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Some mathematical aspects of spiral wave pattern

By

Jong‐Shenq Guo*

Abstract

In this survey, we discuss some mathematical aspects for spiral waves. This includes the

steadily rotating spiral curves in the plane, the propagating wave segments in the plane, and

the rotating wave patterns in a disk.

§1. Introduction

Wave propagation in excitable media has been studied extensively both by theo‐

reticians and experimentalists, due to its wide applications in physical model, chemical

reaction, and biological system. Among them, spiral wave has been recognized as a

fascinating and important spatio‐temporal pattern, such as waves of oxidation in the

BZ reaction [24], waves of cyclic‐AMP signaling in the social amoeba colonies of Dioc‐

tyostelium discoideum [12], waves of neuromuscular in the heart muscle [23, 19], and so

on. We refer to reader to [22, 13, 17, 3] for some nice survey papers on spirals.

In weakly excitable 2‐D media, spiral wave patterns are usually modeled by a

reaction‐diffusion system, such as the FitzHugh‐Nagumo system

\displaystyle \frac{\partial u}{\partial t}=D\nabla^{2}u+3u-u^{3}-v,
\displaystyle \frac{\partial v}{\partial t}= $\epsilon$[u- $\delta$+I(t)],

Received August 18, 2011. Revised May 2, 2012.

2000 Mathematics Subject Classication(s): Primary: 34\mathrm{B}15, 34\mathrm{B}60 ; Secondary: 35\mathrm{K}57.

Key Words: spiral wave, rotating spiral curve, propagating wave segment, rotating wave.

This work was supported in part by the National Science Council of the Republic of China under

the grant NSC 99‐2115‐M‐032‐006‐MY3.
*

Department of Mathematics, Tamkang University, 151, Yingzhuan Road, Tamsui, New Taipei

City 25137, Taiwan; and MIMS, Meiji University, 1‐1‐1 Higashimita, Tamaku, Kawasaki 214‐8571,

Japan.
\mathrm{e}‐mail: jsguo@mail.tku.edu.tw

© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



66 \mathrm{J}\mathrm{o}\mathrm{N}\mathrm{G}‐Shenq Guo

where I(t) is the light intensity, constants D>0, 0< $\epsilon$,  $\delta$+\sqrt{3}\ll 1, u is the activator

and v is the inhibitor in the BZ reaction, for example. A spiral wave pattern corresponds

to the domain of excitation in the medium. As  $\epsilon$\rightarrow 0 ,
the sharp transition layer becomes

a curve which enclose the excited region. In general, we can divide the boundary of the

spiral wave pattern into two parts, namely, the wave front and the wave back, by the

phase change point (or, tip).
In this paper, we shall discuss some mathematical aspects for spiral waves. This

includes the steadily rotating spiral curve in the plane from the kinematic equation

approach, the propagating wave segment from the wave front interaction model proposed

by Zykov and Showalter [26], and the rotating wave patterns in a disk [27].

§2. Rotating spiral curves in the plane

In a spiral wave pattern, the sharply located spiral wave fronts are modeled as a

family of planar curves with one free end. In general, a family of planar curves with one

free end parametrized by the time variable t can be described by the following so‐called

kinematic equation:

(2.1) $\kappa$_{t}+u_{ss}+( $\kappa$\displaystyle \int_{0}^{s} $\kappa$ ud $\xi$)_{s}+G(t)$\kappa$_{s}=0, s>0, t>0,
where s is the arc length measured from the free end,  $\kappa$= $\kappa$(s, t) is the (signed) curva‐

ture, u=u(s, t) is the normal velocity, and G(t) is the tangential velocity of the free

end. Indeed, if we choose the normal vector to be the left‐hand normal to the tangent

vector and the curvature to be positive when the curve is winding in the clockwise di‐

rection, then we can derive (2.1) from the definitions of normal and tangent vectors,

normal and tangential velocities, and the Frenet‐Serret Theorem in the plane (cf. [5]).
In a steadily rotating spiral curve, the family of curves are keeping the same shape

with a constant positive angular frequency  $\omega$
,

and their free ends rotate along a circle

in the counterclockwise direction with zero tangential velocity. Hence, by imposing

