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An exposition of root systems and Lie algebras
(affine and elliptic)

By

Saeid AzaM! Hiroyuki YAMANE**and Malihe YOUSOFZADEH*

Abstract

This is an exposition in order to give an explicit way to understand (1) a non-topological
proof for an existence of a base of an affine root system, (2) a Serre-type definition of an elliptic
Lie algebra with rank > 2, and (3) the isotropic root multiplicities obtained from a viewpoint
of the Saito-marking lines.

§1. Introduction

In 1985, K. Saito [16] introduced the notion of an n-extended affine root system. If
n = 0 (respectively, n = 1), it is an irreducible finite root system (respectively, an affine
root system). In [16], he also intensively studied 2-extended affine root systems, which
are now called elliptic root systems (see [17]).

Recall that a root system R is called reduced if 2a ¢ R for any o € R. A reduced
elliptic root system is called reduced-marked if it has a codimension-one quotient root
system isomorphic to a reduced affine root system (see also [16, §5 A)]), that is, g(II) =
{0} for some g defined in (4.7). Most of the reduced elliptic root systems are reduced-
marked (see [1], [2]).
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Until now, various attempts have been made to construct Lie algebras whose non-
isotropic roots form extended affine root systems. Among them are toroidal Lie algebras
[15], extended affine Lie algebras [1], and toral type extended affine Lie algebras [4], [21].
See [18, Introduction] for the history.

In 2000, K. Saito and D. Yoshii [18] constructed certain Lie algebras by using
the Borcherds lattice vertex algebras, called them simply-laced elliptic Lie algebras and
showed that they are isomorphic to ADE-type (2-variable) toroidal Lie algebras of rank
> 2. They also gave two other definitions for their Lie algebras. One uses generators and
relations. The other uses (affine-type) Heisenberg Lie algebras; this was generalized by
D. Yoshii [20] in order to define Lie algebras associated with the reduced-marked elliptic
root systems, which are now called elliptic Lie algebras, or, precisely, reduced-marked
elliptic Lie algebras. In 2004, the second author [19] gave defining relations of the
reduced-marked elliptic Lie algebras of rank > 2. Theorem 5.3 in this paper accounts
for why those should be called the elliptic Lie algebras.

The aim of this paper is to obtain the following, in a quite explicit way:

(1) A purely algebraic proof for the existence of a base of an affine root system (see
Theorem 3.1), the result which is obtained in [13] using a topological argument.

(2) An extension of a result from [19] to that for any reduced elliptic root system
R with rank > 2; we define a Lie algebra g with generators and finite relations (see
Definition 5.1), and show that the non-isotropic roots of g constitute R with multiplicity
one (see Theorem 5.1). We also show that if a Lie algebra t has R as its non-isotropic
root system (and satisfies some extra conditions), there exists an epimorphism from g
to t (see Theorem 5.3).

(3) A list of the multiplicities of the isotropic roots of g (see Theorem 6.1; this
is our own new result, and is obtained from Saito’s view-point). To get the list, for a
technical reason, the extension (2) is essential.

As for (2), we point out that our defining relations are closely related to defining
relations, called Drinfeld realization, of the quantum affine algebras due to V.G. Drin-
feld [7, Theorems 3 and 4]. Recently the same authors have written a paper [5], moti-
vated by [22], giving a finite presentation of the universal coverings of some Lie tori.

We hope that the material presented here regarding affine root systems, in partic-
ular the existence of a base, would give another point of view to readers interested in
the subject, specially to those reading the book [14] by I.G. MacDonald. (Incidentally,
in order to read [14], we also hope that the paper [8] would also be helpful in being
familiar with Coxeter groups, especially the Matsumoto theorem.)
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§2. Preliminary

In this section, we mention elemental properties of (Saito’s) extended affine root
systems, especially (2.5).

§2.1. Basic notation and terminology

As usual, we let Z denote the ring of integers, N the set of positive integers, R
the field of real numbers, and C the field of complex numbers. For a set S, let |S|
denote the cardinal number of S. If S is a subset of R, we let S* := {s € S|s # 0},
Si:={se€ S|s>0},and S_ :={s € S|s < 0}.

For a unital subring X of C, an X-module M, a subset Y of X, subsets S and
S of M, z € X and m € M, welet S+ 5 = {m+m' € Mim € S,m’ € S},
m+S:={mt+S,YS ={yms1i+-+uysreNy eV, s, € SQ1<i<nr}
Ym :=Y{m}, S := {z}S and —S := (—1)S; we understand S+ 0 = (), #S = 0 and
Y0 =0.

