{p}^{n}-u_{p}^{n-1}}{ $\tau$}
where m(p) is a measure in \mathrm{I}R^{d} of co‐volume p.

Let us restrict our considerations to uniform rectangular co‐volumes with size length
h

,
as plotted in Figure 1. Then m(p)=h^{2}, m(e_{pq})=h_{pq}=h, c_{pq}^{T}=\displaystyle \frac{1}{2}m(e_{pq}) . We denote

four neighbouring DF nodes of x_{p} by x_{q_{1}} (east), x_{q_{2}} (north), x_{q_{3}} (west), x_{q_{4}} (south),
and the corners of co‐volume p by x_{r_{1}} (top right), x_{r_{2}} (top left), x_{r_{3}} (bottom left), x_{r_{4}}

(bottom right). The middle point of the edge e_{pq_{i}} is denoted by x_{m_{i}}, i=1
,

. .

:,
4.

Now we can define coefficients, where the  $\epsilon$‐regularization (1.5) is taken into ac‐

count, namely,

(2.5)  a_{pq}^{n-1}=\displaystyle \frac{1}{|\nabla u_{pq}^{n-1}|_{ $\epsilon$}}:=\frac{1}{2}(\frac{1}{|\nabla u_{T_{pq}^{1}}^{n-1}|_{ $\epsilon$}}+\frac{1}{|\nabla u_{T_{pq}^{2}}^{n-1}|_{ $\epsilon$}}) ,

(2.6) b_{p}^{n-1} :=\displaystyle \frac{1}{|\nabla u_{p}^{n-1}|_{ $\epsilon$}}=\frac{1}{N_{p}}\sum_{q\in N(p)}\frac{1}{|\nabla u_{pq}^{n-1}|_{ $\epsilon$}},
where T_{pq}^{1}, T_{pq}^{2}\in \mathcal{E}_{pq} . For example for triangle with points x_{p}, x_{q_{1}}, x_{r_{1}} we have regular‐
ized gradient as in (1.5)

(2.7) |\displaystyle \nabla u_{T_{pq_{1}}^{1}}^{n-1}|_{ $\epsilon$}=\min(\sqrt{\frac{(u_{q_{1}}-u_{p})^{2}}{h^{2}}+\frac{(2(u_{r_{1}}-u_{m_{1}}))^{2}}{h^{2}}+$\epsilon$^{2}}, b) ,

where the parameter b is an user defined parameter for the second regularization in

(1.5) and it can be defined as b=10^{10} . Now our computational method can be written

as follows.
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Fully‐discrete semi‐implicit co‐volume scheme: Let u_{p}^{0}, p=1 ,
. . .

,
M be given

discrete values of the initial condition. Then, forn=1 ,
. .

:;
N we look for u_{p}^{n}, p=

1
,

. . .

,
M

, satisfy ing

(2.8) b_{p}^{n-1}m(p)u_{p}^{n}+ $\tau$\displaystyle \sum_{q\in N(p)}a_{pq}^{n-1}d_{pq}(u_{p}^{n}-u_{q}^{n})=b_{p}^{n-1}m(p)u_{p}^{n-1}
Remark 2.1. The Dirichlet boundary conditions in CVS scheme are treated in

such way, that we consider half triangles along the boundary @  $\Omega$ (green lines in Figure

1) The gradients |\nabla u_{T}^{n-1}| as well as normal derivatives in (2.3)-(2.7) and everywhere
in T are evaluated using the values in the nodes of half triangles on the boundary @  $\Omega$

(black points on green lines in Figure 1).

Theoretical results for this scheme are based on the idea of G. Barles and P.E.Souganidis,
where for converegence of the numerical scheme, the stability, consistency and mono‐

tonicity property must be fullfilled. Up till now, the convergence for proposed scheme

is an open question, because of the lack of monotonicity property [1]. However, we have

the following results, see [6].

Theorem: There exists unique solution  u_{h, $\tau$} of the numerical scheme for any value

of the regularization parameter  $\epsilon$ and for any  h and  $\tau$ . Moreover approximation scheme

has stability and consistency property.