 G(t)\equiv 0 and  $\kappa$, u are independent of t
,

for a steadily rotating spiral curve, (2.1) is

reduced to

(2.2) u''(s)+( $\kappa$(s)\displaystyle \int_{0}^{s} $\kappa$( $\xi$)u( $\xi$)d $\xi$)'=0, s\geq 0.
By integrating (2.2) once, we obtain that u and  $\kappa$ satisfy the equation

(2.3)  u'(s)+ $\kappa$(s)\displaystyle \int_{0}^{s} $\kappa$( $\xi$)u( $\xi$)d $\xi$= $\omega$,



Some mathematical aspects 0F spiral wave pattern 67

where  $\omega$ is the positive constant angular frequency of the wave.

Usually, the evolution of these curves are modeled by the curvature driven flow:

 u=U( $\kappa$) , e.g., linear eikonal equation  u=c-D $\kappa$
,

with  c the propagation velocity of

the planar front (or, driving force) and D the diffusion coefficient of the activator.

When c\neq 0 , by a normalization we may assume that c=D=1 so that we have

 u=1- $\kappa$ . In [1], it was shown that there is a critical value  $\omega$_{*}>0 such that a spiral

curve solution with positive curvature exists if and only if  $\omega$\in(0, $\omega$_{*} ]. Moreover, we are

able to count the exact number of such spiral curve solutions for any given  $\omega$\in(0, $\omega$_{*} ].
See also [2] for a different approach. We note that the radius of the circle of the free

ends is given by  $\rho$=|u(0)|/ $\omega$ with the tangent pointing inward to the center of the

circle if  u(0)<0 ; outward to the center if u(0)>0 . Also, at the free end, the position

vector is always perpendicular to the normal vector. When c=0 ,
in [5] we studied the

backward and forward self‐similar solutions of the equation (2.1).
For  u=1- $\kappa$

,
we set

 v(s):=\displaystyle \int_{0}^{s} $\kappa$( $\xi$)u( $\xi$)d $\xi$, s>0.
Then (2.3) is reduced to the following system

dv
(2.4) = $\kappa$(1- $\kappa$) ,\overline{ds}

 d $\kappa$
(2.5) =v $\kappa$- $\omega$

\overline{ds}

with the initial condition

(2.6) v(0)=0,  $\kappa$(0)=b,

where b\in \mathrm{R} is the curvature at the free end. In [6], by a phase plane analysis, we study

the system (2.4)-(2.5) and obtain a complete classification of solutions of this system.

Besides providing another approach to derive the results obtained by [1, 2] for spiral

curves with positive curvature, we also obtain spiral curve solutions with sign‐changing

curvature and with negative curvature. Note that the curvature function can change

sign at most once.

It should be remark that the above steadily rotating spiral curves obtained in

[1, 2, 6] are not exactly the front parts of spiral wave patterns. It could be a part of

the front, or, it could be the whole part of the front plus a part of the back. It would
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be a very interesting question to characterize the exact front part and the back part of

a spiral wave pattern.

§3. Propagating wave segments

A fundamental problem on spiral waves is to understand what is the region of the

excitability of the medium for which spiral waves can exist. As shown in [25] that the

existence of spiral waves is closely related to the existence of 1\mathrm{D} pulse in 2\mathrm{D} medium.

In fact, spiral waves can exist in the medium with sufficiently high excitability [25, 22].