Throughout this paper, for any F-linear space V with a symmetric bilinear form
(,):VxV =T, where Fis R or C, we set V° := {v € V|(v,v) =0} and V* :=V\ V;
for each v € V*, we set v¥ = (3,1;) and define s, € GL(V) by s,(2) = z — (v¥,2)v
(z € V); for any non-empty subset S of V>, we denote by Wy the subgroup of GL(V)
generated by {s,|v € S}, i.e.,

(2.1) Ws = (sy|v € 5),

and moreover, let Wg - S" := {w(2') € Vlw € Wg,2" € §'}, Wg -z := Wg - {z} for a
subset S’ of V and z € V, and say that a subset S of V* is connected if there exists
no non-empty proper subset S’ of S with (S’, 5\ S’) = {0}. For a subset V' of V, let
WVHO =V NVY and (V')* := V' NVY*. We call an element of V° isotropic.

In this paper, if V0 is a subspace of V, we always let

(2.2) V=V
denote the canonical map.

§2.2. Extended affine root systems

Definition 2.1. Let! € Nandn € Z;. Let V be an (I+n)-dimensional R-linear
space. Recall VY and V* from Subsection 2.1. Assume that there exists a positive semi-
definite symmetric bilinear form (, ) : V x ¥V — R such that dimg V° = n. Let R be a
subset of V. Then R (or more precisely, (R, V)) is an (n-)extended affine root system if
R satisfies the following axioms:

(AX1) RC VX,V =RR.



20 SAEID AzAM, HIROYUKI YAMANE, MALIHE YOUSOFZADEH

(AX2) ZR is free as a Z-module, and rankzZR = n + (= dimg V).

( ) (@v,B) € Z for o, B € R.

(AX4) s4(R) = R for all o € R.

( ) R is connected.

(see [16, (1.2) Definition 1 and (1.3) Note 2 iii)] and see [2] for an equivalence to [1,
Definition 2.1].) Let W = Wg (see (2.1)).

Let R be as in Definition 2.1. It is well-known that for all « € R,

(2.3)

RNRa = {a,—a}, {a, 2, —a, =20} or {o, 1o, —a, — 30},
(so —R = R).

We call R reduced (resp. non-reduced) if RN 2R = () (resp. RN2R # ).

We say that two extended affine root systems (R,V) and (R’,V’) are isomorphic
if there exist an R-linear bijective map f : V — V' and ¢ € R with ¢ > 0 such that
f(R) =R and (f(v), f(w)) = c(v,w) for v, w € V.

(2.4) We call this f a root system isomomorphism.

Let R, [ and n be as above.

By [12, Theorem 5 of Chapter XV], since ZR/(ZR)" is torsion free, (AX1-5) imply
that there exists an R-basis {z1, ..., x4, } of V such that {z;41,..., 21, } is an R-basis
of VO, {w1,..., 2110} is a Z-basis of the (torsion) free Z-module ZR and {x;,1, ..., Zi1n}
is a Z-basis of the (torsion) free Z-module (ZR)° (see Subsection 2.1 for notation), that
is,

V=RR =@ ) Re;, VO = @, Ry,
(2.5) ZR = @} Zx;, (ZR)° = @'}, Za;,
dimg V = rankzZR = n + [, dimg V° = rankz(ZR)? =

Let {a1,...,a,} be a Z-basis of (ZR)?. Then there exist x1,...,7; € ZR such that
{z1,...,21,a1,...,a,} is a Z-basis of ZR as well as an R-basis of V = RR (see above).
Let 1 <m <mn. Let 7’ : V = V/(Ra,, - - ® Ra,) be the canonical map. Note that
{7’ (x1),..., 7" (1), 7" (a1), ..., 7" (am-1)} is an X-basis of X7'(R) for X € {Z,R}. In
particular, we see that

if y1,...,Y1+m—1 are elements of ZR such that
(26)  {7'(n1),.-- 7 (Yi+m-1)} is a Z-base of the free Z-module Zn'(R),
then {y1,..., Yitm—1,0m,---,an} is an X-basis of XR for X € {Z,R}.

(2.7) We call [ the rank of R. We call n the nullity of R.
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If n =0, then R is an irreducible finite root system (see [16, (1.3) Example 1 i)]). If
n = 1, then R is an affine root system (see [16, (1.3) Example 1 ii)]), see also Remark 2.1
below. If n = 2, then R is an elliptic root system (see [16, (1.3) Example 1 iii)], [17] and
[18]).