§2.2. Finite volume scheme based on flux continuity and Stokes formula

(EHM)

Denition 2.1 (Space discretisation). Let  $\Omega$ be as in (1.4). A discretisation of

 $\Omega$
,

denoted by \mathcal{D}
,

is defined as the triplet \mathcal{D}=
,

where:

1. \mathcal{M} is a finite family of nonempty connected open disjoint subsets of  $\Omega$ (the �control

volumes�) such that \displaystyle \overline{ $\Omega$}=\bigcup_{p\in \mathcal{M}}\mathrm{p} . For any p\in \mathcal{M} ,
let \partial p=\mathrm{p}\backslash p be the boundary

of p ; let |p|>0 denote the measure of p and let h_{p} denote the diameter of p and

h_{D} denote the maximum value of (h_{p})_{p\in \mathcal{M}}.

2. \mathcal{E} is a finite family of disjoint subsets of \overline{ $\Omega$} (the �edges� of the mesh), such that,
for all  $\sigma$\in \mathcal{E},  $\sigma$ is a nonempty open subset of a hyperplane of \mathbb{R}^{d}

,
whose (d-1)-

dimensional measure | $\sigma$| is strictly positive. We also assume that, for all p\in \mathcal{M},
there exists a subset \mathcal{E}_{p} of \mathcal{E} such that \displaystyle \partial p=\bigcup_{ $\sigma$\in \mathcal{E}_{p}}\overline{ $\sigma$} . For any  $\sigma$\in \mathcal{E} ,

we denote

by \mathcal{M}_{ $\sigma$}=\{p\in \mathcal{M},  $\sigma$\in \mathcal{E}_{p}\} . We then assume that, for all  $\sigma$\in \mathcal{E} ,
either \mathcal{M}_{ $\sigma$} has

exactly one element and then  $\sigma$\subset@ $\Omega$ (the set of these interfaces, called boundary

interfaces, is denoted by \mathcal{E}_{\mathrm{e}\mathrm{x}\mathrm{t}} ) or \mathcal{M}_{ $\sigma$} has exactly two elements (the set of these
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interfaces, called interior interfaces, is denoted by \mathcal{E}_{\mathrm{i}\mathrm{n}\mathrm{t}} ). For all  $\sigma$\in \mathcal{E} ,
we denote

by x_{ $\sigma$} the barycentre of  $\sigma$ . For all  p\in \mathcal{M} and  $\sigma$\in \mathcal{E}_{p} ,
we denote by \mathrm{n}_{p, $\sigma$} the unit

vector normal to  $\sigma$ outward to  p.

3. \mathcal{P} is a family of points of  $\Omega$ indexed by \mathcal{M} ,
denoted by \mathcal{P}=(x_{p})_{p\in \mathcal{M}} ,

such that

for all p\in \mathcal{M}, x_{p}\in p and p is assumed to be x‐star‐shaped, which means that for

all x\in p ,
the inclusion [x_{p}, x]\subset p holds. Denoting by d_{p $\sigma$} the Euclidean distance

between x_{p} and the hyperplane including  $\sigma$
,

one assumes that  d_{p $\sigma$}>0 . We then

denote by D_{p, $\sigma$} the cone with vertex x_{p} and basis  $\sigma$.

4. We make the important following assumption:

(2.9) d_{p $\sigma$}\mathrm{n}_{p, $\sigma$}=x_{ $\sigma$}-x_{p}, \forall p\in \mathcal{M}, \forall $\sigma$\in \mathcal{E}_{p}.

Remark 2.2. The preceding denition applies to triangular meshes if d=2,
with all angles acute, and to meshes build with orthogonal parallelepipedic control vol‐

umes (rectangles if d=2).

