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§1. Introduction

In systems of ordinary differential equations, oscillatory solutions or periodic solu‐

tions are often observed. Among such oscillatory solutions, there are relaxation oscil‐

lations as a specific behavior of oscillation. Most typical relaxation oscillation arises in

the following van der Pol equation:

(1.1) \displaystyle \frac{d^{2}u}{dt^{2}}-\frac{1}{ $\delta$}(1-u^{2})\frac{du}{dt}+u=0,
where u is the dynamical variable and  $\delta$>0 is a parameter. Using the transformation

v=u-\displaystyle \frac{u^{3}}{3}- $\delta$\frac{du}{dt} ,
the equation (1.1) can be written as

\displaystyle \frac{du}{dt}=\frac{1}{ $\delta$}(u-\frac{u^{3}}{3}-v) ,

(1.2)

\displaystyle \frac{dv}{dt}= $\delta$ u.
In the case of sufficiently small  $\delta$\ll 1 ,

relaxation oscillation can be exhibited. The

feature of relaxation oscillation is to consist of two dynamics, called fast and slow

dynamics. When the value (u(t), v(t)) is away from the curve v=u-u^{3}/3, (u(t), v(t))
moves quickly in the horizontal direction due to |\displaystyle \frac{dv}{dt}|=O( $\delta$) . (See Figure 1.) This is

called fast dynamics. When (u(t), v(t)) enter the region where |u-\displaystyle \frac{u^{3}}{3}-v|=O($\delta$^{2}) ,

the both of \displaystyle \frac{du}{dt} and \displaystyle \frac{dv}{dt} are O( $\delta$) . Therefore, the solution (u(t), v(t)) moves slowly along
the curve, which is called slow dynamics. For example, from the equation for v in
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Figure 1. Flow for  $\delta$\ll 1 of the van der Pol equation (1.2).

(1.2), if u<0, v moves slowly in the negative direction. On the other hand, v moves

slowly in the positive direction for u>0 . When the solution (u(t), v(t)) exits from this

region, then the solution jumps to another branch, which is governed by fast dynamics.

Consequently, as is shown in Figure 1, relaxation oscillation is observed. Another feature

of relaxation oscillation is to possess a long period of oscillation due to slow dynamics.
This oscillatory phenomenon was first found in a electric circuit by van der Pol([6]).
Many results on relaxation oscillation in ODE systems are still reported (for instance

[5]). Here we address a question: �Do partial differential equations give rise to relaxation

oscillation?�

In this paper, we present relaxation oscillation arising in reaction‐diffusion sys‐

tems, which is called infinite dimensional relaxation oscillation in contrast with finite

dimensional relaxation oscillation in systems of ordinary differential equations men‐

tioned above. As long as we know, results on infinite dimensional relaxation oscillation

is quite few([2],[3]). This implies that treatment of infinite dimensional relaxation oscil‐

lation even in one‐spatial dimensional system is hard since a global bifurcation diagram
of the system corresponding to Figure 1 is required. Though results on infinite dimen‐

sional relaxation oscillation is quite few, common mechanisms for the infinite dimen‐

sional relaxation oscillation appear. We explain the mechanism for infinite dimensional

relaxation oscillation in an aggregation‐growth system.
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§2. Innite dimensional relaxation oscillation

We consider the following one‐spatial dimension reaction‐diffusion system which

describes aggregation phenomenon for social insects([2][4]):