Remark 2.1.  Assume n = 1. Here we give a sketch of a proof of an equivalence
between affine root systems in the senses of [13], [14, §1.2] and [16] (i.e. our Defi-
nition 2.1). Let F and E be as in [14, §1.2]. Let S be a subset of F, and assume
S is an irreducible affine root system in the sense of [14, §1.2]. Identify V with F,
that is, we regard V as an [ 4+ 1-dimensional R-linear space of affine-linear functions
f: E — R. Clearly S satisfies (AX1) and (AX3-5). Let A € V*. Let p € V* be such
that cu € A + VY for some ¢ € RX. Then A — cu is a constant function on E, that is,
(A —cu)(E) = {dr—_cu} for some dy_., € R. We have s,sx(z) = 2 — (A, z)(A — cp)
for x € V. Further, for e € E, we have s;,s\ -e = e+ %ED)\, see [14, §1.1] for
D). Then by using an argument similar to [16, (1.16) Assertion 1], we can see that S
satisfies (AX2). Let R be as in Definition 2.1. Let T" be the subgroup of W generated
by {sasa |, ¢ € R, R*m(a) = R*w(a’)}. Then T is a normal abelian subgroup, and
W/T can be identified with the finite Weyl group Wy (g (cf. [16, (1.3) Note 2 ii)]).
Then R satisfies (AR 4) of [14, §1.2].

§2.3. Base of an irreducible finite or affine root system
Assume that n € {0,1} (cf. (2.7)). We call a subset II of R formed by (I+n)-linearly
independent elements a base if

(2.8) R=(RNZL M) U(RNZ_II).

(For n = 0, see [9, Theorem 10.1]. For n = 1, see Theorem 3.1 in this paper (cf.
MacDonald [13, (4.6)] (see also [16, (3.3) i)-iii)])). If II is a base of R, then, for X €
{Z,R}, we have

(2.9) IT is an X-basis of XR, that is, XR = @ Xa.
acll
Assume that n = 1. Let IT = {«ag, a1,...,q;} be a base of R; we always assume o

is such that {m(a1),...,m(a;)} is a base of m(R) (see Theorem 3.1). Let 6(II) € ZII be
such that

(2.10) &(IT) € NII and {§(IT)} is a Z-basis of (ZR), that is, Z§(II) = (ZR)".

d(II) is unique by (2.5). By (2.6), for X € {Z,R}, we have

(2.11) {oa,...,a;,6(I1)} is a X-basis of XR, that is, XR = (@ Xa,;) @ Xo(II).

i=1
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The following lemma is well-known, e.g., see [9, Theorem 10.3, Lemmas 10.4 C,D,
§12 Excercises 3].

Lemma 2.1.  Assume that n = 0 (c¢f. (2.7)). Let II be a base of R (cf. (2.8)).
Then we have the following:

(1) Wp =W and W - 11 = R\ 2R. (see (2.1) for Wr1 and see Definition 2.1 for
W = Whg).

(2) W-a={f € R|(a,a) =(B,8)} for each o € R.

(3) For each a € R, there ezists a unique oy € W -« such that W-a C ay +7Z_11.

(4) Let r = {(a, )| € R}Y|. Then 1 < r < 3. Moreover, if r = 3, then RN 2R =
{Be€R|(B,P) > (a,a) for all « € R}.

Proof of (3). Let Il = {au,...,a;}. Then ay is the element Zf;:l mia; € W -
(m; € Z) for which Zé:l m; is maximal. Let w € W and let w = s4, -+ Sqa, be a
reduced expression, that is, r is as small as possible. By [9, Corollary 10.2 C|, we have
w.ay =ayp =y (@), ap)se, Sa, (o) € ap +Z-TL O

For R and II of Lemma 2.1, we let
(2.12) O(R,II) :== {a} € R|la € R}.
By checking directly (and using [9, §12 Table 2]), we have
(2.13) (u,v) > 0 for u, v € O(R,1I).

(The fact (2.13) can also be proved as follows. Let v € V (1 < i < [) be such
that (v, ;) = 0;;. Then p = Zézl x;7y; with ; € R>p, and z; > 0 for some j.
Write v = Zé:l yia; with y; € Zy (1 < i <1). If y; = 0 for some i, there exist iy,
io € {1,...,1} with iy # i2, y;;, = 0, y;, > 0 and (o, q;,) < 0, so (a;,,v) < 0 which
implies that s, (v) = v — (o)), v)ay, ¢ v+ Z_TI, contradiction. Hence y; > 0 for all
1 <4 <. Hence (u,v) > x;y; > 0.)

§2.4. Notation Sg,, Sigy Sex

Let R be an (n-)extended affine root system (see Definition 2.1). Define the subsets
Rg,, Rig and Rex of R by

(2.14) Ry, :={a € R|(a,a) < (B, p) for all B € R},
Rex = RN 771 (2n(Ran)) and Rig := R\ (Rsn U Rex) (see (2.2) for 7). Then we have

(2.15) R = Ry, U Rjg U Rex (disjoint union).
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For a subset S of R, let

(2.16) Ssh := S N Rap, Slg =95N ng, Sex := 5 N Rex.

83. A non-topological proof for the existence of a base of an affine root
system

In this section we assume R is an affine root system, that is, we assume n = 1 (see

(2.7)).

§3.1. The existence of a base of an affine root system

The following theorem seems to be well-known (see [13]), but we state and prove
it for later use. The proof in [13] uses topological terminology. Our proof seems to be
the first one without using topology. Besides we need a technically written statement
of the following theorem for application.