We denote

(2.10) $\theta$_{D}=\displaystyle \min_{p\in \mathcal{M}}\min_{ $\sigma$\in \mathcal{E}_{p}}\frac{d_{p $\sigma$}}{h_{p}}.
Denition 2.2 (Space‐time discretisation). Let  $\Omega$ be as in (1.4) and let  T>0

be given. We say that (;  $\tau$) is a space‐time discretisation of  $\Omega$\times(0, T) if \mathcal{D} is a

space discretisation of  $\Omega$ in the sense of Definition 2.1 and if there exists  N_{T}\in \mathbb{N} with

T=(N_{T}+1) $\tau$.

Following the results from [4], where more general case of the problem is studied

and both semi‐implicit and fully implicit schemes are investigated, we present here just

semi‐implicit approach.
Let (;  $\tau$) be a space‐time discretisation of  $\Omega$\times(0, T) . We define the set  H_{D}\subset

\mathbb{R}^{\mathcal{M}}\times \mathbb{R}^{\mathcal{E}} such that u_{ $\sigma$}=0 for all  $\sigma$\in \mathcal{E}_{\mathrm{e}\mathrm{x}\mathrm{t}} . We define the following approximations of

|\nabla u|^{2} on H_{D} :

(2.11) N_{p}(u)^{2}=\displaystyle \frac{1}{|p|}\sum_{ $\sigma$\in \mathcal{E}_{p}}\frac{| $\sigma$|}{d_{p $\sigma$}}(u_{ $\sigma$}-u_{p})^{2}, \forall p\in \mathcal{M}, \forall u\in H_{D}.
The semi‐implicit scheme is defined by

(2.12) u_{p}^{0}=\displaystyle \frac{1}{|p|}\int_{p}u_{0}(x)\mathrm{d}x, \forall p\in \mathcal{M}, u_{ $\sigma$}^{0}=\frac{1}{| $\sigma$|}\int_{ $\sigma$}u_{0}(x)\mathrm{d}s(x) , \forall $\sigma$\in \mathcal{E},



16 Angela HandlovičovÁ, Karol Mikula and TomÁš Oberhuber

and the boundary condition is fulfilled thanks to

(2.13) u_{ $\sigma$}^{n+1}=0, \forall $\sigma$\in \mathcal{E}_{\mathrm{e}\mathrm{x}\mathrm{t}}, \forall n\in \mathbb{N}.

Then in every new time step  t_{n+1}=(n+1) $\tau$ we solve the system

(2.14)

\displaystyle \frac{|p|}{ $\tau$ f(N_{p}(u^{n}))}(u_{p}^{n+1}-u_{p}^{n})-\frac{1}{f(N_{p}(u^{n}))}\sum_{ $\sigma$\in \mathcal{E}_{p}}\frac{| $\sigma$|}{d_{p $\sigma$}}(u_{ $\sigma$}^{n+1}-u_{p}^{n+1})=0, \forall p\in \mathcal{M}, \forall n\in \mathbb{N},

where the following relation is given for the interior edges

(2.15) \displaystyle \frac{u_{ $\sigma$}^{n+1}-u_{p}^{n+1}}{f(N_{p}(u^{n}))d_{p $\sigma$}}+\frac{u_{ $\sigma$}^{n+1}-u_{q}^{n+1}}{f(N_{q}(u^{n}))d_{q $\sigma$}}=0, \forall $\sigma$\in \mathcal{E}_{\mathrm{i}\mathrm{n}\mathrm{t}} with \mathcal{M}_{ $\sigma$}=\{p, q\}, \forall n\in \mathbb{N}.

By using the scheme we define the approximate solution u_{D, $\tau$} in  $\Omega$\times \mathbb{R}_{+} by

(2.16)

u_{D, $\tau$}(x, 0)=u_{p}^{0}, u_{D, $\tau$}(x, t)=u_{p}^{n+1} ,
for \mathrm{a}.\mathrm{e}. x\in p, \forall t\in ]  n $\tau$, (n+1) $\tau$], \forall p\in \mathcal{M}, \forall n\in \mathbb{N}.

We then define N_{D, $\tau$}\mathrm{b}\mathrm{y}

N_{D, $\tau$}(x, t)=N_{p}(u^{n}) ,

(2.17)
for a.e. x\in p ,

for a.e.  t\in ]  n $\tau$, (n+1) $\tau$[, \forall p\in \mathcal{M}, \forall n\in \mathbb{N}.

