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b-Functions and the representation theory of quivers

By

Kazunari SUGIYAMA*

§1. Introduction

We start with a classical formula

(1.1) det (32‘]') det(v)*t = (s + 1)(s +2)--- (s +m) - det(v)* (v e My),

which is known since Cayley’s time. From a modern view point, the identity (1.1) can
be regarded as an example of b-functions of prehomogeneous vector spaces. In this
note, we generalize (1.1) to the prehomogeneous vector spaces associated with quivers
of type A. For this purpose, we use the result of [10], which asserts that under certain
conditions, b-functions of reducible prehomogeneous vector spaces have decompositions
correlated to the decomposition of representations. Moreover, in the latter half, we
describe an algorithm to calculate the b-functions of several variables. This algorithm
can be visualized by using the lace diagram, which now plays a remarkable role in
singularity theory (cf. [3], [4]).

First we recall prehomogeneous vector spaces associated with quivers of type A.
Let Q be a quiver of type A,, i.e., a chain of r-vertices with arrows between them:

1 2 3 r

For an r-tuple of positive integers n = (ni,n2,...,n,) € ZL,, we define GL(n) and
Rep(Q,n) by

GL(n) = GL(n1) x GL(n2) x --- x GL(n,),

Rep(Qn)= @ Mnipn)e @ Mng,n).

i—i+1in Q j+1—7in Q
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2 KAZUNARI SUGIYAMA

(We call n the dimension vector.) Then GL(n) acts on Rep(Q,n) by
g-v=({gi+1 Xit1, 9 Yisit1in 0 {95 X551 gj_+11}j+1—>j inQ)

for g = (91,92,---,9-) € GL(n) and v = ({Xit1i}timsit1in @ {Xjjt1}i41-5inQ) €
Rep(Q,n). It is well known that for any n € ZZ, Rep(Q, n) decomposes into a finite
number of GL(n)-orbits. In particular, (GL(n), Rep(Q,n)) is a prehomogeneous vector
space.

Example 1.1.  Let us consider the equioriented quiver of type As:
1 2 3 4 5
For n = (ni,...,ns) € Z2,, GL(n) and Rep(Q,n) are given by

GL(n) = GL(n1) x GL(n2) x GL(n3) x GL(n4) x GL(ns),
Rep(Q,n) = M(nz,n1) ® M(ns3,n2) ® M(ng,n3) ® M(ns,na),

and for g = (g1,...,95) € GL(n) and v = (X2,1, X322, X43, X54) € Rep(Q,n), we have
g-v="(92X2197 ", 93X3205 ", 94X1395 ", 95X5.495 ")

Remark.  When @ is equioriented, (GL(n), Rep(Q,n)) can be regarded as a pre-
homogeneous vector space of parabolic type arising from a special linear Lie algebra
sl(N) with N =n; +---+n, ([8, 9]).

Example 1.2. Let us consider the following quiver of type As:
1 2 3 4 5
For n = (ni,...,n5) € Z2,, GL(n) and Rep(Q,n) are given by

GL(n) = GL(n1) X GL(n2) x GL(n3) x GL(n4) x GL(ns),
Rep(Q,n) = M(ng,ni) & M(ng,n3) & M(ng,n3) & M(na,ns),

and for g = (g1,...,95) € GL(n) and v = (X2,1, X233, X433, Xa5) € Rep(Q,n), we have

g-v=(92X2197 ", 92X2395 ", 04X1395", 91Xa595 ).

§ 2. Relative invariants

In this section, we describe a condition for (GL(n), Rep(Q,n)) to have relative
invariants and give their explicit construction. For the details, see Abeasis [1], Koike [7].
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Let @ be a quiver of type A, with arbitrary orientation. The orientation of Q) is
determined by the sequence

{1=v(0)<v(l)<v2)<---<v(h)<vh+1)=r}

which consists of the sinks and sources of (). Note that if Q* is the quiver obtained from
Q@ by reversing all the arrows, then (GL(n),Rep(Q*,n)) is the dual prehomogeneous
vector space (GL(n), Rep(Q,n)*).

Now we fix a dimension vector n = (ni,...,n,) and consider the fundamental
relative invariants of (GL(n), Rep(@,n)). First, for a given pair (p,q) with 1 <p < ¢ <
r, we define indices & = a(p, q) and 8 = 5(p, ¢) by the conditions

via—1) <p<v(a), v(p) <qg<v(B+1).

