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Application of the nonlinear Galerkin FEM method

to the numerical solution of a reaction‐diffusion

system in two dimensions

By

Jan Mach *

Abstract

This paper deals with an application of the nonlinear Galerkin method to the numerical

solution of a particular reaction‐diffusion system in two spatial dimensions. This method

was suggested as well adapted for the long‐term integration of the evolution equations and

combines the time and space discretization. Here we discuss the nonlinear Galerkin approach
in the framework of the finite element method and give details on how the numerical scheme is

derived. The modified Runge‐Kutta method with adaptive time step selection is used for the

integration in time. We also present the examples of numerical results.

§1. Introduction

Consider the system of reaction‐diffusion equations

(1.1) \displaystyle \frac{\partial U}{\partial t}=\mathrm{D}\triangle U+\mathrm{F}(U) ,

where \mathrm{D}\in \mathrm{R}^{d,d} denotes a positively definite diagonal matrix, \mathrm{F} : \mathrm{R}^{d}\rightarrow \mathrm{R}^{d} is a

Lipschitz continuous mapping, U(t, z) is a d‐dimensional function of time t\geq 0 and of

space z\in $\Omega$\subset \mathrm{R}^{n}.  $\Omega$ is a bounded space domain with piecewise smooth boundary. We

consider the homogeneous Neumann boundary conditions

(1.2) \displaystyle \frac{\partial U}{\partial v}=0,
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where v is the unit outward normal of  $\Omega$ and the initial condition

(1.3)  U|_{t=0}=U_{0}\in \mathrm{H},

where \mathrm{H}:=\mathrm{L}^{2}(, \mathrm{R}^{d}) is the Hilbert space with the scalar product

(1.4) (U, V)\displaystyle \equiv(U, V)_{\mathrm{H}}=\sum_{i=1}^{d}(U_{i}, V_{i})_{\mathrm{H}}=\sum_{i=1}^{d}\int_{ $\Omega$}U_{i}V_{i},
and the space V :=\mathrm{H}^{(1)}( $\Omega$, \mathrm{R}^{d}) as the Hilbert space with the scalar product

(1.5) (U, V)_{\mathrm{V}}=\displaystyle \sum_{i=1}^{d}(U_{i}, V_{i})_{\mathrm{H}( $\Omega$)}(1)=\sum_{i=1}^{d}\int_{ $\Omega$}\nabla U_{i}\cdot\nabla V_{i},
where U=(U\mathrm{l}, . . . , U_{d}) , V=(V\mathrm{l}, . . . , V_{d}) . The weak solution of the problem (1.1)-
(1.3) on the time interval (0, T) is a mapping U : (0, T)\rightarrow \mathrm{V} such that it satisfies the

following problem in the sense of distributions

(1.6) \displaystyle \frac{\mathrm{d}}{\mathrm{d}t}(U, W)+(\mathrm{D}U, W)_{\mathrm{V}}=(\mathrm{F}(U), W) in (0, T)\forall W\in \mathrm{V},

(1.7) U|_{t=0}=U_{0}.

This abstract setting covers the initial‐boundary value problems for wide range of

reaction‐diffusion systems, see e.g. [24, 28, 22].
The Gray‐Scott model is the particular example of the reaction‐diffusion system

exhibiting rich dynamics [25], [26], [27]. It describes the autocatalytic chemical reaction

(1.8) U+2V\rightarrow 3V, V\rightarrow P,

where U, V are reactants and P is the final product of the reaction. The chemical

substance U is being continuously added into the reactor and the product P is being

continuously removed from the reactor during the reaction.

The initial‐boundary value problem for the Gray‐Scott model, considered in Section

3 for numerical simulations, is the following system

(1.9) \displaystyle \frac{\partial u}{\partial t}=D_{u}\triangle u-uv^{2}+F(1-u) ,

(1.10) \displaystyle \frac{\partial v}{\partial t}=D_{v}\triangle v+uv^{2}-(F+k)v,
in  $\Omega$\times(0, T) with the initial conditions

(1.11) u 0)=u_{ini},

(1.12) v 0)=v_{ini}
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and the zero Neumann boundary conditions

(1.13) \displaystyle \frac{\partial u}{\partial v}|_{\partial $\Omega$}=0,
(1.14) \displaystyle \frac{\partial v}{\partial v}|_{\partial $\Omega$}=0.
The functions u, v are unknowns representing concentrations of the chemical substances

U, V . The parameter F denotes the rate at which the chemical substance U is being
added during the chemical reaction, F+k is the rate of the V\rightarrow P transformation

and a, b are the diffusion constants characterizing the environment of the reactor. We

denote the reaction terms in the system (1.9)-(1.10) by F_{1}(u, v) , F_{2}(u, v) or F_{1}, F_{2} only.
The system (1.9)-(1.13) has been studied from the viewpoint of qualitative behavior, see

e.g. [24, 25, 26, 27] and of mathematical properties [28]. Mathematical consequences of

these results help in the use of the presented method.

The rest of the article is organized as follows. The finite element nonlinear Galerkin

scheme for the system of two reaction diffusion equations, i.e. the Gray‐Scott model

(1.9)-(1.10) ,
is derived in Section 2. In Section 3 selected results of numerical solution

are presented.

§2. Nonlinear Galerkin method

The long‐term behavior of dissipative systems to which (1.1)-(1.3) belongs can be

described by the global attractor \mathcal{A} . In the standard Galerkin method the numerical

solution of the problem under consideration is searched in the space P_{m}\mathrm{H} spanned by

w_{1} ,
. . .

, w_{n} and thus produces an approximation of \mathcal{A} in the space P_{m}\mathrm{H} . The nonlinear

Galerkin method searches for the solution in an approximate inertial manifold, which

is the nonlinear manifold closer to \mathcal{A} than P_{m}\mathrm{H}[1 , 2, 3, 4 ] . This is the distinguishing

property and the theoretical advantage of the nonlinear Galerkin approach compared
to other simple methods. It was thus suggested as well adapted for the long‐term

integration of evolution equations in dynamically nontrivial situations [2]. It is general
and allows the use of various methods for the time and space discretization of the

underlaying problem. This approach was developed initially in the context of spectral
methods [1, 2, 22]. Later, it has been generalized to other spatial discretization methods,
i.e. the finite element method [7, 5, 14, 15, 23] and the finite difference method [12, 21].