Moreover, there exists an excitability limit, which we denote by $\zeta$_{0} ,
below which the

propagation of 1\mathrm{D} waves is not possible [18]. Therefore, below such a excitability

limit $\zeta$_{0} ,
the underlying medium cannot support the propagation of spiral waves. When

the excitability of the medium decreases from a high value to a critical value, the

corresponding wavelength tends to infinity and the associated wave pattern becomes an

unbounded (nearly) planar wave with one free end which is known as a critical finger

(cf. [18, 10]).

Recently, in [14, 15, 16], it is found that another wave pattern in the photosensitive

BZ reaction, namely, a wave segment which has two free ends, and moves with a constant

velocity and fixed shape. These wave segments are unstable, but can be stabilized

by using a feedback control to continually adjust the excitability of the medium (by

adjusting the incident light). Their experimental study and numerical simulations

also showed that there is a unique stabilized wave segment for each given (admissible)

excitability of the medium.

A propagating wave segment can be described by its two interfacial boundaries:

the wave front and the wave back. These two boundaries separate the enclosed domain

 $\Omega$ of excitation from the refractory region. The stabilized propagating wave segment

can be approximately described by the wave front interaction model proposed by Zykov

and Showalter [26]. In this model, they use the free‐boundary approach to reduce the

reaction‐diffusion system to two systems of ODEs.

The wave front can be described by the following system of equations for (\tilde{x},\tilde{y},\tilde{ $\theta$})=
(\tilde{x},\tilde{y},\tilde{ $\theta$})(s) :

(3.1) \left\{\begin{array}{l}
\tilde{x}'=\sin\tilde{ $\theta$},\\
\tilde{y}'=-\cos\tilde{ $\theta$},\\
\tilde{ $\theta$}'=-1+ $\sigma$\cos\tilde{ $\theta$},
\end{array}\right.
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where  $\sigma$\in(0,1) is the normalized normal velocity at the midpoint of front, (\tilde{x},\tilde{y}) is the

Euclidean coordinates of a point of the front, \tilde{ $\theta$} is the angle of the (left‐hand) normal

vector measured from the positive x‐axis, and the arc length s is measured from the

top point of the wave segment (the tip). By choosing the tip to be on the y‐axis and

assuming the wave segment is symmetric with respect to the x‐axis, we have

(\tilde{x}(0),\tilde{y}(0),\tilde{ $\theta$}(0))=(0, W( $\sigma$),  $\pi$/2) ,

where W( $\sigma$) is the (unknown) half‐width of the wave segment. Note that \tilde{ $\theta$}\in[0,  $\pi$/2],
since \tilde{ $\theta$}'<0 . Moreover, we have \tilde{y}(s)=0 when \tilde{ $\theta$}(s)=0.

Using \tilde{ $\theta$}'<0 ,
we can solve system (3.1) to obtain

x+=\displaystyle \frac{1}{ $\sigma$}\log\frac{1}{1- $\sigma$\cos\tilde{ $\theta$}},
y+=-\displaystyle \frac{\tilde{ $\theta$}}{ $\sigma$}+\frac{2}{ $\sigma$\sqrt{1-$\sigma$^{2}}}\tan^{-1}(\frac{(1+ $\sigma$)\tan(\tilde{ $\theta$}/2)}{\sqrt{1-$\sigma$^{2}}})

for \tilde{ $\theta$}\in[0,  $\pi$/2] . In particular, the half‐width of the wave segment W( $\sigma$) is the evaluation

of y+\mathrm{a}\mathrm{t}\tilde{ $\theta$}= $\pi$/2 , i.e.,

W=W( $\sigma$):=-\displaystyle \frac{ $\pi$}{2 $\sigma$}+\frac{2}{ $\sigma$\sqrt{1-$\sigma$^{2}}}\tan^{-1}(\frac{1+ $\sigma$}{\sqrt{1-$\sigma$^{2}}}) .