When p, q are clear from the context, we just write «, 8 instead of a(p, q), B(p,q). Then
I,(Q) is defined to be the totality of pairs (p,q) with 1 < p < ¢ < r which satisfy the
following conditions (I1)~(14):

(I1) For t with p < t < v(a), it follows that n; > n,,

(I2) For k =0,1,...,6 —a—1and t with v(a+ k) <t < v(a+ k+ 1), it follows that

Ii—l—ln

g > Ny(a+r) — Mu(atr—1) +eee (_1)&”’1/(04) + (_1) D>

(I3) For t with v(8) < t < ¢, it follows that

e > Ny(g) = M(p—1) + -+ (1)) + (=1)7 iy,

(14) ng = Nyp) — Ny(g—1) + -+ (—1)5—0‘ny(a) + (—1)5_0‘“%.
By Abeasis [1], we have the following lemma.

Lemma 2.1.  There exists a one-to-one correspondence between I,(Q) and the
set of GL(n)-orbits in Rep(Q,n) of codimension one. In particular, there exists a
one-to-one correspondence between I,,(Q) and the fundamental relative invariants of

(GL(n),Rep(Q,n)).

The explicit construction of an irreducible relative invariant corresponding to (p, q) €
I,(Q) is given as follows. When there exist no sink and source between two vertices
w,v (< v) of @, either the following (a) or (b) holds:

+1 v

1 1 1 v
(a) . — .
—1 v

1
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In the case of (a), we put
XI/,/J, = XV,V—IXV—I,V—Q T X,u,—l—l,;m
and in the case of (b), we put
Xu,l/ = Xu,u+1Xu+1,u+2 e 'Xv—l,v-
Now suppose that p is a source and ¢ is a sink:
p v(a) v(a)+1 v(a+1) v(B) q
_> . % . <—...<— . H...<— . H... .

C— e

In this case, for v € Rep(Q,n), we define a matrix Y, ) by

Xu@)p Xv(a)wlat1) 0 ah 0 0
0 XV(a—l—Q),V(a—I—l) Xu(a+2),v(a+3) B ; ;
Yv(p»Q) = : . . - . . 5
0 0 0 w Xu(a-1)w(8-2) Xv(8-1),0(8)
0 0 0 . 0 Xy0(5)

and put f(, q)(v) = det Y, 4. Then it is easy to see that f(, ,)(v) is a relative invariant
of (GL(n), Rep(Q, n)).
Next we consider the case where both p and ¢ are sources.

p v(a) v(a)+1 v(a+1) v(B) q
. —> o e —> . % . <— o e <— . H o e H . % ... % .
Then we define a matrix Y, 4y by
Xu(e)p Xuv(a)v(a+1) 0 0 0
0 XV(a—l—Q),V(a—I—l) Xv(a+2),u(a+3) - ; ;
Yoo = | : : o : :
0 0 0 e Xyp-2)yw(g-1) 0
0 0 0 o X ws-n Xup)g

and put f(, q)(v) = det Y, ;). Then it is easy to see that f(, o) (v) is a relative invariant
of (GL(n),Rep(Q,n)). One can easily find similar expressions of Y, ;) for the other
cases, i.e., where “p is a sink and ¢ is a source” or “both p and ¢ are sinks”.

Example 2.2. In Example 1.1, assume that n; < no < nz = nyg, n5 = ni. Then
we have I,,(Q) = {(1,5), (3,4) }. The fundamental relative invariants are given explicitly
by

f(3’4) (’U) = det X4’3, f(1,5) (’U) = det X5’1 = det(X5’4X4’3X3’2X2’1).
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Example 2.3. In Example 1.2, assume that ny +n3 = ng + ng, n1 < ng <
n3, ns = ny. Then we have 1,,(Q) = {(1,4), (2,5)}. The fundamental relative invariants
are given explicitly by

Xo1Xo3 Xo3 O
= det ’ ’ = det ’ .
f(1,4) (v) S ( 0 X4,3> ) f(z,s)(v) € <X4,3 X4,5>