The nonlinear Galerkin methods have been studied extensively. They have been

applied to a variety of problems so far, i.e. to the modeling of turbulence [8, 10, 18], nu‐

merical solution of Navier‐Stokes equations [5, 6, 11, 13, 23], the Kuramoto‐Sivashinski

equation [4, 16, 20] and the Burgers equation [9, 19, 20].
It has been also applied for the numerical simulations of reaction‐diffusion systems,

i.e. in [21] nonlinear Galerkin method based on the finite difference method is reported
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to produce quantitatively the same results as the standard finite difference method

when solving a particular reaction‐diffusion system in two dimensions for parameters

leading to non‐trivial spatial and temporal behavior. In [22] the application of the non‐

linear Galerkin approach with the spectral spatial discretization to the one‐dimensional

Brusselator model is studied and it is reported to provide computational time savings

compared to the standard Galerkin method with similar error in the numerical solution.

Reduction of the computational time for the same level of error was frequently

reported as a computational advantage of the nonlinear Galerkin methods over the

standard methods in other studies as well, see e.g. [4, 10, 11, 23]. Reported compu‐

tational time gains varies between 25%—55% depending on the particular nonlinear

Galerkin scheme definition, implementation details and the studied problem. Some au‐

thors were not able to reproduce these positive results when using more sophisticated
time integration methods with the adaptive time stepping [16, 20]. For comparison
of different time integration methods in the context of nonlinear Galerkin methods see

[17], where the author concludes that efficient integration in time is needed to avoid pre‐

mature conclusion about the computational advantages of nonlinear Galerkin methods

and to allow reliable comparison with the standard methods. Variable step‐size variable

formula BDF method was suggested as an efficient method for the time integration of

those compared.
In our work we study whether the theoretical advantages can be converted into

the computational ones for a particular nonlinear Galerkin method based on the finite

element discretization in space. The finite element nonlinear Galerkin method is applied
to the numerical integration of the system of two reaction‐diffusion equations in two

spatial dimensions. We provide details on how the the numerical scheme for the example

problem is derived.

For L>0 we denote

(2.1)  $\Omega$\equiv(0, L)\times(0, L)

the square domain and remind here the notation \mathrm{H}=\mathrm{L}^{2} (, R) and \mathrm{V}=\mathrm{H}^{(1)}( $\Omega$, \mathrm{R}^{2}) .

We consider the finite dimensional subspace \mathrm{V}_{h} of V as in the usual Galerkin finite

element method. In the nonlinear Galerkin method discussed here, \mathrm{V}_{h} is decomposed
into the coarse (large eddy) space \mathrm{V}_{2h} ,

and the correction space \mathrm{W}_{h} ,
as described in

Section 2.1. That is \mathrm{V}_{h}=\mathrm{V}_{2h}+\mathrm{W}_{h} . The weak solution of the problem (1.6)-(1.7) is

approximated by

(2.2) U_{h}(t)=Y_{h}(t)+Z_{h}(t) ,

where \forall t>0, Y_{h}(t)\in \mathrm{V}_{2h} and Z_{h}(t)\in \mathrm{W}_{h} . The function Y(t) and Z(t) are solutions
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of the following equations, see i.e. [2, 22],

(2.3) \displaystyle \frac{\mathrm{d}}{\mathrm{d}t}(Y_{h},\tilde{Y}_{h})+(\mathrm{D}Y_{h}+\mathrm{D}Z_{h},\tilde{Y}_{h})_{\mathrm{V}}=(\mathrm{F}(Y_{h}+Z_{h}),\tilde{Y}_{h}) , \forall\tilde{Y}_{h}\in \mathrm{V}_{2h},

(2.4) (\mathrm{D}Y_{h}+\mathrm{D}Z_{h},\tilde{Z}_{h})_{\mathrm{V}}=(\mathrm{F}(Y_{h})+\mathrm{F}'(Y_{h})\cdot Z_{h},\tilde{Z}_{h}) , \forall\tilde{Z}_{h}\in \mathrm{W}_{h},
(2.5) (U|_{t=0},\tilde{Y}_{h})=(U_{0},\tilde{Y}_{h}) , \forall\tilde{Y}_{h}\in \mathrm{V}_{2h}.

The values of Z(t) are known to be small for h small. At each time t, U_{h}(t)\simeq Y_{h}(t) ,

but the effect of the Y(t) add up due to the sensitivity of reaction diffusion equation
on the initial data and is thus effective on large intervals of time. The definition of

functions Y(t) and Z(t) other than (2.3)-(2.5) is possible [16, 20].
The choice of the spaces \mathrm{V}_{2h}, \mathrm{W}_{h} is given by the particular method of the space

discretization ‐ the finite element method in the case of this article, or the spectral
method or the finite difference method, see [1, 2, 12, 21].

The framework of the convergence analysis for the nonlinear Galerkin method is

given in [2, 3], and is elaborated for the reaction‐diffusion systems in [22], and the

finite‐element method applied to them in [33].

1

||||\ovalbox{\tt\small REJECT}^{\mathrm{h}}||

Figure 1. Numerical grid for the realization of the finite element nonlinear Galerkin

method in two spatial dimensions.

§2.1. Discretization by the finite element method

In this section we describe details of the spatial discretization within the finite

element nonlinear Galerkin method. For the square domain  $\Omega$(2.1) , N\in \mathcal{N}, h=L/2N
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we consider regular square mesh of nodes x_{i,j}=[ih, jh], i=0 ,
. . .

, 2N, j=0 ,
. . .

, 2N,
see Fig. 1. Let \mathcal{E}_{2h} denote set of (black) node indices [2i, 2j], i=0 ,

. . .

, N, j=0 ,
. . .

,
N.

In a similar manner we denote \mathcal{E}_{h} the set of (white) node indices [2i+1, 2j+1], i=

0 ,
. . .

, N-1, j=0 ,
. . .

, N-1, [2i, 2j+1], i=0 ,
. . .

, N, j=0 ,
. . .