Theorem 3.1.  (cf. [13]) Let &' € VO \ {0} be such that Z8' = (ZR)° (cf. (2.5)).
Let I = {ay,...,q;} be a subset of R with |II'| = | such that w(II') is a base of the
irreducible finite root system (w(R),V/RJ') (cf. (2.8) and (2.2)). (So ZR = 76" @ Z1'
(¢f. (2.6)).) Then there exists a unique

(31) Qg = Oéo(R, H/,(Sl) €ER

such that {ap} UTT" is a base of R and ag € No' @ ZII'. Moreover ag = &' — 0 for some
6 € NII' with 7() € ©(n(R),n(I")) (see (2.12)). In particular, [(¢;, a;)]o<ij<i i a
generalized Cartan matriz of affine-type in the sense of [10, §4.3 and Proposition 4.7].
Further, letting II; = {ao} UIl', for any base Ilx of R we have Iy = ew(Ily) for some
e € {l,—-1} and w € Wr,. In particular,

(3.2) R\2R =Wy, -II; and W = Wi, .

Proof. (Strategy. We use a linear map f:V — R (i.e., f € V*) such that f(a;) =1
(1 <i<1)and f(¢') is sufficiently large (see (3.6)). Let II/ be the subset of R formed
by the elements § € R satisfying the condition that f(8) > 0 and S is not expressed as
the summation of more than one elements 8’ of R with f(8’) > 0 (see (3.8)). We show
that II7 is a base of R satisfying the properties of the statement. It is easy to see that
' clf and R= (RNZ, TI/)U(RNZ_T1/)). We show |TI/| = I + 1 by using (2.13).)

We proceed with the proof of the theorem in the following steps.

Step 1 (Definition of f). Notice that for X € {Z, R},

(3.3) XR = X&' @ (@l Xay)
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(see (2.6)). We may assume that (o, ;) < (@y1,a44+1) for 1 <i <[ —1. Also since
m(IT") is a base of w(R), if | > 2, we may assume «; is such that there exists a unique
Jj€{2,...,1} such that (a1,a;) # 0. Let

Wi - IV U {201)) if 1 =1,
(3.4) R := ¢ W - (M'U{2a1}) if 1> 2 and 2(a1, a1) = (a9, as),
Wo - IT otherwise.

Using [9, Theorem 10.3 (c) (and §12 Exercise 3)], we can see that Wy - II' and R’
are irreducible finite root systems with the base II'. If 7w(R) is reduced, then 7w(R) =
7(Wr - II'). If w(R) is not reduced, then w(R) = w(R’). In particular, we have

(3.5) RCR +7Zd'.

(see also (3.3)).
Define f € V* by

(3.6) flag) =1 (1<i<l) and f(8') =3M,

where M := max{|f(7)||y € R’} (notice |R'| < o0). It follows from (3.5) that f(5) #0
for § € R.
Step 2 (Definition of I1/). Let R/ := {8 € R|f(B) > 0}. By (3.6), we have

(3.7) R =RN((R'NZ, ) U (UX_,(md’ + R'))).
Let I/ be a subset of R formed by the elements 3 € R/T satisfying the condition that

there exist no f1,..., 3, € RO with r > 2 such that 8 = 8, + - - - + (,; namely,

(3.8) 7= R\ (| J D ilB: € R,

r=2 =1

By (3.7), we have
(3.9) I c /.

Notice ZII"' # ZR (by (3.3)). Then we have
(3.10) ZIY =ZR, R=(RNZ, "YU (RNZ_T1') and [II/| > |IT'| + 1.

(As mentioned in our strategy, we show that I1/ is a base of R.)
Step 3 (If B8 € T/ /I, then we have ©(B) € O(x(R),w(II")) (for O(x(R), n(IT")),
see (2.12))). Let B € I/ /TI (see also (3.9)-(3.10)). We show that 3 is expressed as

(3.11) B=mds — 0
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for some m € N and some 6 with

(3.12) 0 € ©(R,I')

(see (2.12) for O(R',1I")). By (3.7), since I/ ¢ R/**, we have
(3.13) B=md +p

for some m € N and 4 € R. Let § € ©O(R',II') N W - pu, where we recall from

Lemma 2.1 (2)-(3) that |©(R',II') N Wy - u| = 1. Notice {u, —p,0,—0} C Wiy - p (cf.

Lemma 2.1 (2)). Then md’ — 0 € R since mé’' — 60 € mdé’ + Wi - p = Wi - (md’ + p) =

Wi -8 C R. By Lemma 2.1 (3), we have 0+p = 0 —(—u) € Z,II'. Since mé’'—60 € R/

(cf. (3.7)), B=(md' —0)+ (0+p) and B € TI/, we have §+p = 0 and (3.11), as desired.
Step 4 (|II/| =1+ 1). We show

(3.14) I\ =1, ie., |ITf|=1+1

(see also (3.9)-(3.10)).
Assume |TI7 \ II'| > 1. Let B1, B € II/ \ II' and assume 3; # fB2. Assume
(B1,51) < (B2, P2). Then, by (2.13) and (3.11)-(3.12), we see that

Lif w(B1) # 7(B2),
21f 71’(51) = 71’(52).