Example 2.4. Let @ be the following quiver of type As:
1 2 3 4 5 6 7 8
If the dimension vector n satisfies

ne >ny (t=2,3), ng >ng —ny (t =4), ng >mng —ng+ny (t=25,6)

ny > Ng — N4 + N3z — Ny, ng = Ng — N4 + N3z — Ny,

then (1,8) € I,(Q) and the corresponding relative invariant is given by

B X3,1|X3,4| O\ X3,2X2,1| X34 | O
fa(v) = det ( ) ‘X6,4‘X6,8> = det ( ) ’X6,5X5,4 ’X6,7X7,8 '

§ 3. b-Functions of one variable

It follows from the theory of prehomogeneous vector spaces (cf. [6]) that there exists
a polynomial by, )(s) € C[s] satisfying

0
fip.9) (%> fw.0) ()" = b(p,q)(8) - fip,q) (V)°-

By using the decomposition formula of b-functions proved in F. Sato and Sugiyama [10],
we can determine by, 4)(s).

Example 3.1. Let us consider the equioriented quiver of type A,
1 2 3 T
Then, for n = (n4,...,n,) € ZL,, we have

GL(n) = GL(n1) x GL(n2) x GL(n3) x --- x GL(n,),
Rep(Q,n) = M(n2,n1) ® M(nz,n2) ® -+ ® M(n,,ny—1),

and the action is given by

g-v="(92X2197 ", 93X3295 "+ - 0+ Xy 19, 1)
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fOI‘ g = (917927937 v 791‘) € GL(ﬂ) and v = (X2,17X3,27 v 7X7’,7’—1) € Rep(Q)ﬁ) Now
we assume that n; =n, < ng,ng,...,n,._1. Then

f(v) :=det (X;;—1-- X32X21)
is an irreducible relative invariant corresponding to the character x(g) = det g, det g; 1
Let us introduce the following graphical notation to indicate this polynomial.
f(v):det(%l—>%2—>%3—>---—>T<L>T).
We shall calculate the b-function bs(s) of f by using the result of [10]. We put

G' = GL(n3) x --- x GL(n,),
E = M(ns,ng) ® -+ M(n.,n—1),
F = M(ng,ny),
GL(m) = GL(n2), GL(n) = GL(nq)
and regard (GL(n), Rep(Q,n)) as a prehomogeneous vector space of the form [10, (2.2)].

Then we have | = 0,d = 1 in the notation of [10, Section 2] and thus we can apply |10,
Theorem 2.6] in order to obtain the decomposition

br(s) = bi(s)ba(s).

Moreover, by [10, Theorem 3.3], we have

ny

ba(s) = H(s +ng — ny +1).

i=1
Note that m = ny,n = nj,d = 1 in the notation of [10, Theorem 3.3]. The last step
is to calculate b1 (s). Let X9 | = (I, |0, ,ny—n,) € F and put this into f(v). Then we
have
F(X91, X320, ..., Xppo1) =det (Xp o1+ X3 5),

where X3 , is given by
X320 = (X5, | X45) € M(ns, n2), X35 € M(ns, ny), X3y € M(n3,ng —ny).
Hence b;(s) can be regarded as the b-function of the relative invariant
det(%1 —>%3—>%4—>---—>%’")
of a prehomogeneous vector space arising from the equioriented quiver of type A, ;.

By repeating this cut-off operation, we get to the b-function of det (%1 — %T>, which
is nothing but the formula (1.1). Summarizing the above argument, we obtain

br(s) = HH(S—I—nt—nl—l—)\).

t=2 \=1
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The decomposition formula can be applied equally to (GL(n,Rep(Q,n))) with @
being arbitrary orientation; for k = 0,1,...,8 — a, we put

K

ﬁu(a—i—n) - Z(_l)Tnv(a—l—n—T) + (_1)K+lnp

7=0

= Ny(at+r) — Mw(at+k—1) +oeeet (_1)Knv(a) + (_1)K+1n

D+

Then we have the following theorem.