,
N-1 and [2i+1, 2j],

i=0 ,
. . .

, N-1, j=0 ,
. . .

,
N.

The piecewise linear finite elements are used to construct the corresponding spaces.

First, we define the nodal (hat) functions  $\varphi$ 0, \forall O\in \mathcal{E}_{2h} that are equal to one at nodes

x_{O} and are equal to zero at all other nodes x_{M}, \forall M\in \mathcal{E}_{2h}, M\neq 0.
Next, we define the nodal (hat) functions $\psi$_{P}, \forall P\in \mathcal{E}_{h} that are equal to one at

nodes x_{P} and are equal to zero at all other nodes x_{M}, \forall M\in \mathcal{E}_{h}, M\neq P.
We define

(2.6) [$\varphi$_{2i,2j}^{(1)}=\left(\begin{array}{l}
$\varphi$_{2i,2j}\\
0
\end{array}\right) , $\varphi$_{2i,2j}^{(2)}=\left(\begin{array}{l}
0\\
$\varphi$_{2i,2j}
\end{array}\right)]_{i=0,j=0}^{N,N},
(2.7) [$\psi$_{2i+1,2j}^{(1)}=\left(\begin{array}{l}
$\psi$_{2i+1,2j}\\
0
\end{array}\right), $\psi$_{2i+1,2j}^{(2)}=\left(\begin{array}{l}
0\\
$\psi$_{2i+1,2j}
\end{array}\right)]_{i=0,j=0}^{N-1,N},
(2.8) [$\psi$_{2i,2j+1}^{(1)}=\left(\begin{array}{l}
$\psi$_{2i,2j+1}\\
0
\end{array}\right) , $\psi$_{2i,2j+1}^{(2)}=\left(\begin{array}{l}
0\\
$\psi$_{2i,2j+1}
\end{array}\right)]_{i=0,j=0}^{N,N-1},
(2.9) [$\psi$_{2i+1,2j+1}^{(1)}=\left(\begin{array}{l}
$\psi$_{2i+1,2j+1}\\
0
\end{array}\right), $\psi$_{2i+1,2j+1}^{(2)}=\left(\begin{array}{l}
0\\
$\psi$_{2i+1,2j+1}
\end{array}\right)]_{i=0,j=0}^{N-1,N-1},
as the 2‐dimensional vector‐valued finite element basis functions. The basis of \mathrm{V}_{2h}
consists of functions (2.6). The space \mathrm{W}_{h} is spanned by functions (2.7), (2.8) and (2.9).
The union of the bases of \mathrm{V}_{2h} and \mathrm{W}_{h} provides a hierarchical (induced) basis of \mathrm{V}_{h}.

Specifying Y_{h}=(u_{h}, v_{h}) and Z_{h}=(z_{h}, w_{h}) in the numerical approximation (2.2)
we have

(2.10) u_{2h}=\displaystyle \sum_{i=0,j=0}^{N,N}u_{2i,2j}$\varphi$_{2i,2j},
(2.11) v_{2h}=\displaystyle \sum_{i=0,j=0}^{N,N}v_{2i,2j}$\varphi$_{2i,2j},
(2.12) z_{h}=\displaystyle \sum_{i=0,j=0}^{N-1,N}z_{2i+1,2j}$\psi$_{2i+1,2j}+\sum_{i=0,j=0}^{N,N-1}z_{2i,2j+1}$\psi$_{2i,2j+1}
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+\displaystyle \sum_{i=0,j=0}^{N-1,N-1}z_{2i+1,2j+1}$\psi$_{2i+1,2j+1},
(2.13) w_{h}=\displaystyle \sum_{i=0,j=0}^{N-1,N}w_{2i+1,2j}$\psi$_{2i+1,2j}+\sum_{i=0,j=0}^{N,N-1}w_{2i,2j+1}$\psi$_{2i,2j+1}

+\displaystyle \sum_{i=0,j=0}^{N-1,N-1}w_{2i+1,2j+1}$\psi$_{2i+1,2j+1}.
where the components of the principle solution part Y_{h} and of the correction term Z_{h}
are the solution of the following system

(2.14) \partial_{t}(u_{2h},  $\varphi$ 0)+D_{u}(u_{2h}+z_{h},  $\varphi$ 0)v=(F_{1}(u_{2h}+z_{h}, v_{2h}+w_{h}),  $\varphi$ 0) ,

(2.15) \partial_{t}(v_{2h},  $\varphi$ 0)+D_{v}(v_{2h}+w_{h},  $\varphi$ 0)v=(F_{2}(u_{2h}+z_{h}, v_{2h}+w_{h}),  $\varphi$ 0) ,

(2.16) D_{u}(u_{2h}+z_{h}, $\psi$_{P})_{V}=(F_{1}(u_{2h}, v_{2h})+\partial_{u}F_{1}(u_{2h}, v_{2h})z_{h}

+\partial_{v}F_{1}(u_{2h}, v_{2h})w_{h}, $\psi$_{P}) ,

(2.17) D_{v}(v_{2h}+w_{h}, $\psi$_{P})_{V}=(F_{2}(u_{2h}, v_{2h})+\partial_{u}F_{2}(u_{2h}, v_{2h})z_{h}

+\partial_{v}F_{2}(u_{2h}, v_{2h})w_{h}, $\psi$_{P}) .