Note that W(0^{+})=1, W'>0 and  W( $\sigma$)\rightarrow\infty as  $\sigma$\rightarrow 1^{-} . This orbit (x_{+}, y_{+}) gives the

relation x+=f_{ $\sigma$}(y_{+}) . Note that f_{ $\sigma$} (depending on  $\sigma$ ) is a decreasing function defined

on [0, W( $\sigma$)] such that

f_{ $\sigma$}(0)=-\underline{\log(1- $\sigma$)}, f_{ $\sigma$}(W( $\sigma$))=0,
 $\sigma$

 f_{ $\sigma$}'(0)=0, f_{ $\sigma$}'(W( $\sigma$)^{-})=-\infty, f_{ $\sigma$}''(0)= $\sigma$-1<0,

 f_{ $\sigma$}(0)\rightarrow\infty as  $\sigma$\rightarrow 1^{-}

By measuring the arclength from the tip and taking the left‐hand normal vector,

the wave back can be described by the initial value problem (P_{ $\sigma$,b}) for (x, y,  $\theta$) , namely,

the equations

(3.2) x'=\sin $\theta$,

(3.3) y'=-\cos $\theta$,

(3.4) $\theta$'=1+ $\sigma$\cos $\theta$-b[f_{ $\sigma$}(y)-x],
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with the initial conditions

(3.5) x(0)=0, y(0)=W( $\sigma$) ,  $\theta$(0)=- $\pi$/2,

where parameters  $\sigma$\in(0,1) and b (related to the medium excitability) is a positive

constant. The constant b in the problem (P_{ $\sigma$,b}) is to be determined so that

(3.6) y(s^{*})=0,  $\theta$(s^{*})=0 and y'<0 in (0, s^{*})

for some s^{*}>0 . The terminal condition is due to the symmetric assumption of the

wave back with respect to the x‐axis.

We can roughly classify the wave segments into:

(I) convex type : $\theta$'>0 on [0, s^{*} ).

(II) non‐convex type : $\theta$' can change its sign in (0, s^{*}) .

Then we have the following theorem (cf. [7]).

Theorem 3.1. For each  $\sigma$\in(0,1) ,
there exists a unique b^{*}=b^{*}( $\sigma$)>0 and

s^{*}=s^{*}( $\sigma$)>0 such that the solution (x, y,  $\theta$) of (P_{ $\sigma$,b^{*}}) dened on [0, s^{*}] satises y'<0
on (0, s^{*}) , y(s^{*})=0,  $\theta$(s^{*})=0 and x<f(y) on (0, s^{*} ]. Moreover, the wave segment

is convex when  $\sigma$ is small, while it becomes non‐convex when  $\sigma$ is close to 1.

The proof of this theorem is based on the shooting argument with the help of two

reduced first order systems of two differential equations from (P_{ $\sigma$,b}) .

§4. Rotating wave patterns in a disk

The study of spiral patterns is always in the unbounded media and it cannot be

applied to describe spiral waves rotating within a disk. In [27], two types of rigidly

rotating patterns within a disk are studied by using the free‐boundary approach. They

are: spots moving along the disk boundary and spiral waves rotating around the disk

center. The study of Zykov [27] indicates that a selection mechanism that uniquely

determines the shape and angular velocity of these two patterns as a function of the

medium excitability and the disk radius. Moreover, rotating spots are intrinsically

unstable and can be observed in excitable media only under a stabilizing feedback as in

the wave segments.
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Let (x, y) be the Euclidean coordinates and (r,  $\gamma$) be the polar coordinates in the

plane. Let s be the arc length measured from the touching point of disk boundary for

the front and from the tip (phase change point) for the back, let  $\theta$ be the angle of the

normal vector (right‐hand to the tangent) measuring from the positive  x‐axis, and  $\kappa$

be the (signed) curvature. We choose the sign of curvature to be positive if the curve

is winding in the counter‐clock direction. We note that the difference between rotating

spot and spiral wave is the curvature of touching point of the front on the domain disk

boundary, namely, the curvature of this touching point is positive for a spot and is

negative for a spiral wave.