Finally, we define \hat{G}_{D, $\tau$} by

(2.18) \displaystyle \hat{G}_{D, $\tau$}(x, t)=\frac{1}{|p|}\sum_{ $\sigma$\in \mathcal{E}_{p}}| $\sigma$|(u_{ $\sigma$}^{n+1}-u_{p}^{n+1})\mathrm{n}_{p $\sigma$},
for a.e. x\in p ,

for a.e.  t\in ]  n $\tau$, (n+1) $\tau$[, \forall p\in \mathcal{M}, \forall n\in \mathbb{N}.

Let us denote by (HC) the following hypotheses:

\bullet  $\Omega$ is as in (1.4),

\bullet u_{0}\in H_{0}^{1}( $\Omega$) ,

\bullet The sequence (; $\tau$_{m})_{m\in \mathbb{N}} denotes a sequence of space‐time discretisations of  $\Omega$\times

(0, T) in the sense of Definition 2.2 such that h_{D_{m}} and $\tau$_{m}>0 tends to 0 as

m\rightarrow\infty.

\bullet There exists some  $\theta$>0 with  $\theta$<$\theta$_{D_{m}} for all m\in \mathbb{N} ,
where $\theta$_{D} is defined by (2.10).

\bullet For all  m\in \mathbb{N} ,
the family (u_{p}^{n})_{p\in \mathcal{M},n\in \mathbb{N}} is such that (2.12), (2.13) and (2.14), (2.15)

hold and the function u_{D_{m},$\tau$_{m}} is defined by (2.16).
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Then it holds [4]:

Theorem 2.1. Let Hypotheses (HC) be fullled. We assume that the sequence

(; $\tau$_{m})_{m\in \mathbb{N}} denotes an extracted sub‐sequence. Then the function \overline{u}\in L^{\infty}(0, T;H_{0}^{1}
such that u_{D_{m},$\tau$_{m}}\rightarrow\overline{u} in L^{\infty}(0, T;L^{2} is a weak solution of (1. 6)-(1.2)-(1.3)
in the sense of Denition 1.1. Moreover, \hat{G}_{D_{m},$\tau$_{m}}\rightarrow\nabla\overline{u} in L^{2}( $\Omega$\times(0, T))^{d} and

N_{D_{m},$\tau$_{m}}\rightarrow|\nabla\overline{u}| in L^{2}( $\Omega$\times(0, T)) .

§3. Numerical experiments

The goal of this section is to compare both schemes CVS and EHM, first in com‐

puting the experimental order of convergence and then on image filtering examples. In

the later case we present also results of classical finite difference scheme [10] in order to

see superior behavior of our finite volume methods.

§3.1. Experiments with exact solution

In the following examples we consider the square domain  $\Omega$=[-1.25, 1.25] \times

[-1.25, 1.25] . The number of finite volumes along each boundary side is denoted by
n

,
which means that n^{2} is the total number of finite volumes. Then h=2.5/n is the

length of the side of each square finite volume and in all experiments time step is equal
 $\tau$=h^{2} and a=h, b is large constant.

The numerical solution of the finite volume schemes is obtained through the res‐

olution of linear algebraic system at every discrete time step, we used the Successive

Over Relaxation (SOR) iterative solver. Typically, about 30‐35 SOR iterations inside

semi‐implicit scheme in each time step are needed for obtaining the results presented in

this section.

In the tables below we compare the results obtained by CVS and EHM schemes.

The considered errors are E_{2}=\Vert u_{D, $\tau$}-u\Vert_{L^{2}( $\Omega$\times(0,T))}, EG_{2}=\Vert\hat{G}_{D, $\tau$}-\nabla u\Vert_{L^{2}( $\Omega$\times(0,T))^{2}}
and we also report CPU times in seconds.