Assume (8, 81) = 1. Then, since £(81 — $2) = sp,(£51) € R, we have 31 — 82 € R/'F
or By — B1 € R/F. This contradicts the fact 31, B2 € I/ since B = B2 + (81 — B2) and

Bo = B+ (B2 — B1). Assume (BY,61) = 2, so 7(B1) = 7(B2). By (3.11), there exist n,
ny € N and § € ©(R',II") such that

(3.15) (8, 81) = {

(3.16) B = niél -0 (Z € {1, 2})
(so B — B1 = (ng —nq1)d’). Assume ny < ny. Notice that for ¢ € {1,2} and r € Z,
(3.17) R > (sp,58,)"(Bi) (by (AX4))

= (n; +2r(ng —nq))d’ — 0

(ng+ (2r — 1)(ng —mq))d —0if i =1,
(ng 4+ 2r(ng —nq))d’ — 0 if i = 2.

Hence
(3.18) (n2 +7(n2 —nq1))d —0 € R forall r € Z.

Let ng € Z, and t € N be such that 0 < nzg < ng —ny and ny = t(ng — ny) + ns.
Assume ng = 0. By (3.18), {—0,(n2 — n1)0’ — 0} C R. Hence, by (3.7) (and (2.3)),



26 SAEID AzAM, HIROYUKI YAMANE, MALIHE YOUSOFZADEH

{0, (ny —n1)d" — 0} C RFT. Notice t > 2 (since 0 < n; < ng and ng = 0). Since
Ba = t((ng —n1)d’ — 0) + (t — 1)0, we have By ¢ II/, contradiction. Assume nz > 0.
Notice 2ng < ng (since 2ng < (ng—ni)+ng < t(ne —ny)+ns = na). Let B3 = nzd’ — 0.
By (3.18), 83 € R. By (3.7), 83 € R'". Notice 8s — 283 = s5,(f2) € R (by (AX4)).
Then by (3.7), we have

(319) Bg — 2B3 = (’T’LQ — 277/3)5/ +6 € Rf’+.

Since By = (Bo — 2B3) + 23, we have 3 ¢ II/, contradiction. Hence |TI/| =1 + 1, as
desired.

Step 5 (I1/ is a base with ag = &' — 0). Let ag be f = mé’ — 6 of (3.11). Then
I/ = I U {ay}, where we notice (3.9) and (3.14). It is clear that the elements of IT/
are linearly independent (cf. (3.3)). Hence, by (3.10), II/ is a base of R (cf. (2.8)).
Since ZII' ® Z¢' = ZII' ® Zay (by (3.3) and (3.10)), we have m = 1.

Step 6 (The last claim holds). Let II; = II" U {a}. Let Ilz be a base of R. Define
h e V* by h(B) :=1 (8 € II3). Then h(R) C Z\ {0}. By the same formula as in (3.17),
we have |{(s0Sa,)" () € R|r € Z}| = oo (notice that (sgsa,)" () € R (by (AX4))
since sy = s19 and § € RU2R (see (3.12) and (3.4))). Hence |R| = oo, which implies
|h(R)| = co. Hence, by (3.5), since |R'| < oo (R’ is an irreducible finite root system),
we have h(0") # 0. We may assume

(3.20) h(6") >0
(otherwise, we replace Il with —II5). Let

m(Hl, HQ) = |(R N Z+H1 N Z_Hg) \ 2R|
= {8 € (RNZI1) \ 2R [ 1(B) < O}].
Since ag = &' — 0, we have RNZII; C R+ 7Z,¢" (cf. (3.5)). Hence, since |R'| < oo,
by (3.20), we have m(I1;,113) < oo.
We use induction on m(Iy,IIs); if m(II;,II3) = 0, then, by (2.8), RNZ4 I} =
RN Z 1y, so II; = IIy. Assume m(I1;,II3) > 0. Then there exists « € II; such that
a € Z_TIy (notice that R C Z_II, UZ41II5). By (2.8) (and (2.3)), we see

(321)  sa((RNZ4TL)\2R) = {—a} U((RNZ,T0)\ 2R)\ {a}).
Then we have
m(Iy, sa(Il2))
=[(RNZ 11 NZ_54(I2)) \ 2R|
=[sa(RNZ4I11 NZ_s,(I12)) \ 2R)|
=|(sa(RNZ4IL)NZ_T2) \ 2R|
=m(II;,IIs) — 1 (by (3.21) since sq (@) = —a ¢ Z_1I5).
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Then, by the induction, we see that there exists w € Wiy, such that w(Ily) = II;, as

desired.
Note that for any 5 € R\ 2R, there exists a subset II” of R with |[II”| = [ such

that 5 € II” and 7(II"”) is a base of w(R). Hence by the above argument, we have (3.2).
This completes the proof. O

By (3.2), we have

R =Wy (LU (2N R)),
(3.22) (ZR)* \ R
— Wy - ((211 \R)U (U, esyz, D U ((ZR)* \ (Z4T1U Z_H))).