A propagating wave pattern (the excited region) which lies inside a disk centered

at the origin and is rotating counter‐clockwise along the disk boundary with a positive

angular speed  $\omega$ can be described by

(4.1)  r(s, t)=r(s) ,  $\gamma$(s, t)= $\gamma$(s)+ $\omega$ t,  $\theta$(s, t)= $\theta$(s)+ $\omega$ t.

From

(4.2) \displaystyle \frac{dx}{ds}=-\sin $\theta$, \frac{dy}{ds}=\cos $\theta$,
(4.3) \displaystyle \frac{dr}{ds}=\sin( $\gamma$- $\theta$) , \frac{d $\gamma$}{ds}=\frac{1}{r}\cos( $\gamma$- $\theta$) , \frac{d $\theta$}{ds}= $\kappa$,
we can compute the normal velocity by

V=\displaystyle \frac{dx}{dt}\cos $\theta$+\frac{dy}{dt}\sin $\theta$=\frac{dr}{dt}\cos( $\gamma$- $\theta$)-r\frac{d $\gamma$}{dt}\sin( $\gamma$- $\theta$) .

Let the functions describing the front/back be denoted by (x\pm, y\pm, r\pm,  $\gamma$\pm, $\theta$_{\pm}, V_{\pm}) . Then

from (4.1) it follows that

(4.4) V_{\pm}=- $\omega$ r\pm\sin $\varphi$\pm,

where  $\varphi$\pm:= $\gamma$\pm- $\theta$\pm\cdot We remark that the normal velocity vanishes at the tip which

separates the front and the back of a rotating wave.

§4.1. Wave front

For the front, we take the normalized interface equation

 V_{+}=1- $\kappa$+\cdot
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Using (4.3) and (4.4), we obtain

(4.5) \left\{\begin{array}{l}
\frac{dr_{+}}{ds}=\sin $\varphi$+,\\
\frac{d $\varphi$+}{ds}=\frac{\cos $\varphi$+}{r+}-1- $\omega$ r_{+}\sin $\varphi$+
\end{array}\right.
with the initial condition:

(4.6) r_{+}|_{s=0}=R_{D}, $\varphi$_{+}|_{s=0}=\displaystyle \frac{3}{2} $\pi$,
if we put the touching point of disk boundary for the front on the negative y‐axis. We

look for solution such that r is monotone. Hence  $\varphi$+\in[ $\pi$, 2 $\pi$] ,
since  $\varphi$+(0)=3 $\pi$/2.

Note that the tip is the point when  $\varphi$+= $\pi$ . This gives us the terminal condition for

(4.5).
Note that when  $\omega$=0 we can easily see that the front is just a part of the unit

circle centered at (-1, -R_{D}) .

To solve this boundary value problem for  $\omega$>0 ,
we introduce the following useful

transformation:

X( $\tau$):= $\omega$ r_{+}(s)\cos $\varphi$+(s) ,  $\tau$=-s,

Y( $\tau$):=1+ $\omega$ r_{+}(s)\sin $\varphi$+(s) ,  $\tau$=-s.

This gives the system

\left\{\begin{array}{l}
\frac{dX}{d $\tau$}=Y(1-Y) ,\\
\frac{dY}{d $\tau$}=- $\omega$+XY
\end{array}\right.
with the terminal condition

X(0)=0, Y(0)=1- $\omega$ R_{D}

and the initial condition

X(-s_{1})=- $\omega$ r_{+}(s_{1}) , Y(-s_{1})=1

for some s_{1}>0 . Note that Y is the curvature function.

Then we have the following theorem.