Theorem 3.2.
v(a) mnp
bip.q)(5) = H H(s +np —ny+A)
t=p+1 =1

B—a—1 v(at+kr+l) Mu(atnr)

< 1T II I G+nr—Tuain+N)

k=0 t=v(at+k)+1 XI=1

q u(8)
X H H (s +mns — Ty + A).
t=v(B)+1 A=1

Example 3.3. In Example 2.2, we have
baa(s) = (s+1)(s+2)-- (s +n3),
5 np
b(1’5)(8) = H H(S +ny—nq+ )\)
t=2 A=1

=(s+1)---(s+n)x(s+na—ni+1)---(s+n2)
X (s+n3—n3+1)%--(s+n3)>

Example 3.4. In Example 2.3, we have

baay(s) =(s+ng—ny+1)---(s+n2) X (s+n3—ng+ny+1)--(s+n3)
X (s+ng—n3+mng—ng+1)---(s+ny)
:(8+1)--~(3—|—n3)><(S+n2—n1+1)...(3+n2).

Similarly, we have
bas)(s)=(s+1)---(s+n4) X (s+n3—ng+1)---(s+nz).

Example 3.5.  The b-function b(; g)(s) of the relative invariant f(; g)(v) in Ex-
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ample 2.4 is given by

3
bagy(s) = [[(s+m—ni+1)-- (s +n)

x|l(s+n—n3+n+1)---(s+n)

x| l(s+ni—ng+n3—ny+1)---(s+mny)

t=2
4

t=4
6

t=5

X (s4+1)---(s+n7).

84. Some facts from the representation theory of quivers

To describe a combinatorial method to compute the b-functions of several variables,
we quote some facts from the representation theory of quivers. For the details, we refer
to Abeasis and Del Fra [2]. Assume that @ is a quiver of type A, with arbitrary
orientation.

1 2
Q;._>.<_...<_T.

2 r—1 r
—s . .

For the dimension vector n = (n1,...,n,) € ZL, we take vector spaces L; (i =1,...,7)
with dim L; = n;. When ¢ — ¢ + 1 in @, we take an arbitrary A;y;,; € Hom(L;, L;11),
and when j+1 — j in @, we take an arbitrary A; ;11 € Hom(L,11, L;). If we fix a base
of L; and identify as Hom(L;, Li+1) = M(nit1,n;) or Hom(L;11,L;) = M(nj,nji1),
then we can regard as

A= ({Airridioittin @ {Ajj+1}j+155 in @) € Rep(Q, n).
If v(k) is a sink and v(k — 1), v(k + 1) are sources, then we can define the map 2 by
(41) ¥&  Lyeo1) ® Lu(usn) = Loy 5 (2,0) = (Ap)w(e1)Z — Au(m)w(nr)0)-

For 1 <i < j <r, we denote by Q) the subquiver of @ starting at i and terminating
at j. Moreover, we define the map

t runs over all the sources of Q(i’j )
A

Ll L — L / =
i @ ! @ ’ (t/ runs over all the sinks of Q(m)

to be the collection of the maps ¥4 given as (4.1).
Example 4.1.  Let us consider the following quiver of type As:

1 2 3 4 5
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Then we have

o 1Ly ® Ly — Lo® Ly 5 (21,23) — (Ao121 — Ao 323, As323)
@45+ Ly — Lo ® Ls i 23— (—Ag 323, As5.4A4323)
80145 L1 ® Ly — La®Ls 5 (21,23) (A2,121 — Ap 323, A5,4A4,3Z3)-

For A € Rep(Q,n), we define N{} by

NA rankgof; (i <j)
Yl dimL =0 (=)

Then the rank parameter N4 := {N{?}lgigng is an invariant which characterizes the
GL(n)-orbit. That is, if we denote by O 4 the GL(n)-orbit through A € Rep(Q,n), then
we have O, = Op if and only if N{? = NZ-? for 1 < i < j < r. Moreover, the partial
ordering on the rank parameters coincides with the closure ordering on G'L(n)-orbits.
That is, we have O4 C Op if and only if Ni‘? < Nﬁ for1<i<j<r.

Let us return to b-functions. Let (p,q) € I,(Q) (cf. Theorem 2.1). Note that
A € Rep(Q,n) satisfies f(, 4)(A) # 0 if and only if go;;‘q is an isomorphism. We de-
note by N9 the rank parameter which is minimal among the rank parameters N4
such that go;;‘q is an isomorphism, minimal with respect to the above-mentioned par-
tial ordering. The orbit O®%) corresponding to N®% is the closed GL(n)-orbit in
{A € Rep(Q,n); fp,q)(A) # 0}, and thus it is unique (cf. Gyoja [5]).