\forall O\in \mathcal{E}_{2h} and \forall P\in \mathcal{E}_{h} ,
which corresponds to (2.3) -(2.4) for \mathrm{D}=diag\{D_{u}, D_{v}\} and

\mathrm{F}= (F_{1}, F_{2}) . We denote here ) and )_{V} scalar product (1.4) and bilinear form

(1.5) for d=1 respectively.
Now we derive equations for the term z_{h} from (2.16). Equations for w_{h} are de‐

rived analogously. Numerical integration is applied to approximate the right‐hand side

of (2.16). For the particular index P\in \mathcal{E}_{h} ,
such that  x_{P}\cap\partial $\Omega$=\emptyset ,

the following

approximation is used

(2.18) (F_{1}+\partial_{u}F_{1}+\partial_{v}F_{1}, $\psi$_{P})\sim h^{2}F_{1}|_{P}+h^{2}\partial_{u}F_{1}|_{P}+h^{2}\partial_{v}F_{1}|_{P},

which can be modified for the boundary nodes replacing h^{2} terms by \displaystyle \frac{1}{2}h^{2}.
We consider $\psi$_{P}, P\in \mathcal{E}_{h} defined at nodes x_{2i,2j+1}, x_{2i+1,2j+1} and x_{2i+1,2j} sepa‐

rately. For $\psi$_{P}\equiv$\psi$_{2i,2j+1}, 0\leq j<N in (2.16) we receive

(2.19) (u_{2h}+z_{h}, $\psi$_{2i,2j+1})_{V}=(u_{2h}, $\psi$_{2i,2j+1})_{V}+(z_{h}, $\psi$_{2i,2j+1})_{V}

=\displaystyle \frac{1}{2}(u_{2i,2j}+u_{2i,2j+2-u_{2i-2,2j+2}-u_{2i+2,2j})}
-z_{2i-1,2j+1}+4z_{2i,2j+1-Z_{2i+1,2j+1}},

for 0<i<N . For i=0 and i=N we have

(2.20) (u_{2h}+z_{h}, $\psi$_{0,2j+1})_{V}=(u_{2h}, $\psi$_{0,2j+1})_{V}+(z_{h}, $\psi$_{0,2j+1})_{V}
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=\displaystyle \frac{1}{2}(u_{0,2j}-u_{2,2j})+2z_{0,2j+1-Z_{1,2j+1}},
and

(2.21) (u_{2h}+z_{h}, $\psi$_{2N,2j+1})_{V}=(u_{2h}, $\psi$_{2N,2j+1})_{V}+(z_{h}, $\psi$_{2N,2j+1})_{V}

=\displaystyle \frac{1}{2}u_{2N,2j+2}-z_{2N-1,2j+1}+2D_{u}z_{2N,2j+1},
respectively. Finally, for 0<i<N ,

the equation (2.16) yields

(2.22) − \displaystyle \frac{D_{u}}{h^{2}}z_{2i-1,2j+1}+(\frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{2i,2j+1})z_{2i,2j+1}
-\displaystyle \frac{D_{u}}{h^{2}}z_{2i+1,2j+1}-\partial_{v}F_{1}|_{2i,2j+1}w_{2i,2j+1}
=F_{1}|_{2i,2j+1}-\displaystyle \frac{D_{u}}{2h^{2}}(u_{2i,2j}+u_{2i,2j+2}-u_{2i-2,2j+2}-u_{2i+2,2j}) .

For i=0 and i=N we have

(2.23) (\displaystyle \frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{0,2j+1})z_{0,2j+1}-\frac{2D_{u}}{h^{2}}z_{1,2j+1}-\partial_{v}F_{1}|_{0,2j+1}w_{0,2j+1}
=F_{1}|_{0,2j+1}-\displaystyle \frac{D_{u}}{h^{2}}(u_{0,2j}-u_{2,2j}) ,

and

(2.24)-\displaystyle \frac{2D_{u}}{h^{2}}z_{2N-1,2j+1}+(\frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{2N,2j+1})z_{2N,2j+1}-\partial_{v}|_{2N,2j+1}w_{2N,2j+1}
=F_{1}|_{2N,2j+1}-\displaystyle \frac{D_{u}}{h^{2}}(u_{2N,2j+2}-u_{2N-2,2j+2}) ,

respectively.
For $\psi$_{P}\equiv$\psi$_{2i+1,2j+1}, 0\leq i<N and 0\leq j<N in (2.16) we get

(2.25) (u_{2h}+z_{h}, $\psi$_{2i+1,2j+1})_{V}=(u_{2h}, $\psi$_{2i+1,2j+1})_{V}+(z_{h}, $\psi$_{2i+1,2j+1})_{V}

=(u_{2i,2j+2}+u_{2i+2,2j-u_{2i,2j}-u_{2i+2,2j+2})-z_{2i+1,2j}}

-z_{2i,2j+1}+4z_{2i+1,2j+1-z_{2i+2,2j+1-Z_{2i+1,2j+2}}}

and thus equation (2.16) yields

(2.26) − \displaystyle \frac{D_{u}}{h^{2}}z_{2i+1,2j}-\frac{D_{u}}{h^{2}}z_{2i,2j+1}+(\frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{2i+1,2j+1})z_{2i+1,2j+1}
-\displaystyle \frac{D_{u}}{h^{2}}z_{2i+2,2j+1-}\frac{D_{u}}{h^{2}}z_{2i+1,2j+2}-\partial_{v}F_{1}|_{2i+1,2j+1}w_{2i+1,2j+1}
=F_{1}|_{2i+1,2j+1}-\displaystyle \frac{D_{u}}{h^{2}}(u_{2i,2j+2}+u_{2i+2,2j}-u_{2i,2j}-u_{2i+2,2j+2}) .
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For $\psi$_{P}\equiv$\psi$_{2i+1,2j}, 0\leq i<N in (2.16) we get

(2.27) (u_{2h}+z_{h}, $\psi$_{2i+1,2j})_{V}=(u_{2h}, $\psi$_{2i+1,2j})_{V}+(z_{h}, $\psi$_{2i+1,2j})_{V}

=\displaystyle \frac{1}{2}(-u_{2i+2,2j-2}+u_{2i+2,2j}+u_{2i,2j}-u_{2i,2j+2})
-z_{2i+1,2j-1}+4z_{2i+1,2j-Z_{2i+1,2j+1}},

for 0<j<N . For j=0 and j=N we have

(2.28) (u_{2h}+z_{h}, $\psi$_{2i+1,0})_{V}=(u_{2h}, $\psi$_{2i+1,0})_{V}+(z_{h}, $\psi$_{2i+1,0})_{V}

=\displaystyle \frac{1}{2}(u_{2i,0}-u_{2i,2})+2z_{2i+1,0-Z_{2i+1,1}},
and

(2.29) (u_{2h}+z_{h}, $\psi$_{2i+1,2N})_{V}=(u_{2h}, $\psi$_{2i+1,2N})_{V}+(z_{h}, $\psi$_{2i+1,2N})_{V}