Example 1. In this example, the exact solution is a paraboloid moving up in time,

given by u(x, y, t)=\displaystyle \frac{1}{2}(x^{2}+y^{2}-1)+t ,
which is the solution to (1.1)-(1.2) where (1.3) is

replaced by the exact non‐homogeneous Dirichlet boundary conditions provided by the

solution. We consider the time interval [0, T]=[0 , 0:3125 ] . In Table 1 we can observe

the results obtained by CVS scheme (top) and the results obtained by EHM scheme

(bottom). As one can see, the experimental order of convergence (EOC) in the solution

error is equal 2. For the gradient, the EOC for the EHM scheme is higher and also the

errors for this scheme are lower on the same time‐space grid. On the contrary the CPU

time is slightly faster for the CVS scheme.
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3.53\mathrm{e}-3

EOC CP \mathrm{U}

0.0

0.0

1.0

8.0

135

1582

EOC EG EOC CP \mathrm{U}

10

20

40

80

160

320

6.25e‐2

1.5625e‐2

3.90625\mathrm{e}-3

9.76563\mathrm{e}-4

2.44141\mathrm{e}-4

6.10352\mathrm{e}-5

3.51e‐2

9.29e‐3

2.12e‐3

5.00\mathrm{e}-4

1.22\mathrm{e}-4

3.01e‐5

1.91

2.14

2.08

2.04

2.02

7.82\mathrm{e}-02

3.13\mathrm{e}-2

9.88\mathrm{e}-3

2.84\mathrm{e}-3

7.87\mathrm{e}-4

2.13\mathrm{e}-4

1.32

1.66

1.80

1.85

1.88

0.

0.

0.

10.0

164

2064

Table 1. Example 1, error reports, EOCs and CPU times for CVS scheme (top) and

EHM scheme (bottom)

Example 2. In this example, the exact viscosity solution of (1.1) is a truncated

paraboloid shrinking in time, given by u(x, y, t)=\displaystyle \min\{\frac{1}{2}(x^{2}+y^{2}-1)+t, 0\}[9] . The

initial condition and exact solution at time T=0.3125 are plotted in Figure 2.

Numerical results, for n=160, T=0.3125 ,
obtained by both schemes are plotted

in Figure 3. Since the gradient of the solution is discontinuous along a shrinking circle,
a second order accuracy cannot be expected in this case. One can see the results for

both schemes in Table 2 and behavior of both schemes is similar to Example 1.

Figure 2. Example 2, the initial condition (left) and exact solution at time \mathrm{T}=0.3125

§3.2. Image processing examples

We now turn to the comparison of the schemes in the framework of image processing

applications. It is known that mean curvature flow models are suitable for filtering of salt



Comparison 0F finite volume schemes FoR the mean curvature fiow level set equation 19

Figure 3. Example 2, CVS scheme (left) and EHM scheme at time \mathrm{T}=0.3125

EOC

10

20

40

80

160

320

6.25e‐2

1.5625\mathrm{e}-2

3.90625\mathrm{e}-3

9.76563\mathrm{e}-4

2.44141e‐4

6.10352e‐5

6.30e‐2

4.71\mathrm{e}-2

2.88\mathrm{e}-2

1.59\mathrm{e}-2

8.46e‐3

4.39e‐3

0.43

0.71

0.85

0.91

0.95

EG

2.85\mathrm{e}-1

2.41\mathrm{e}-1

1.89\mathrm{e}-1

1.49\mathrm{e}-1

1.18\mathrm{e}-1

9.54\mathrm{e}-2

EOC CP \mathrm{U}

0.0

0.0

1.0

8.0

137

1668

EOC EOC CP \mathrm{U}

10

20

40

80

160

320

6.25e‐2

1.5625\mathrm{e}-2

3.90625\mathrm{e}-3

9.76563\mathrm{e}-4

2.44141e‐4

6.10352e‐5

6.47e‐2

4.77e‐2

2.87\mathrm{e}-2

1.58\mathrm{e}-2

8.33e‐3

4.29e‐3

0.44

0.73

0.86

0.92

0.96

EG

2.83\mathrm{e}-1

2.36\mathrm{e}-1

1.83\mathrm{e}-1

1.43\mathrm{e}-1

1.11\mathrm{e}-1

8.72\mathrm{e}-2

0.26

0.37

0.36

0.36

0.36

0.