Theorem 4.1 ([8]). There exists a positive constant $\omega$_{*} such that
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1. Let  $\omega$\in(0, $\omega$_{*} ]. For each R_{D}>0 ,
there exists a unique solution (r_{+}, $\varphi$_{+}) of (4.5)-

(4.6) dened on [0, s_{1}] foor some s_{1}=s_{1}(R_{D},  $\omega$)>0 such that  $\varphi$+(s)\in( $\pi$, 2 $\pi$) foor
all s\in[0, s_{1}) and  $\varphi$+(s_{1})= $\pi$.

2. Let  $\omega$>$\omega$_{*} . Then there exists a positive constant a^{*}=a^{*}( $\omega$) such that a unique

solution (r_{+}, $\varphi$_{+}) of (4.5)-(4.6) dened on [0, s_{1}] for some s_{1}=s_{1}(R_{D},  $\omega$)>0 with

 $\varphi$+(s)\in( $\pi$, 2 $\pi$) for all s\in[0, s_{1} ) and  $\varphi$+(s_{1})= $\pi$ exists if and only if  R_{D}\leq

[1+a^{*}( $\omega$)]/ $\omega$ . Moreover,  a^{*}( $\omega$)\rightarrow\infty as  $\omega$\downarrow$\omega$_{*}.

3.  $\varphi$+(s; $\omega$)\in( $\pi$, 3 $\pi$/2) for all s\in(0, s_{1}(R_{D},  $\omega$)) if and only if  $\omega$ R_{D}\leq 1.

It follows from this theorem that, for each R_{D}>0 ,
there is a $\omega$^{*}(R_{D})>$\omega$_{*} such that

a front exists if and only if 0\leq $\omega$\leq$\omega$^{*}(R_{D}) . Moreover, the front is convex if  $\omega$ R_{D}\leq 1 ;

and is nonconvex if  $\omega$ R_{D}>1 . Define (r_{*}, $\theta$_{*}, $\gamma$_{*})=(r_{+}(s_{1}; $\omega$), $\theta$_{+}(s_{1}; $\omega$),  $\gamma$+(s_{1}; $\omega$
Note that  r_{*}>0 for  $\omega$<$\omega$^{*}(R) and r_{*}=0 when  $\omega$=$\omega$^{*}(R_{D}) . Also, we can define

the inverse function s=s(r) on (r_{*}, R_{D}) of r=r_{+}(s) and obtain

$\Gamma$_{+}(r):= $\gamma$+(s(r); $\omega$) , $\Phi$_{+}(r):= $\varphi$+(s(r); $\omega$) ,

which shall be used in the description of the back as follows.

§4.2. Wave back

Fix a R_{D}>0 and  $\omega$\in(0, $\omega$^{*}(R_{D})) ,
the normalized interface equation for the back

is given by

V_{-}=1-$\kappa$_{-}-b($\Gamma$_{+}(r_{-})-$\gamma$_{-}) ,

where b is a nonnegative constant to be determined. Indeed, the parameter b is related

to the excitability of the medium

Dropping the subscript �minus sign� ,
then the back of a rotating wave is governed

by

(4.7) \left\{\begin{array}{l}
\frac{dr}{ds}=\sin $\varphi$,\\
\frac{d $\gamma$}{ds}=\frac{\cos $\varphi$}{r},\\
\frac{d $\varphi$}{ds}=\frac{\cos $\varphi$}{r}-1- $\omega$ r\sin $\varphi$+b($\Gamma$_{+}(r)- $\gamma$) .
\end{array}\right.
with the initial condition

(4.8) r|_{s=0}=r_{*},  $\gamma$|_{s=0}=$\gamma$_{*},  $\varphi$|_{s=0}= $\pi$.
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We are looking for a solution (r,  $\gamma$,  $\varphi$) of (4.7)-(4.8) such that

r(s_{2}; $\omega$, b)=R_{D},  $\varphi$(s; $\omega$, b)\in(0,  $\pi$) for s\in(0, s_{2}) ,  $\varphi$(s_{2}; $\omega$, b)=\displaystyle \frac{ $\pi$}{2},
for some positive arc length s_{2} and a certain constant b\geq 0.