§3.2. Dynkin diagrams of affine root systems

Here we give the Dynkin diagrams for (R,II) of Theorem 3.1. We assume that if
209 € R, then 2a; € R for some i # 0, see A(4)(0, 2l) below. We describe them in the
same manner as in [11, Table 1-4]; especially, if 2c; ¢ R (resp. 2a; € R ), then the
i-th dot is white (resp. black). The names of them are also the same as in [11, Table 1-4].

(i) The case of | = 1:

Qo

aq Qo
AY Oe=0 AP o<:o

Qo

aq o) (&3] Qo
BW(0,1) =0 P2 =@ AY(0,2) 0<=>O

(ii) The case of [ = 2:

(877
) O&l&z () i, (1) g
As Cs Oﬁ O= Q G, Q(:O—O

a9 Qg ay a2
A(Q) O§ O+ O D(2) O§ O= O D(3) O O=0

(631 Q2 o7y oq Q)

BW(0,2) @@= O= 0O 49(0,3) O=> 0= 0O

(631 Q2 o7y o Q9 Q)

CP3) @=0—=@ AY(0,1) @=0O= O
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(iii) The case of [ > 3:

D) % o—C0O— - —0=0

1e% Qs (67 &%)
cCll+1) @=0—0—  —(O— @
%1 Q9 a3 (67] Qg
AD0,2) @=O0—0O— -+ —O=0
aq 6% as 87/ Qo

AP O=0—0— - —0=0

aq (6% (0%} (o7} Qg
BW(0,1) Q<=Q—Q— —<><=O

ay

-1

A®R)(0,21 - 1) Q¢O— Ai—Q
—1
an (%)) 87/
A(l) C? g 5 % D(l)
—1

Q2 Qp—]

Cl(l) O=0—"0"C0O— - —0O=0

Qp Q-1 Q)2 aq (67)]

Qg

Qg (&%)

B O—O0—0—0—0 43, O=0— -

Qg (6% a3 Gy (073 (0% (07 (8%)) (6%}
(0%4
(1) I ~ ) )
E; O U 1, 1, U O
Qo 03] Q2 as Qy Q5 Qg
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B O—O0—0—0—0—0 O
as

M)
/ / / /
(673

(7)) aq a9 (6% (6 %] (6%

(67)] (87) (0%} a2 (6%} (67)] 6351 (8%) (0% Qg

§4. Elliptic root systems

In this section we assume R is a reduced elliptic root system, that is, RN 2R = ()
and n = 2 (see (2.7)).

§4.1. Fundamental-set of an elliptic root system

Definition 4.1.  (Fundamental-set I1U{a}) We say that a subset ITU{a} of ZR
is a fundamental-set of R if it satisfies the axioms (FS1)-(FS2) below; we always let

(4.1) TV = V/Ra
denote the canonical map.

(FS1) a € (ZR)? and there exists b € (ZR)" such that {a,b} is a basis of (ZR)°,
ic., (ZR)" = Za & Zb.

(FS2) |IT| =1+ 1, II C R and 7, (II) is a base of the affine root system 7, (R).

Until end of this section, let ITU{a} = {ao,...,a;}U{a} denote a fundamental-set
of R. We assume 7({a1,...,a;}) is a base of 7(R).
Let o(IT) € ZII be such that

(4.2) S(IT) € NIT and  Z4(I1) = (ZIT)°.

Then 7, (d(I1)) = d(mo(II)) (see (2.10) for d(ma(I1))).
Let 6 = §(II) be as in (4.2). By (2.6), (2.11) and (2.8), for X € {Z,R}, we have

XR = ®AEHU{a} XA = (@aen\{ao} Xa) D X0 P Xa,
(4.3) (XR)? = X6 @ Xa,
R C (X;II6 Xa) U (X_II @ Xa).

§4.2. Maps k and ¢

Lemma 4.1. (1) For any o € R, we have

(4.4) (a+ (Z\ {0D)a) N R £ 0.
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(2) Let S be a non-empty proper connected subset of II. Let V° := RS @ Ra and
R% := RN V3. Then (R%,V?) is a reduced affine root system (we have assumed R is
reduced), and (r,(R°),V/Ra) is an irreducible finite root system with the base m,(S).
In particular, ZR® = 7.S ® Zksa for some kg € N.