For N9 = {N7""}1<ic i<, we put

Foo = {INGD - NEBD 1, NGO (= o)} s
w2) [NED - NED 1, NG (=)}

o (N - NP 1 N (=}

Note that F®-9 is a set consisting of 7 — 1 sets, and each set consists of consecutive natu-
ral numbers. However, if N,gzi"l])k = 0, then we regard {N,SZ’Q) — N,g’f‘f)k +1,..., N,SZ’Q) (=

nk)} as the empty set (). Moreover, we define a “set” of linear forms s + F49) by
{s + Nég’q) — N2(§’q) +1,...,5+ Nég’q) (=s —I—ng)} L.
3 {8+N1S£’q) - Nﬁ’i’f’)r +1,...,s+ NP9 (= s—l—nr)}} :

Then we have the following theorem.
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Theorem 4.2.  Let (p,q) € 1,(Q). If we multiply all the linear forms contained
in s + FPD together, then we obtain the b-function bip,q)(5)-

Example 4.3. Let n =(2,5,6,6,2) in Example 3.3. Then we have

bz,a)(s) = (s+1)(s +2)(s+3)(s+4)(s+5)(s+6),
b15)(s) = (s + 1) (s +2)(s + 4) (s + 5)°(s +6).

To calculate the rank parameters N34 and N(1:5) corresponding to the closed orbits,
we construct the lace diagrams (cf. [3],[4]). Here, a lace diagram is a sequence of r-
columns of dots, with n; dots in the i-th column, together with line segments connecting
dots of consecutive columns. Each dot may be connected to at most one dot in the
column to the left of it, and to at most one dot in the column to the right of it. We
identify the dots of the ¢-th column with chosen basis of L;, and define each linear
map A;11,; € Hom(L;, Li1) or Aj 11 € Hom(Lj41,L;) according to the connections
between the dots.

Now the lace diagrams corresponding to the closed orbits @G4) and O are
given as follows: Note that if any array in the diagram is erased, then the condition

OGB4 o—e O1,5) ° °
° o—e ° ° °
° o—e ° ° °
. o—o ° . °
° ° o—e ° *—ro—r0—>o—>0
° ° o—e ° ——ro—r0—ro—o

Figure 1. Lace diagrams corresponding to @4 and ©(1:%)

fw.q)(A) # 0 is not satisfied, and conversely if some extra array is added, then the
minimality condition is not satisfied. Thus we see that the rank parameters N®% and
N@5) are given as follows:

NGY . 20000 N@S) . 929929
5000 5222

660 622

60 62

2 2
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By (4.2), the rank parameters read FGA) o4 FGA and FUO 54 F5) a9

FED =10 0;{1,2,3,4,5,6} ; 0},
s+FCD ={0;0; {s+1,s+2,5+3,5+4,5+55+6}; 0},
FOB) = 44,5} ; {5,6}; {5,6}; {1,2}},
s+FID) = {{s+4,5+5}; {s+5,5+6}; {s+5,5+6}; {s+1,5+2}}.

Note that if we multiply all the linear forms contained in s + F3% (resp. s + F(1:9)),
then we obtain the b-function b3 4)(s) (resp. b 5)(s)).

Example 4.4. Let n=(2,5,7,4,2) in Example 3.4. Then we have

b14)(s) = (s + 1) (s +2)(s +3)(s +4)*(s +5)*(s + 6) (s + 7),
bas)(s) = (s+1)(s+2)(s+3)* (s +4)*(s +5)(s +6)(s+ 7).

The lace diagrams corresponding to @14 and O35 are given as follows: Here we

O1,9) o ©(2.5) M
o— o o —o
o— o o—e
o—>0e o—>o [ ] [ ] o+———0 ot+——e0
o —>e o —>o [ ] [ ] o+—2e0 o+——0
o—>0 o—>e
o——oe o——e

Figure 2. Lace diagrams corresponding to @4 and O(25)

follow the convention of [1, p. 467] or [3]. That is, two consecutive columns connected
with a rightward arrow (resp. leftward arrow) are bottom-aligned (resp. top-aligned).
Now we see that the rank parameters N4 and N(Z5) are given by

N&Y . 22599 N@) . 20579
5377 5579

744 724

40 42

2 2
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Hence we observe that F4 s + F(14) and F25) s 4+ F25) are