=\displaystyle \frac{1}{2}(u_{2i+2,2N}-u_{2i+2,2N-2})-z_{2i+1,2N-1}+2z_{2i+1,2N}
respectively. Finally, the equation (2.16) yields

(2.30) − \displaystyle \frac{D_{u}}{h^{2}}z_{2i+1,2j-1}+(\frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{2i+1,2j})z_{2i+1,2j}-\frac{D_{u}}{h^{2}}z_{2i+1,2j+1}
-\partial_{v}F_{1}|_{2i+1,2j}w_{2i+1,2j}

=F_{1}|_{2i+1,2j}-\displaystyle \frac{D_{u}}{2h^{2}}(-u_{2i+2,2j-2}+u_{2i+2,2j}+u_{2i,2j}-u_{2i,2j+2}) ,

for 0<j<N . For j=0 and j=N we obtain

(231) (\displaystyle \frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{2i+1,0})z_{2i+1,0}+-\frac{2D_{u}}{h^{2}}z_{2i+1}, 1-\partial_{v}F_{1}|_{2i+1,0}w_{2i+1,0}

=F_{1}|_{2i+1,0}-\displaystyle \frac{D_{u}}{h^{2}}(u_{2i,0}-u_{i};) ,

and

(2.32) − \displaystyle \frac{2D_{u}}{h^{2}}z_{2i+1,2N-1}+(\frac{4D_{u}}{h^{2}}-\partial_{u}F_{1}|_{2i+1,2N})z_{2i+1,2N}-\partial_{v}F_{1}|_{2i+1,2N}w_{2i+1,2N}
=F_{1}|_{2i+1,2N}-\displaystyle \frac{D_{u}}{h^{2}}(u_{2i+2,2N}-u_{2i+2,2N-2}) ,

respectively.
We need to evaluate terms u_{2h}, v_{2h} at grid nodes x_{P}, \forall P\in \mathcal{E}_{h} to compute values

of F_{1}|_{P}, \partial_{u}F_{1}|_{P} and \partial_{v}F_{1}|_{P} . This is accomplished by the linear interpolation

(2.33) u_{2h}|_{2i+1,2j}=\displaystyle \frac{1}{2}(u_{2i,2j}+u_{2i+2,2j}) ,
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(2.34) u_{2h}|_{2i,2j+1}=\displaystyle \frac{1}{2}(u_{2i,2j}+u_{2i,2j+2}) ,

(2.35) u_{2h}|_{2i+1,2j+1}=\displaystyle \frac{1}{2}(u_{2i,2j+2}+u_{2i+2,2j}) .

In the similar manner, the term v_{2h} is treated.

We obtained the sparse linear system of 2n_{corr},

n_{corr}=(N+1)N+N(2N+1)=N(3N+2) ,

equations for the values of terms z_{h}, w_{h} at grid nodes x_{P}, P\in \mathcal{E}_{h} . The matrix is stored

in compressed sparse column (CSC representation for use with the UMFPA CK solver

[29, 30, 31, 32], which we use to solve the system.
Now we derive equations for the values of the solution component u_{2h} from (2.14).

Equations for v_{2h} in (2.15) are derived analogously. Numerical integration is used to

approximate the right‐hand side (2.14) For particular O\in \mathcal{E}_{2h} ,
such that x_{O}\cap\partial $\Omega$=\emptyset,

the following approximation is used

(2.36) (F_{1}(u_{2h}+z_{h}, v_{2h}+w_{h}), $\varphi$_{O})\displaystyle \sim\sum_{P\in \mathcal{E}_{h}}h^{2}$\varphi$_{O}|{}_{P}F_{1}(u_{2h}+z_{h}, v_{2h}+w_{h})|_{P}.
The term h^{2} is the area around grid nodes x_{P}, P\in \mathcal{E}_{h} as it is depicted in Fig. 2. For

 $\varphi$ 0\equiv$\varphi$_{2i,2j}, 0<i<N, 0<j<N and denoting F_{1}\equiv F_{1}(u_{2h}+z_{h}, v_{2h}+w_{h}) the

approximation (2.36) yields

(2.37) (F_{1}, $\varphi$_{2i,2j})\displaystyle \sim\frac{1}{2}h^{2}F_{1}|_{2i,2j-1}+\frac{1}{2}h^{2}F_{1}|_{2i+1,2j-1}+\frac{1}{2}h^{2}F_{1}|_{2i-1,2j}
+h^{2}F_{1}|_{2i,2j}+\displaystyle \frac{1}{2}h^{2}F_{1}|_{2i+1,2j}+\frac{1}{2}h^{2}F_{1}|_{2i-1,2j+1}+\frac{1}{2}h^{2}F_{1}|_{2i,2j+1},

which can be modified for the boundary nodes.

We need to evaluate the terms u_{2h}+z_{h}, v_{2h}+w_{h} at grid nodes x_{P}, \forall P\in \mathcal{E}_{h} in the

approximation (2.36). Linear interpolation is used to interpolate values of u_{2h}, v_{2h} on

grid nodes x_{P}, \forall P\in \mathcal{E}_{h}

(2.38) (u_{2h}+z_{h})|_{2i+1,2j}=\displaystyle \frac{1}{2}(u_{2i,2j}+u_{2i+2,2j})+z_{2i+1,2j},
(2.39) (u_{2h}+z_{h})|_{2i,2j+1}=\displaystyle \frac{1}{2}(u_{2i,2j}+u_{2i,2j+2})+z_{2i,2j+1},
(2.40) (u_{2h}+z_{h})|_{2i+1,2j+1}=\displaystyle \frac{1}{2}(u_{2i,2j+2}+u_{2i+2,2j})+z_{2i+1,2j+1}.
In the similar manner, the term v_{2h}+w_{h} is treated.

For a particular nodal hat function  $\varphi$ 0\equiv$\varphi$_{2i,2j}, 0<i<N, 0<j<N in Eq. (2.14)
we derive

(2.41) \displaystyle \frac{1}{3}h^{2}\dot{u}_{2i,2j-2}+\frac{1}{3}h^{2}\dot{u}_{2i+2,2j-2}+\frac{1}{3}h^{2}\dot{u}_{2i-2,2j}+2h^{2}\dot{u}_{2i,2j}
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Figure 2. Numerical integration.