0.

1.

10.0

166

2084

Table 2. Example 2, error reports, EOCs and CPU times for CVS scheme (top) and

EHM scheme (bottom)

& pepper noise due to curvature blow‐up phenomenon and infinite speed of shrinking
before the extinction of an object.

As a 2D image can be represented as a piecewise constant function of the gray

level intensity in each pixel, we prescribe the initial condition only in the representative

points x_{p} of each finite volume. We denote these values u_{p}^{0} and we approximate the

values at the points x_{ $\sigma$} on each edge by a median of six neighbouring pixel values and

denote them by u_{ $\sigma$}^{0} in EHM scheme and u_{m}^{0} in CVS scheme. Moreover, the values u_{r}^{0}
in CVS scheme we compute as a median of four neighbouring pixel values.

We choose the relation  $\tau$=h for image processing exmaples with h=0.1 and

n=400 . For solving linear algebraic system of equations we use SOR iterative method

with relaxation parameter  $\omega$=1.6 . We need approximately 60 iterative steps to obtain

the results with residuum tolerance 10^{-10}.
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Example 3. In this example we add 20 percent salt & pepper noise to the char‐

acteristic function of a cinquefoil, and we set n=400 . Figures 4 and 5 show almost

perfect cinquefoil reconstruction using both schemes, the result was obtained after 10

time steps of EHM and CVS schemes.

Figure 4. Example 3, EHM scheme: initial noisy image with 20 percent salt & pepper

noise added (left), filtering results after 1 (middle) and 3 (right) and 10 time steps

(extreme right).

Figure 5. Example 3, CVS scheme: initial noisy image with 20 percent salt & pepper

noise added (extreme left), filtering results after 1 (middle left), 4 (middle right), and

10 (extreme right) time steps.

Example 4. In the last example we add strong 50 percent salt & pepper noise to

the characteristic function of the quatrefoil. Figures 6 and 7 show again very good qua‐

trefoil reconstruction using EHM and CVS scheme respectively afterjust few time steps.

In Figure 8, for comparison, we show that with such high level of noise reconstruction

of quatrefoil using classical finite difference scheme [10] fails.

§4. Conclusion and future work

Two different semi‐implicit numerical schemes based on the finite volume method

for approximation of the regularised mean curvature flow level set equation were investi‐

gated. The first, CVS scheme, is based on co‐volume strategy and nonlinear terms, given
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Figure 6. Example 4, EHM scheme: initial noisy image with 50 percent salt & pepper

noise added (extreme left), filtering result after 1 (middle left), 3 (middle right) and 10

(extreme right) time steps.

Figure 7. Example 4, CVS scheme: initial noisy image with 50 percent salt & pepper

noise added (extreme left), filtering result after 1 (middle left), 3 (middle right) and 10

(extreme right) time steps.

by the absolute value of gradient, are evaluated on pixel sides using splitted diamond‐cell

approach [11, 7, 8, 2, 6]. In the second, EHM scheme, the absolute values of gradients
are evlauated inside the pixels by the Stokes formula and the scheme is obtained by im‐

posing the continuity of fluxes on pixel sides [4]. Results concerning numerical analysis
of the schemes were presented and a comparison of these numerical approximations on

several representative examples were discussed including performance in image filtering.
Both schemes can be modified to a numerical aproximation of the generalized equa‐

tions like the geodesic mean curvature flow (arising e.g. in image segmentation) by the

generalized subjective surface method [2, 8] which will be an objective of our further

study.
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0184‐10.



22 Angela HandlovičovÁ, Karol Mikula and TomÁš Oberhuber

Figure 8. Example 4, explicit finite difference scheme: initial noisy image with 50

percent salt & pepper noise added (extreme left), filtering result after 10 (middle left),
50 (middle right) and 200 (extreme right) time steps, here due to stability constrain

 $\tau$=h^{2}/4.
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