For this, we consider the following open strip domain

\mathcal{Q}:=(r_{*}, R_{D})\times \mathbb{R}\times(0,  $\pi$)

and define the exit‐length S=S(b) and the exit‐point (r_{e}, $\gamma$_{e}, $\varphi$_{e})(b) as follows:

1. if there is a positive number \hat{s} such that the orbit stays in \mathcal{Q} for 0<s<\hat{s} and

r(\hat{s})=R_{D} ,
then S=S(b)=\hat{s} and (r_{e}, $\gamma$_{e}, $\varphi$_{e})(b)=(R_{D},  $\gamma$(S),  $\varphi$(S)) ;

2. if there is a positive number \overline{s} such that the orbit stays in \mathcal{Q} for 0<s<\mathrm{S},

r(\overline{s})<R_{D} and  $\varphi$( $\tau$)> $\pi$ for some  $\tau$>\mathrm{S} and close to \overline{s}
,

then S=S(b)=\mathrm{S} and

(r_{e}, $\gamma$_{e}, $\varphi$_{e})(b)=(r(S),  $\gamma$(S),  $\pi$) ;

3. if there is a positive number \underline{s} such that the orbit stays in \mathcal{Q} for 0<s<\mathrm{S},

r(\underline{s})<R_{D} and  $\varphi$( $\tau$)<0 for some  $\tau$>\mathrm{S} and close to \underline{s} , then S=S(b)=\mathrm{S} and

(r_{e}, $\gamma$_{e}, $\varphi$_{e})(b)=(r(S),  $\gamma$(S), 0) .

Note that r is increasing in s while the orbit stays in \mathcal{Q} , the orbit never touches the

plane r=r_{*} . Hence we look for b\geq 0 such that S(b)=\hat{s} and  $\varphi$(S)= $\pi$/2.
Since (dr/ds)(s)>0 for all s\in(0, S) ,

the functions  $\Gamma$:= $\Gamma$(r) and  $\Phi$:= $\Phi$(r) are

well‐defined for r\in(r_{*}, r(S)) . Moreover, ( $\Gamma$,  $\Phi$) satisfies the system

(4.9) \displaystyle \frac{d $\Gamma$}{dr}=f(r,  $\Gamma$,  $\Phi$) ,

where  $\Phi$\in(0,  $\pi$) and

\displaystyle \frac{d $\Phi$}{dr}=g(r,  $\Gamma$,  $\Phi$) ,

f(r,  $\Gamma$,  $\Phi$):=\displaystyle \frac{\cos $\Phi$}{r\sin $\Phi$}
g(r,  $\Gamma$,  $\Phi$):=\displaystyle \frac{(\cos $\Phi$/r)-1- $\omega$ r\sin $\Phi$+b($\Gamma$_{+}(r)- $\Gamma$)}{\sin $\Phi$}.

Here the function $\Gamma$_{+}(r) is well‐defined for r\in(r_{*}, r(S)) .

For the case of convex front, i.e.,  $\omega$ R_{D}\leq 1 ,
we have

Theorem 4.2 ([8]). For a given R_{D}>0 and  $\omega$\in(0, $\omega$^{*}(R)) with  $\omega$ R_{D}\leq 1,

there is a unique constant b\#:=b\#( $\omega$) such that a solution ( $\Gamma$,  $\Phi$) of (4.9) with

( $\Gamma$(r_{*}),  $\Phi$(r_{*}))=($\gamma$_{*},  $\pi$)
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exists foor r\in(r_{*}, R_{D} ] and satises

 $\Phi$(R_{D};b\displaystyle \#)=\frac{ $\pi$}{2}, 0< $\Phi$(r;b\#)< $\pi$ forr_{*}<r<R_{D}.
This gives a rigorous proof of the existence and uniqueness of rotating spots. The

case of rotating spirals is left open.
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