+\displaystyle \frac{1}{3}h^{2}\dot{u}_{2i+2,2j}+\frac{1}{3}h^{2}\dot{u}_{2i-2,2j+2}+\frac{1}{3}h^{2}\dot{u}_{2i,2j+2}-D_{u}u_{2i,2j2}
-D_{u}u_{2i-2,2j}+4D_{u}u_{2i,2j}-D_{u}u_{2i+2,2j}-D_{u}u_{2i,2j+2}-\displaystyle \frac{1}{2}D_{u}z_{2i+1,2j-2}
-D_{u^{Z}2i-1,2j-1}+\displaystyle \frac{1}{2}D_{u^{Z}2i,2j-1}+D_{u}z_{2i+1,2j-1}-\frac{1}{2}D_{u}z_{2i+2,2j-1}
+\displaystyle \frac{1}{2}D_{u^{Z}2i-1,2j}+\frac{1}{2}D_{u^{Z}2i+1,2j-\frac{1}{2}D_{u^{Z}2i-2,2j+1}+D_{u}z_{2i-1,2j+1}}
+\displaystyle \frac{1}{2}D_{u^{Z}2i,2j+1-D_{u^{Z}2i+1,2j+1}-\frac{1}{2}D_{u^{Z}2i-1,2j+2}}
=\displaystyle \frac{1}{2}h^{2}F_{1}|_{2i,2j-1}+\frac{1}{2}h^{2}F_{1}|_{2i+1,2j-1}+\frac{1}{2}h^{2}F_{1}|_{2i-1,2j}+h^{2}F_{1}|_{2i,2j}
+\displaystyle \frac{1}{2}h^{2}F_{1}|_{2i+1,2j}+\frac{1}{2}h^{2}F_{1}|_{2i-1,2j+1}+\frac{1}{2}h^{2}F_{1}|_{2i,2j+1}.

For $\varphi$_{O}\equiv$\varphi$_{0,0} we obtain

(2.42) \displaystyle \frac{1}{3}h^{2}\dot{u}_{0,0}+\frac{1}{6}h^{2}\dot{u}_{2,0}+\frac{1}{6}h^{2}\dot{u}_{0,2}+D_{u}u_{0,0}-\frac{1}{4}D_{u}u_{2,0}
-\displaystyle \frac{1}{2}D_{u}u_{0,2}+\frac{1}{2}D_{u}z_{1,0}+\frac{1}{2}D_{u}z_{0,1}-D_{u}z_{1,1}
=\displaystyle \frac{1}{4}h^{2}F_{1}|_{0,0}+\frac{1}{4}h^{2}F_{1}|_{1,0}+\frac{1}{4}h^{2}F_{1}|_{0,1}.

For $\varphi$_{O}\equiv$\varphi$_{2i,0}, 0<i<N the Eq. (2.14) gives

(2.43) \displaystyle \frac{1}{6}h^{2}\dot{u}_{2i-2,0}+h^{2}\dot{u}_{2i,0}+\frac{1}{6}h^{2}\dot{u}_{2i+2,0}+\frac{1}{3}h^{2}\dot{u}21‐2,2 +\displaystyle \frac{1}{3}h^{2}\dot{u}_{21,2}
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‐ \displaystyle \frac{1}{2}D_{u}u_{2i-2,0}+2D_{u}u_{2i,0}-\frac{1}{2}D_{u}u_{2i+2,0}-D_{u}u_{2i,2}+\frac{1}{2}D_{u}z_{2i+1,0}
-\displaystyle \frac{1}{2}D_{u^{Z}2i-2,1}+D_{u^{Z}2i-1,1}+\frac{1}{2}D_{u}z_{2i,1}-D_{u}z_{2i+1,1}-\frac{1}{2}D_{u}z_{2i-1,2}
=\displaystyle \frac{1}{4}h^{2}F_{1}|_{2i-1,0}+\frac{1}{2}h^{2}F_{1}|_{2i,0}+\frac{1}{4}h^{2}F_{1}|_{2i+1,0}+\frac{1}{2}h^{2}F_{1}|_{2i-1,1}+\frac{1}{2}h^{2}F_{1}|_{2i,1}.

For $\varphi$_{O}\equiv$\varphi$_{2N,0} the Eq. (2.14) yields

(2.44) \displaystyle \frac{1}{6}h^{2}\dot{u}_{2N-2,0}+\frac{2}{3}h^{2}\dot{u}_{2N,0}+\frac{1}{3}h^{2}\dot{u}_{2N-2,2}+\frac{1}{6}h^{2}\dot{u}_{2N,2}
‐ \displaystyle \frac{1}{2}D_{u}u_{2N-2,0}+D_{u}u_{2N,0}-\frac{1}{2}D_{u}u_{2N,2}-\frac{1}{2}D_{u}z_{2N-2,1}
+D_{u}z_{2N-1,1}-\displaystyle \frac{1}{2}D_{u}z_{2N-1,2}
=\displaystyle \frac{1}{4}h^{2}F_{1}(|_{2N-1,0}+\frac{1}{4}h^{2}F_{1}|_{2N,0}+\frac{1}{2}h^{2}F_{1}|_{2N-1,1}+\frac{1}{4}h^{2}F_{1}|_{2N,1}.

For $\varphi$_{O}\equiv$\varphi$_{0,2j}, 0<j<N we have

(2.45) \displaystyle \frac{1}{6}h^{2}\dot{u}_{0,2j-2}+\frac{1}{3}h^{2}\dot{u}_{2,2j-2}+h^{2}\dot{u}_{0,2j}+\frac{1}{3}h^{2}\dot{u}_{2,2j}
+\displaystyle \frac{1}{6}h^{2}\dot{u}_{0,2j+2}-\frac{1}{2}D_{u}u_{0,2j-2}+2D_{u}u_{0,2j}-D_{u}u_{2i+2,2j}
-\displaystyle \frac{1}{2}D_{u}u_{0,2j+2-\frac{1}{2}D_{u^{Z}1,2j-2}+D_{u^{Z}1,2j-1}-\frac{1}{2}D_{u}z_{2,2j-1}}
+\displaystyle \frac{1}{2}D_{u^{Z}1,2j}+\frac{1}{2}D_{u}z_{0,2j+1}-D_{u}z_{1,2j+1}
=\displaystyle \frac{1}{4}h^{2}F_{1}|_{0,2j-1}+\frac{1}{2}h^{2}F_{1}|_{1,2j-1}+\frac{1}{2}h^{2}F_{1}|_{0,2j}+\frac{1}{2}h^{2}F_{1}|_{1,2j}+\frac{1}{4}h^{2}F_{1}|_{0,2j+1}.