(2.1) \displaystyle \ovalbox{\tt\small REJECT}_{v(0,x)=v_{0}(x)}^{u_{1t}=du_{1xx}+\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1})}u_{1x}=u_{2x}=v_{x},=,0u_{2}(0,x)=u_{20}(x)u_{1}(0,x)=u_{10}(x)v_{t}=Dv_{xx}+(u_{1}+u_{2})-v^{+ $\delta$ G_{2}(u_{1},u_{2})}u_{2t}=(d+ $\alpha$)u_{2xx}-\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1})+ $\delta$ G_{1}(u_{1},u_{2}), t>0,xt>0,xx\in(0, 1) , =0,1\in(0,1)
,

where G_{i}(u_{1}, u_{2})=(1-(u_{1}+u_{2}))u_{i}(i=1,2) . u_{1} and u_{2} represent the population

density of insect respectively. From the relation of diffusion coefficient, u_{1} and u_{2} are

called less‐active state and active state, respectively. v implies the concentration of

aggregation pheromone which is secreted by u_{1} and u_{2} and is evaporated. These two

states are convertible each other depending on the pheromone concentration v . Here we

assume that the functions k(v) and h(v) are monotonically increasing and decreasing

functions, respectively. If the pheromone concentration is high, u_{2} converts into u_{1} and

stays there. On the other hand, if the pheromone concentration is low, u_{1} switches into

u_{2} and diffuses faster. Further G_{i}(i=1,2) means growth term. Positive constants  1/ $\epsilon$
and  $\delta$ imply the quickness of conversion and growth rate, respectively. On more detailed

description of the model, refer to [2] and [4].
In this section, we sketch a mechanism of relaxation oscillation, which occurs in

(2.1) with sufficiently small  $\delta$ . Figure 2 shows that the periodic solution consists of two

different dynamics, namely, fast and slow dynamics. In order to explain the fast and

slow dynamics, define

 $\mu$:=\displaystyle \int_{0}^{1}(u_{1}+u_{2})dx.
Then, from the equations for u_{1} and u_{2} in (2.1), after integration by parts, we obtain

the following:

\displaystyle \frac{d}{dt} $\mu$= $\delta$\int_{0}^{1}\{G_{1}(u_{1}, u_{2})+G_{2}(u_{1}, u_{2})\}dx.
In order to obtain the dynamics of time scale t

,
which corresponds to fast dynamics in



34 SHIN‐ICHIRO \mathrm{E}\mathrm{I}
,

Hirofumi Izuhara and Masayasu Mimura

Figure 2. Spatio‐temporal periodic solution of (2.1), where  $\delta$=0.01, d=0.05,  $\alpha$=0.1,

D=0.1,  $\epsilon$=0.0001, k(v)=\displaystyle \frac{\tanh(10(v-1))+1}{2} and h(v)=1-k(v) . The left‐ and right‐
hand figures show the time evolutions of u_{1}+u_{2} and v

, respectively, for 0\leq t\leq 900.

(2.1), formally setting  $\delta$=0 in (2.1), we obtain the following:

(2.2) \left\{\begin{array}{l}
u_{1t}=du_{1xx}+\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}) ,\\
u_{2t}=(d+ $\alpha$)u_{2xx}-\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}) ,\\
v_{t}=Dv_{xx}+(u_{1}+u_{2})-v,\\
\frac{d}{dt} $\mu$=0.
\end{array}\right.
Since the fourth equation in (2.2) leads to  $\mu$(t)\equiv $\mu$ ,

which is independent of  t
,

the fast

dynamics in (2.1) are governed by the following system:

(2.3) \left\{\begin{array}{l}
u_{1t}=du_{1xx}+\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}) ,\\
u_{2t}=(d+ $\alpha$)u_{2xx}-\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}) ,\\
v_{t}=Dv_{xx}+(u_{1}+u_{2})-v,\\
\int_{0}^{1}(u_{1}+u_{2})dx= $\mu$.
\end{array}\right.
When  $\delta$ is sufficiently small, the solution (u_{1}, u_{2}, v) of (2.1) is expected to immedi‐

ately converge to a stable equilibrium solution while the mass \displaystyle \int_{0}^{1}(u_{1}+u_{2})dx is preserved

according to (2.3). The global structure of equilibrium solutions of (2.1) with  $\delta$=0 is

shown in Figure 3 for  $\alpha$=0.1 ,
which is obtained by AUTO([1]).