FOY = {{4,5}; {5,6,7}; {1,2,3,4} ; w}v

s+ FUY = ({544,545} ; {s+5,54+6,5+7}; {s+1,5+2,5+3,s+4}; 0},
FEI={0; {3.4.5,6.7}; {3.4}; {1.2}},

s+ F2D) =0 {s+3,5+4,5+5,5+6,s+7}; {s+3,s+4}; {s+1,s+2}},

and that if we multiply all the linear forms contained in s 4+ F(14) (resp. s + F (2’5)),
then we obtain the b-function b 4)(s) (resp. b25)(5))-

8§ 5. Ob-Functions of several variables

First we recall the definition of b-functions of several variables for general reductive
prehomogeneous vector spaces (G, V) (cf. M. Sato [11]). Let fi,..., fi be the fundamen-
tal relative invariants and ; the character of f;. Let ff,..., f;* the fundamental relative
invariants of the dual prehomogeneous vector space (G, V*) such that the character of
fi is x; ' For a multi-variable s = (sy,...,s;), we put f*= I, /5 f*= Hf}:l [

i=1Ji s
Then for any I-tuple m = (mq,...,m;) € Zl>0 of non-negative integers, we have

*1m 8 s+m _ S
577 (50 ) 2570 = bls) - 50
with some non-zero polynomial by, (s). We call by,(s) the b-function of f = (f1,..., fi).

Now we describe an algorithm to calculate the multi-variate b-function by, (s) of
(GL(n),Rep(Q,n)). We take an arbitrary numbering on I,,(Q) and let

1,(Q) = {(p1; 1), (P2, 92),- -+, (P1, @) } -

In the following, we write as f(,, ) = [f1, NP2a2) = N©2) Fles.as) = FG)

1°. First, for given linear forms s;, + «, s;, + a, - -+ ,8;, + « with the same constant
term «, we define the superposition operation as follows:

(5.1) Siy tay si, a8, o — s+ s, o+ 8, Ha
Carry out this operation on the (k — 1)-th components
{31 +NY NP L s NG (= s +nk)} :
{32 + N,gi) — Nl(cQ—)l,k +1,...,8 + N,gi) (= s2 +nk)} ,

{sl+N,§Q ~N L s+ N (= Sl—l-nk)}
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of 51+ FW 59+ FP . s+ FW. Here we ignore the empty set 0.
Example 5.1. For

{81 —|—3, 51 —|—4, S1 +5},

{82 —|—4, 59 +5},

0,

{84+1, S4+ 2, 84+ 3, s4+4, S4+5},

we obtain the following new linear forms

Sa+ 1, 844+2, s1+84+3, s1+82+54+4, s1+ 852+ 54+ 5.

2°. Carry out the operation 1° for all k = 2,...,r.

3°. Substitute the linear forms obtained in 2° by the rule
Siy + 8iy + sy, Fa = [8iy + 8y + o0+ S0, T+ Qg fmay b,
and then multiply all of them together. Here the square parentheses symbol stands for
Al = AA+1D)(A+2)---(A+m—1).
The output of the operation 3° is the b-function by, (s) of f = (f1,..., fi).
Example 5.2. In Example 4.3, put f; := f&%, f, := f15) . For

S1 —I—]:(l) = S +.F(3’4) = {@, @ 3 {81 +1,81 —|—2,81 +3,81 +4,81 —|—5,81 +6} 3 @},
={{s2+4,s20+5}; {sa+5,52+6}; {s2a+5,s2+6}; {sa+1,s50+2}},
we carry out the operation 1°. Since the 1-st, 2-nd, 4-th components of F34) are the

empty set, we obtain {s2 +4, so+5} {s2+5,52+6}, {s2+1,s9+2} from the 1-st, 2-nd,
4-th components, and at the 3-rd component, we superpose the linear forms as follows:

{81—|—1,81+2,81+3,81+4,81+5,81+6} = 81+1,81+2,81+3,81+4,
{82+5,82+6} S1+ 8 +95,8 +52+6 '

All the linear forms are aligned as

81—|-1, 81—|-2, 81—|-3, 81—|-4,
So+ 1,80 +2, 80 +4, (s2+5)%2, 59+ 6,
S1+82+95,5+82+6
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and by multiplying these factors according to 3°, we obtain the b-function b,,(s). That
is,
bﬂ(ﬁ) = [81 + 1]m1 [81 + 2]m1 [81 + 3]m1 [81 + 4]m1
X [52 4 Umy [52 + 2y [52 + 4lm, [52 + 55, [52 + 6],