Proof. (1) By (4.3), R cannot be included in ZII. Hence there exist 4 € R and
m € Z\ {0} such that p € ma+ZII. Since 7,(R) is an affine root system and m,(II) is a
base of 7, (R), by the first equality of (3.22), there exist v € II, ¢ € {1,2} and w € W
such that w(p) = ¢y + ma. Notice that

(4.5) R 3 8ySeytma() = 84(7 — (¢712)(cy + ma)) = v — 2¢” 'ma.
(Hence (4.4) holds for this special 7.) Let A = v — 2¢"1ma. For 8 € R, we have
(4.6) R 5 5,50(8) = 5,(8 — (0", B)N) = B+ (1%, ) - 26 ma.

By (AX5) and (4.3), by repetition of equations similar to (4.6), we see that (4.4) holds
for any o € R.
(2) This follows from (1) and (4.3). O

By Lemma 4.1 (2), for each o € TI, R{®} is a rank-one reduced affine root sys-
tem and {m,(a)} is a base of a rank-one irreducible finite root system 7,(R}). By
Theorem 3.1, we can define maps

(4.7) k:MI— Nandg:II— {0,2Z + 1}

by

(4.8) RN (Ra®Ra) = U ((ea+ Zk(a)a) U (2ea + g(a)k(a)a))
ee{l,—1}

(o € II) ( see also (4.3)).
Since m4(R) \ 274 (R) = Wi (1) - Ta(II) (see Theorem 3.1), we have

(4.9) R= |J (| (W) +Zk(@)a) U (w(2a) + g()k(e)a))).

weWn a€cll

Since R is determined by II, k and g,
(4.10) we also denote R by R(IL, k, g).

Let a € TI. Let o := —ap(R{®}, {a}, —k(a)a). Then o* = c(a)a + k(a)a, where

(4.11) cla) = {1 ?f 9(a) = g
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Let By := {a,a*|a € IT}. Then |By| = 2|II| = 2(l +1). By Thereom 3.1, we have
(4.12) R=Wg, -By and W = Wp,

(We have assumed that R is reduced).

Assume [ > 2 (see (2.7)). Let a, § € II be such that (8Y,a) = —1. Let v =
ao(RIPY {a, B}, —k(a)a). By Lemma 4.1 (2) and Theorem 3.1, we have g(8) = 0,
k{a,py = k(a) and see that ((8Y,«),k(B)/k(c),g(a)) for the rank-two reduced affine
root system R{%A} with a base {a, 3,7} is one of the following.

((—1,1,0) so RI“AY is AWV and v = —s,(8%),
(—2,1,0) so R1eA} ig Bél), and v = —s,(8%),
(4.13) (—3,1,0) so R1eA} ig Ggl), and v = —sgsq(8%),
' (—2,2,0) so Ri®AY ig D:(,,Q), and v = —sg(a*),
(—3,3,0) so R{AY is DP) | and v = —5q85(a®),
( (—2,1,2Z 4 1) so Ri*P} s Af), and v = —sg(a*).

§4.3. List of (IL, £, g)

Theorem 4.1. Let R = R(Il, k,g) be as in (4.10).

(1) Assume | = 1. Let {a1,ap} = II and assume that {m(a1)} is a base of m(R)
and that k(ay) < k(ag) if {m(ao)} is also a base of w(R). Then k(ay) = 1 and
(e, 1), k(a), g(ap), g(a1)) is ezactly one of the followings:

2,1,0,0),

2,1,0,2Z + 1), (=2,1,2Z+1,0), (=2,1,2Z +1,2Z + 1),

2,2,0.0), (—2,2,2Z + 1,0),

1,1,0,0), (-1,1,0,2Z + 1), (—1,2,0,0), (—1,2,0,2Z + 1),
(—1,4,0,0).

(2) Assume l > 2. Then there exists R(Il, k, g) such that (Wy - II,RII) is a rank-l
reduced affine root system of any type with a base II and k : 1T — N and g : T1 — {0, 2Z+
1} are any maps satisfying the condition that 1 € k(II) and ((a, B), k(B)/k(c), g(c))
is the same as one of (4.13) for any «, B € I with (8Y,«a) = —1.

(—

(—
(4.14) (—
(—

The statements of this theorem is well-known and, however, some of R(II, k, g)’s
are isomorphic (see [16, (6.6)] and [1, Lists 4.6, 4.25, 4.67, 4.78]). For the case [ > 2,
which of them are isomorphic can be read off from the statement of Theorem 6.1.

8§ 5. [Elliptic Lie algebras with rank > 2

In this section we assume R is a reduced elliptic root system with rank > 2, that
is, RN2R =0, n =2 and [ > 2 (see (2.7)). We have assumed the rank [ > 2 mainly
because we use the fact (5.7) below. We fix a fundamental-set II U {a} of R.
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§5.1. Useful lemma

The following lemma is useful.