We denote the spatially constant equilibrium solution of (2.1) by

$\Phi$_{0}( $\mu$):=(\displaystyle \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{v})=(k(\frac{a}{b} $\mu$), h(\frac{a}{b} $\mu$), \frac{a}{b} $\mu$)
with parameter  $\mu$>0 . The spatially constant equilibrium solution is destabilized at

 $\mu$=$\mu$_{c} as  $\mu$ increases, so that non‐constant equilibrium solution branches bifurcate
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Figure 3. Global structure of equilibrium solutions of (2.1) with  $\delta$=0 ,
where d=0.05,

 $\alpha$=0.1, D=0.1,  $\epsilon$=0.0001, k(v)=\displaystyle \frac{\tanh(10(v-1))+1}{2} and h(v)=1-k(v) . The horizontal

and vertical axes denote  $\mu$=\displaystyle \int_{0}^{1}(u_{1}+u_{2})dx and u_{1}+u_{2} at x=0 , respectively. The solid

and dashed lines represent stable and unstable branches, respectively. The \square symbol
indicates stationary bifurcation points.

2 2

0

1

0

1

Figure 4. Stable equilibrium solutions at  $\mu$=1 in Figure 3. The solid and dashed

curves represent u_{1}+u_{2} and v
, respectively.
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subcritically via pitchfork bifurcation. The non‐trivial branches are unstable near  $\mu$=

$\mu$_{c} ,
but recover stability through saddle‐node bifurcation at  $\mu$= $\mu$- ,

and the stable

non‐trivial branches become stable. As in Figure 3, we hereinafter denote the unstable

and stable equilibrium solution branches by $\Phi$_{-}( $\mu$) and $\Phi$_{+}( $\mu$) , respectively, which are

parameterized with  $\mu$ . For  $\mu$=1 ,
the profiles of two stable equilibrium solutions are

shown in Figure 4.

Next, we consider the slow dynamics of the solution to (2.1) for time scale T= $\delta$ t.

Using T= $\delta$ t in (2.1) and formally setting  $\delta$=0 ,
we have

(2.4) \left\{\begin{array}{l}
0=du_{1xx}+\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}) ,\\
0=(d+ $\alpha$)u_{2xx}-\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}) ,\\
0=Dv_{xx}+(u_{1}+u_{2})-v,\\
\frac{d}{dT} $\mu$=\int_{0}^{1}\{G_{1}(u_{1}, u_{2})+G_{2}(u_{1}, u_{2})\}dx.
\end{array}\right.
Using the slow dynamics (2.4), we find that the solution (u_{1}, u_{2}, v) of (2.1) moves

gradually along the equilibrium solution branches $\Phi$_{+}( $\mu$) or $\Phi$_{0}( $\mu$) . We know that the

fourth equation decides the moving direction. For the solution on the nontrivial branch

$\Phi$_{+}( $\mu$) ,
we formally write the fourth equation in (2.4) as follows:

\displaystyle \frac{d}{dT} $\mu$=\int_{0}^{1}G($\Phi$_{+}( $\mu$))dx=F_{1}( $\mu$) ,

where G(u_{1}, u_{2}, v) :=G_{1}(u_{1}, u_{2})+G_{2}(u_{1}, u_{2})=(1-(u_{1}+u_{2}))(u_{1}+u_{2}) . On the other

hand, for the solution on the trivial branch $\Phi$_{0}( $\mu$) ,
we have

\displaystyle \frac{d}{dT} $\mu$=\int_{0}^{1}(1- $\mu$) $\mu$ dx=(1- $\mu$) $\mu$=F_{2}
We numerically obtain the sign of F_{1}() on the stable branch $\Phi$_{+}( $\mu$) . Taking the same

parameter values as described in Figure 3, Figure 5 shows that F_{1}() <0 and F_{2}() >0

for  $\mu$<1 and F_{2}() <0 for  $\mu$>1 . If F_{i}() <0(i=1,2) ,
the fourth equation in (2.4)

says that  $\mu$ decreases in  T
, whereas, if F_{i}() >0 ,

then  $\mu$ increases in  T.