X [81 + 852 + 5]m1—|—m2 [81 + s2 + 6]m1+m2'
The aspect of the superposition can be visualized as follows: First, as in Figure 3, we

attach the linear forms in s, +F % (resp. so4+F %)) to the arrows in the lace diagram
corresponding to @4 (resp. (’)(1’5)). Then we superpose these two diagrams. If two

s1+1
o—>e

S1 _I_ }-(374) 89 _I_ }'(1,5) [ ] [
s1+2
° o—+e ° ° °
s1+3
° o—+e ° ° °
s1+4
° o—e ° ° °
s1+5 sg+4s2+582+5s2+1
° ° o—e ° —>o—>0—r0e—e
s1+6 s2+ 582+ 653+ 652 +2
° ° o—+e ° ——>o—>0—r0e—re

Figure 3. Lace diagrams corresponding to s; + F®%) and sy + F(1:5)

linear forms are attached to the same arrow, those two linear forms are also superposed
as in Figure 4.

s1+1
[ ]
s1+2
[ J
s1+3
[ ] [ ]
s1+4
[ ] [ ]

sg+4s23+5 s1+s2+5 s2+1
s2+5s3+6 s1+s2+6 s2+4+2
o ——>o—ro——————ro—>

Figure 4. Superposition of the lace diagrams in Example 5.2

Example 5.3. In Example 4.4, we put f; := f0%, f, := f(25) For

81"’]:(1’4) :{{81+4781+5}; {81+5781 +6781+7}; {81+1781+2781 +3781+4}; ®}7
s+ FED) = {0; {s2+3,50+4,80 + 5,50+ 6,50+ 7}; {s2+3,80+4}; {s2+ 1,80 +2}},
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we perform the operations 1°,2°,3°, and obtain

bﬂ(§) = [81 + 1]m1 [81 + 2]m1 [81 + 4]m1 [81 + 5]m1
X [82 + 1]m2 [82 + 2]m2 [82 + 3]m2 [82 + 4]m2
X [81 + s2 + 3]m1+m2 [81 + 852 + 4]m1+m2 [81 + 52+ 5]m1+m2

X [81 + 82 + 6]m1+m2 [81 + 52+ 7]m1+m2'

Also in this case, the aspect of the superposition can be interpreted visually. First, as

s1 + 7. so + 7.
S1 +F(1’4) 5146 S9 +J_"(2’5) 594+ 6
o—o o—o
51+ 5 52+ 5
o——e e—e
s1+4 s1+1 sy 44 So +2
o—e o—*eo ° ° o—e oe—o
s1+5 s1+ 2 s2 + 3 s+ 1
—e —*eo ° ° o—e o —o
51+ 3 s2+ 3
—>e —*e
s1+4 sg+4
—e o—>e

Figure 5. Lace diagrams corresponding to s; + F(%) and sy + F(2:5)

in Figure 5, we attach the linear forms in s; +F14) (resp. so + F(3)) to the arrows in
the lace diagram corresponding to O (resp. ©O25). Here the linear forms in each
column are attached upside down according as the arrow is leftward or rightward. As
before, we superpose two diagrams and if two linear forms are attached to the same
arrow, those two linear forms are also superposed as in Figure 6.

s1+s2+7
oQ¢—e

s1+s2+6
Q+—————e

s1+s2+5
oQ+—————e

s1+4 so+4 s1+1 sg+2
o —>0¢ ( 4 >~ o+——eo
s1+5 so+3 s1+2 so+ 1
o—>0<¢ ( 4 >~ o+

s1+s2+3
— o
s1+s2+4
o—————————> e

Figure 6. Superposition of the lace diagrams in Example 5.3
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The validity of the algorithm for b, (s) can be proved by using the structure theorem

of b-functions (cf. [11]), and the localization of b-functions (cf. [13], [12]). The details
will appear elsewhere.

Added in proof. The details of the algorithm have been published in the following

paper; K. Sugiyama, b-Functions associated with quivers of type A, Transformation
Groups 16(2011), 1183-1222.
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