For $\varphi$_{O}\equiv$\varphi$_{2N,2j}, 0<j<N we get

(2.46) \displaystyle \frac{1}{6}h^{2}\dot{u}_{2N,2j-2}+\frac{1}{3}h^{2}\dot{u}_{2N-2,2j}+h^{2}\dot{u}_{2N,2j}+\frac{1}{3}h^{2}\dot{u}_{2N-2,2j+2}
+\displaystyle \frac{1}{6}h^{2}\dot{u}_{2N,2j+2}-\frac{1}{2}D_{u}u_{2N,2j-2}-D_{u}u_{2N-2,2j}+2D_{u}u_{2N,2j}
-\displaystyle \frac{1}{2}D_{u}u_{2N,2j+2-D_{u^{Z}2N-1,2j-1}+\frac{1}{2}D_{u^{Z}2N,2j-1}+\frac{1}{2}D_{u^{Z}2N-1,2j}}
-\displaystyle \frac{1}{2}D_{u^{Z}2N-2,2j+1}+D_{u}z_{2N-1,2j+1}-\frac{1}{2}D_{u}z_{2N-1,2j+2}
=\displaystyle \frac{1}{4}h^{2}F_{1}|_{2N,2j-1}+\frac{1}{2}h^{2}F_{1}|_{2N-1,2j}+\frac{1}{2}h^{2}F_{1}|_{2N,2j}+\frac{1}{2}h^{2}F_{1}|_{2N-1,2j+1}
+\displaystyle \frac{1}{4}h^{2}F_{1}|_{2N,2j+1}.

For $\varphi$_{O}\equiv$\varphi$_{0,2N} ,
we have

(2.47) \displaystyle \frac{1}{6}h^{2}\dot{u}_{0,2N-2}+\frac{1}{3}h^{2}\dot{u}_{2,2N-2}+\frac{2}{3}h^{2}\dot{u}_{0,2N}+\frac{1}{6}h^{2}\dot{u}_{2,2N}
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‐ \displaystyle \frac{1}{2}D_{u}u_{0,2N-2}+D_{u}u_{0,2N}-\frac{1}{2}D_{u}u_{2,2N}-\frac{1}{2}D_{u}z_{1,2N-2}
+D_{u}z_{1,2N-1}-\displaystyle \frac{1}{2}D_{u}z_{2,2N-1}
=\displaystyle \frac{1}{4}h^{2}F_{1}|_{0,2N-1}+\frac{1}{2}h^{2}F_{1}|_{1,2N-1}+\frac{1}{4}h^{2}F_{1}|_{0,2N}+\frac{1}{4}h^{2}F_{1}|_{1,2N}.

For  $\varphi$ 0\equiv$\varphi$_{2i,2N}, 0<i<N we have

(2.48) \displaystyle \frac{1}{3}h^{2}\dot{u}_{2i,2N-2}+\frac{1}{3}h^{2}\dot{u}_{2i+2,2N-2}+\frac{1}{6}h^{2}\dot{u}_{2i-2,2N}+h^{2}\dot{u}_{2i,2N}
+\displaystyle \frac{1}{6}h^{2}\dot{u}_{2i+2,2N}-D_{u}u_{2i,2N-2}-0.5D_{u}u_{2i-2,2N}+2D_{u}u_{2i,2j}
-\displaystyle \frac{1}{2}D_{u}u_{2i+2,2N}-\frac{1}{2}D_{u}z_{2i+1,2N-2}-D_{u^{Z}2i-1,2N-1}+\frac{1}{2}D_{u}z_{2i,2N1}
+D_{u}z_{2i+1,2N-1}-\displaystyle \frac{1}{2}D_{u^{Z}2i+2,2N-1}+\frac{1}{2}D_{u}z_{2i-1,2N}
=\displaystyle \frac{1}{2}h^{2}F_{1}|_{2i,2N-1}+\frac{1}{2}h^{2}F_{1}|_{2i+1,2N-1}+\frac{1}{4}h^{2}F_{1}|_{2i-1,2N}+\frac{1}{2}h^{2}F_{1}|_{2i,2N}
+\displaystyle \frac{1}{4}h^{2}F_{1}|_{2i+1,2N}.

For  $\varphi$\equiv$\varphi$_{2N,2N} ,
we have

(2.49) \displaystyle \frac{1}{6}h^{2}\dot{u}_{2N,2N-2}+\frac{1}{6}h^{2}\dot{u}_{2N-2,2N}+\frac{1}{3}h^{2}\dot{u}_{2N,2N}-\frac{1}{2}D_{u}u_{2N,2N2}
-\displaystyle \frac{1}{2}D_{u}u_{2N-2,2N}+D_{u}u_{2N,2N}-D_{u^{Z}2N-1,2N-1}+\frac{1}{2}D_{u}z_{2N,2N1}
+\displaystyle \frac{1}{2}D_{u}z_{2N-1,2N}=\frac{1}{4}h^{2}F_{1}|_{2N,2N-1}+\frac{1}{4}h^{2}F_{1}|_{2N-1,2N}+\frac{1}{4}h^{2}F_{1}|_{2N,2N}.

Eq. (2.41) ‐Eq. (2.49) form a sparse linear system A\dot{u}_{2h}=b_{u} of n_{evol}=(N+1)^{2}
equations for the derivatives of the solution component u_{2h} at grid nodes x_{O},  O\in

\mathcal{E}_{2h} . The matrix is stored in compressed sparse column (CSC representation for the

use with the UMFPA CK solver, which we use to solve the system. The system of

equations Av_{2h}=b_{v} for the derivatives of the second solution component v_{2h} is derived

analogously.