Assume that a solution satisfying  $\mu$-<\displaystyle \int_{0}^{1}\{u_{1}(t_{0})+u_{2}(t_{0})\}dx<$\mu$_{c} at time t_{0} is

on the $\Phi$_{+}( $\mu$) branch in Figure 3. Since F_{1}() <0 for  $\mu$-< $\mu$<$\mu$_{c} ,
as in Figure 5,  $\mu$

decreases. Therefore, the solution satisfying  $\mu$-<\displaystyle \int_{0}^{1}\{u_{1}(t)+u_{2}(t)\}dx<$\mu$_{c} moves to

the left on the $\Phi$_{+}( $\mu$) branch by the slow dynamics (2.4). When the solution reaches

the point $\Phi$_{+}($\mu$_{-}) , i.e.,  $\mu$-=\displaystyle \int_{0}^{1}\{u_{1}(t_{1})+u_{2}(t)dx at time t_{1} ,
the fast dynamics

(2.3) becomes dominant, and the solution transfers to the point $\Phi$_{0}($\mu$_{-}) . Then, the

slow dynamics (2.4) become dominant again. Since F_{2}() >0 on the $\Phi$_{0}( $\mu$) branch,  $\mu$

increases. Therefore, the solution moves to the right on the  $\Phi$_{0}( $\mu$) branch. When the
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Figure 5. Graphs of F_{1}() and F_{2}() corresponding to stable branches $\Phi$_{+}( $\mu$) and

$\Phi$_{0}( $\mu$) in Figure 3. The horizontal and vertical axes represent  $\mu$ and  F_{1}() and F_{2}

respectively.

solution crosses the point $\Phi$_{0}($\mu$_{c}) ,
that is, $\mu$_{c}=\displaystyle \int_{0}^{1}\{u_{1}(t_{2})+u_{2}(t)dx at some time t_{2},

the fast dynamics (2.3) becomes dominant and the solution is lifted up to the point

$\Phi$_{+}( $\mu$) for  $\mu$>$\mu$_{c} . Due to F_{1}()<0 on the $\Phi$_{+}( $\mu$) branch, the solution travels to

the left on the $\Phi$_{+}( $\mu$) branch. The repetition of this cycle suggests the occurrence of

infinite‐dimensional relaxation oscillation as in Figure 6.

Under several assumptions, we can show the existence of relaxation oscillations for

the system (2.1).
Let u:=(u_{1}, u_{2}, v) ,

and write (2.1) as u_{t}=\mathcal{L}(u)+ $\delta$ G ,
where

\displaystyle \mathcal{L}(u):=((d+$\alpha$_{Dv_{xx}+u_{1}+u_{2})-v})u_{2xx}-\frac{1}{( $\epsilon$}(k(v)u_{2}-h(v)u_{1})du_{1xx}+\frac{1}{ $\epsilon$}(k(v)u_{2}-h(v)u_{1}))
and

G(u):=\left(\begin{array}{l}
G_{1}(u_{1},u_{2})\\
G_{2}(u_{1},u_{2})\\
0
\end{array}\right)=\left(\begin{array}{l}
u_{1}(1-(u_{1}+u_{2}))\\
u_{2}(1-(u_{1}+u_{2}))\\
0
\end{array}\right) .

Let us consider the following unperturbed equation:

(2.5) u_{t}=\mathcal{L}u.

Let L_{0}() :=\mathcal{L}'($\Phi$_{0} be the linearized operator of \mathcal{L}(u) with respect to $\Phi$_{0}( $\mu$) . Here‐

inafter, for constants 0< $\mu$-<$\mu$_{c}<1 we impose the following five assumptions (A1)
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Figure 6. Flow for  $\delta$\ll 1 of (2.1).

\sim(\mathrm{A}5) :

(A1) The spectrum of L_{0}( $\mu$) consists of $\Sigma$_{0}( $\mu$)\cup$\Sigma$_{1}( $\mu$)\cup$\Sigma$_{2}( $\mu$) ,
where $\Sigma$_{0}( $\mu$) := \{\}

$\Sigma$_{1}( $\mu$) :=\{-$\lambda$_{1}( $\mu$)\} and $\Sigma$_{2}( $\mu$)\subset\{ $\lambda$\in C;Re( $\lambda$)<-2$\gamma$_{0}\} for a positive constant

$\gamma$_{0}>0 and a continuous function $\lambda$_{1}( $\mu$)\in R satisfying $\lambda$_{1}( $\mu$)<$\gamma$_{0} for 0< $\mu$\leq 1.

(A2) $\lambda$_{1}( $\mu$)>0 for $\mu$_{-}< $\mu$<$\mu$_{c}, $\lambda$_{1}($\mu$_{c})=0 ,
and $\lambda$_{1}( $\mu$)<0 for  $\mu$>$\mu$_{c} . Moreover, for

 $\mu$\neq$\mu$_{c}, $\lambda$_{1}() is a simple eigenvalue of L_{0}() .

Let L_{0}^{*}( $\mu$) be the adjoint operator of L_{0} and let  $\psi$( $\mu$) be the eigenfunction associated

with the eigenvalue -$\lambda$_{1}( $\mu$) satisfying L_{0}( $\mu$) $\psi$( $\mu$)=-$\lambda$_{1}( $\mu$) $\psi$( $\mu$) . Since L_{0}( $\mu$)\partial_{ $\mu$}$\Phi$_{0}=0
holds and L() always has a zero eigenvalue, L_{0}^{*}( $\mu$) has the same properties, i.e., there

exist eigenfunctions $\phi$^{*}( $\mu$) and  $\psi$*( $\mu$) satisfying L_{0}^{*}( $\mu$)$\phi$^{*}( $\mu$)=0 and L_{0}^{*}( $\mu$)$\psi$^{*}( $\mu$)=
-$\lambda$_{1}( $\mu$)$\psi$^{*}( $\mu$) .

(A3)  $\psi$ and  $\psi$* are odd, whereas $\phi$^{*} is even.

(A4) There exist two branches expressed as \{$\Phi$_{-}( $\mu$);$\mu$_{-}\leq $\mu$\leq$\mu$_{c}\} and \{$\Phi$_{+}( $\mu$); $\mu$\geq
$\mu$_{-}\} for 0<$\mu$_{-}<$\mu$_{c} satisfying $\Phi$_{-}($\mu$_{c})=$\Phi$_{0}($\mu$_{c}) , $\Phi$_{-}($\mu$_{-})=$\Phi$_{+}($\mu$_{-}) and \langle$\Phi$_{-}( $\mu$) , $\phi$^{*}\rangle_{L^{2}}=

\langle $\Phi$_{+}( $\mu$) , $\phi$^{*}\rangle_{L^{2}}= $\mu$. $\Phi$_{+}( $\mu$) for  $\mu$>$\mu$_{-} is linearly stable, whereas $\Phi$_{-}( $\mu$) for $\mu$_{-}< $\mu$<

$\mu$_{c} is linearly unstable. Furthermore, F_{1}() <0 for $\mu$_{-}\leq $\mu$\leq 1 and F_{2}()>0 for