§2.2. Integration in time

By the spatial discretization of (2.14) and (2.15), two linear systems were derived

for the derivatives of the solution components u_{2h}, v_{2h}

(2.50) A\dot{u}_{2h}=b_{u},

(2.51) A\dot{v}_{2h}=b_{v}.

Being aware of other results [16, 17, 20], where the authors emphasize the necessity of

using the efficient time‐integration methods to allow a reliable comparison to standard
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methods, we selected the modified Runge‐Kutta 4^{th} order method with the adaptive
time step selection for the integration of (2.50) and (2.51) in time.

At each step of the Runge‐Kutta method we first interpolate the solution u_{2h}, v_{2h}

on x_{P}, P\in \mathcal{E}_{h} using (2.33) ‐(2.35). Then we assembly and solve the linear system for

the terms z_{h}, w_{h} . We continue with computation of (2.38) ‐(2.40) which is needed for

the evaluation of terms F_{1}(u_{2h}+z_{h}, v_{2h}+w_{h})|_{P} and F_{2}(u_{2h}+z_{h}, v_{2h}+w_{h})|_{P} at nodes

x_{P}, P\in \mathcal{E}_{h} during the numerical integration of right‐hand sides in (2.14), (2.15). Then

we update the vectors b_{u} and b_{v} in (2.50) and (2.51) respectively prior to solving these

systems.

(a)

\ovalbox{\tt\small REJECT}_{\coprod}^{1}\square .2\square .4\square .\mathrm{B}\square . $\Xi$
(b) (c)

Figure 3. Example of the initial conditions for the component  u and v of the Gray‐Scott
model are depicted in (a) and (b) respectively. Color scale used in the following figures
is depicted in (c) .

§3. Numerical results

In this section we present an example of numerical results. We applied the finite

element nonlinear Galerkin scheme to the numerical solution of the initial‐boundary
value problem for the Gray‐Scott model (1.9)-(1.10) introduced in Section 1.

For the quantitative comparison we used the common finite difference scheme with

the discretization the Laplace operator given by the classical five‐point stencil and model

parameter values D_{u}=1\cdot 10^{-5}, D_{v}=1\cdot 10^{-6}, F=0.025, k=0.05, L=0.5 leading to

nontrivial dynamics. Numerical simulations were performed on meshes with 401\times 401

and 801\times 801 grid nodes. Initial condition v_{0} for the component v was a spot‐like
function in the upper left corner of the domain  $\Omega$ defined by the exponential function

\exp(-1/(1-((x-x_{0})(x-x_{0})+(y-y_{0})(y-y_{0}))/ $\epsilon$)

for x_{0}=y_{0}=L/4 and  $\epsilon$=0.00625 . The initial condition for the component u was

computed as u_{0}=1.0-v_{0} ,
see Fig. 3. The range of integration in time was 0\leq t\leq 800.

Numerical results at times t=500 and t=800 are depicted in Fig. 4, Fig. 6 for the finite



Nonlinear Galerkin FEM method 109

(a), t=500.0 ( \mathrm{b} ), t=500.0

(c), t=800.0 ( \mathrm{d} ), t=800.0

Figure 4. Numerical simulation of the Gray‐Scott model by the finite difference method

( 401\times 401 grid nodes). Both solution components u (left), v (right) are given.

(a), t=500.0 ( \mathrm{b} ), t=500.0

(c), t=800.0 ( \mathrm{d} ), t=800.0

Figure 5. Numerical simulation of the Gray‐Scott model by the finite element nonlinear

Galerkin method ( 401\times 401 grid nodes). Both solution components u (left), v (right)
are given.
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(a), t=500.0 ( \mathrm{b} ), t=500.0

(c), t=800.0 ( \mathrm{d} ), t=800.0

Figure 6. Numerical simulation of the Gray‐Scott model by the finite difference method

( 801\times 801 grid nodes). Both solution components u (left), v (right) are given.

(a), t=500.0 ( \mathrm{b} ), t=500.0

(c), t=800.0 ( \mathrm{d} ), t=800.0

Figure 7. Numerical simulation of the Gray‐Scott model by the finite element nonlinear

Galerkin method ( 801\times 801 grid nodes). Both solution components u (left), v (right)
are given.
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(a), t=800.0 ( \mathrm{b} ), t=800.0

Figure 8. Other example of patterns where quantitative agreement of numerical results

between finite difference and finite element nonlinear Galerkin methods applied to the

solution of the Gray‐Scott model was observed. Both solution components u (left), v

(right) are given.

(a), t=920.0 ( \mathrm{b} ), t=920.0

Figure 9. Other example of patterns where quantitative agreement of numerical results

between finite difference and finite element nonlinear Galerkin methods applied to the

solution of the Gray‐Scott model was observed. Both solution components u (left), v

(right) are given.

difference scheme and in Fig. 5, Fig. 7 for the finite element nonlinear Galerkin method

respectively. Both numerical approaches provide quantitatively the same results for the

finer mesh. When using the coarser mesh, the difference in the numerical solutions

is larger. Other examples of patterns where agreement of numerical results by both

methods was obtained are given in Fig. 8 and Fig. 9. Model parameters D_{u}=2\cdot 10^{-5},
D_{v}=1\cdot 10^{-5}, F=0.02, k=0.05, L=0.5 and D_{u}=2\cdot 10^{-5}, D_{v}=1\cdot 10^{-5}, F=0.022,

k=0.059, L=0.5 respectively were used.

§4. Conclusion

In this paper we applied a particular finite element nonlinear Galerkin method to

the numerical solution of the Gray‐Scott reaction‐diffusion model in two spatial dimen‐
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sions on a regular square numerical grid and described details of how the the numerical

scheme is derived. The modified Runge‐Kutta method with adaptive time step se‐

lection was used for integration in time. We provide example numerical results, which

demonstrate that the nonlinear Galerkin finite element scheme (2.3)-(2.5) produce quan‐

titatively the same results as the standard finite difference scheme. Comparison with a

standard scheme was used to verify the numerical results.
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