0< $\mu$\leq 1 hold, where F_{1}() :=\langle G($\Phi$_{+}( $\mu$)) , $\phi$^{*}\rangle_{L^{2}} and F_{2}() := \langle  G($\Phi$_{0}( $\mu$)) , $\phi$^{*}\rangle_{L^{2}}.
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(A5) At  $\mu$= $\mu$- ,
there exists an orbitally stable connecting orbit, say $\xi$_{-}(t) of (2.5)

with \langle $\xi$_{-}(t) , $\phi$^{*}\rangle_{L^{2}}= $\mu$- satisfying $\xi$_{-}(t)\rightarrow$\Phi$_{+}($\mu$_{-}) as  t\rightarrow-\infty and $\xi$_{-}(t)\rightarrow$\Phi$_{0}($\mu$_{-})
as  t\rightarrow+\infty . In the right‐hand neighborhood of $\mu$_{c} , i.e.,  $\mu$\in[, 1), there exists a class

of orbitally stable connecting orbits, say $\xi$_{c}(t; $\mu$) with \langle $\xi$_{c}(t; $\mu$) ,  $\phi$^{*}\rangle_{L^{2}}= $\mu$ satisfying

 $\xi$_{c}(t; $\mu$)\rightarrow$\Phi$_{0}( $\mu$) as  t\rightarrow-\infty and $\xi$_{c}(t; $\mu$)\rightarrow$\Phi$_{+}( $\mu$) as  t\rightarrow+\infty . More precisely,

$\xi$_{c}(t; $\mu$)\rightarrow$\Phi$_{0}( $\mu$)+r(t) $\psi$( $\mu$) with r(t)\downarrow 0 as  t\rightarrow-\infty and $\xi$_{-}(t)\rightarrow$\Phi$_{0}($\mu$_{-})+r(t) $\psi$($\mu$_{-})
with r(t)\downarrow 0 as  t\rightarrow+\infty hold.

Let $\mu$^{*} be the value satisfying

\displaystyle \int_{ $\mu$-}^{$\mu$^{*}}\frac{$\lambda$_{1}( $\mu$)}{F_{2}( $\mu$)}d $\mu$=0
and $\Gamma$_{0}:=\{$\Phi$_{0}( $\mu$); $\mu$-\leq $\mu$\leq$\mu$^{*}\}\cup\{$\xi$_{c}(t;$\mu$^{*});-\infty<t<+\infty\}\cup\{$\Phi$_{+}( $\mu$); $\mu$-\leq $\mu$\leq
$\mu$^{*}\}\cup\{$\xi$_{-}(t);-\infty<t<+\infty\} and U($\Gamma$_{0}; $\eta$) :=\{u\in L^{\infty}(I) ; distu,  $\Gamma$_{0}\}< $\eta$ }. Note

that  0< $\mu$-<$\mu$_{c}<$\mu$^{*}<1 holds.

Under (A1) \sim (A5), we can prove the following existence theorem for relaxation

oscillations:

Theorem 2.1. For sufficiently small  $\eta$>0 ,
there exist  $\delta$>0 and a periodic

orbit  $\Gamma$(t; $\delta$) of (2. 1) such that  $\Gamma$(t; $\delta$)\in U($\Gamma$_{0}; $\eta$)

Proof. See [2] for the proof. \square 

§3. Concluding remarks

We have discussed the existence of infinite dimensional relaxation oscillation aris‐

ing in a reaction‐diffusion system. In general, it is hard to find infinite dimensional

relaxation oscillation compared with ODE case since a global bifurcation diagram of

the system is required such as Figure 3. Moreover, the sign of F_{1}( $\mu$)=\displaystyle \int_{0}^{1}G($\Phi$_{+}())dx
in (2.4) is also important to decide the moving direction of the solution on the branch

$\Phi$_{+}( $\mu$) . In our case, the global bifurcation diagram and the sign of F_{1}() are numer‐

ically obtained. These features are significant to find infinite dimensional relaxation

oscillation. We emphasize that the key mechanism of infinite dimensional relaxation

oscillation is transition between two different stable equilibrium solution branches. In

[3], the existence of infinite dimensional relaxation oscillation is explained by a sim‐

ilar mechanism. Under several assumptions including these numerical evidences, the

existence of infinite dimensional relaxation oscillation can be proved.
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