Lemma 5.1.  Let V' be a 2-dimensional C-linear space having a non-degenerate
symmetric bilinear form (,) : V' x V' — C. Let v1, v2 € (V')*. Let a be a Lie
algebra over C generated by h (v € V) E.\, E,, F, Fg and satisfying the equations
hw’H—w v = CEh +tx h’Y ) [h’wh = [h’yaE] = (v,7)Ei, [h’wF] = —(7, %)FM and
[E;, F}) = 5zjhviv, forz, 2’ € C, v, v €V, and i€ {1,2}.

(1) For k € N, we have

[ad(E1)* (E2) ad(F)* (Fy)] ) )
= KT (1 72) +m)) k(v 73 )y + (1, 72) By ).

(2) Let m := (v,72). Assume m € Z_. Assume that h,y and h.y are linearly
independent. Assume ad(E1)"(Ey) = ad(F})"(Fy) =0 for some r € N. Let

(5.1)

(5.2) n =n(E, F1) = exp(adEy) exp(—adF} ) exp(adEy).

Then we have

ad(Fy)'"(Fa) = ad(Fy)! " (Fy) = i

n(hy) = hy (7177)}‘7 n(kn) = (Fl) —E,
(53) A((adBy) By) = ((_‘ni)zi’).(adEl) " E2 #0,

T_L((adFl)ze) = (( 1,)n Bl (adFl) me ZFQ #0

for0<i< —m and vy e V.

We can get (5.1) directly and get (5.3) by using a representation theory of sls.

§5.2. Definition of elliptic Lie algebras with rank > 2

Let A := {(a,8) € T xII|(c,8Y) = —1}. Let B := By U (—By), and B?' :=
{(n,v) € Bx B|u#v+#—u}. For (p,v) € B let x,,, =1— (1, v) — (¥, v)])/2.
Let V€ = C®g V, so V° is a [ + 2-dimensional C-linear space. We identify V with the
R-linear subspace 1 ® V of V&; we extend (, ) to the symmetric bilinear form on V©
in a standard way. We say that a map w : A — C* is a tuning if w(a, flw(B,a) =
whenever (aV,3) = —1. Denote w; by the tuning with wi(a, ) = 1 for all (o, ) €
A, and moreover, if W - II is Al(l), then for ¢ € C*, denote w, by the tuning with
wq(a, aip1) =1 (0 <4 <) and wy(aq, ap) = g, where the numbering of the elements
of II is the same as that of the Dynkin diagram of Al(l) in Subsection 3.2.

Definition 5.1. Let k and ¢ be as in Theorem 4.1 (2). Let w : A — C* be a
tuning. Let g = g(II, k, g, w) be the Lie algebra over C defined by generators:

(5.4) he (0 € VC)? E, (k€ B),
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and relations:

(SR1)  xhy + yhr = hyoryr if 2, y € C and o, 7 € V,

(SR2)  [hy,hs] =0if o, 7 € VE,

(SR3) [hG,E | = (o,p)E, if 0 € V€ and u € B,

(SR4)  [E,, E_,] = h,~ if p € By,

(SR5) (adEu)xﬂ vE, =0if (u,v) € B,

(SR6)  ¢(a)(adEa-) @ Eg = w(a, 8)(adEa) @5 Eg. if (, §) € A,

(SR7)  (~1)° 1 e(0) (adB_qe) 50 B_p = ook (adE_o) @S E_p. if (o, B) €
A,

. k(B

(SR8) (adE,) (adEq- )<——2Eﬁ =0if (a,8) € Aand 1 <i < 38 — 1,

(SR9)  (adE_o)/(adE_o- )™ E_5 = 0if (a, ) € Aand 1 < i < w1

We call g(I1, k, g,w) an elliptic Lie algebra, see Introduction. Let g = g(Il, k, g) :=
g

We have

Lemma 5.2. If W11 is not Al(l) (resp. is Al(l)), then there is an isomorphism
@ from g to g (resp. to g“s for some q € C*) such that ¢(hy) = hy (0 € V°) and
p(E,) € CE, (neB).

Proof. Using (5.1), we can modify (SR6-7) by taking non-zero scalar products of
E,’s. [

Let b = h*(IL, k, g,w) := {hs € g*|c € V*}, and b = h(I1, &, g) := h*1.

Since all equations in (SR1-9) are ZR-homogeneous, where R = R(Il,k,g), we
can regard g¥ as the ZR-graded Lie algebra g = ©o,czrgy (that is [g¥,g%] C g2, /)
such that E, € g for all u € B. Note h* C gy. For each u € B;, we can define
n, to be n(E,, E_,) (see (5.2)) as an automorphism of g, so n,(gy) = g5 (o) Let

“ ={o € ZR|dimg¥ # 0}. Then we have

(5.5) Ws, - RY = R¥.

Let S a non-empty proper connected subset of II. Let g* be the Lie algebra over C
defined by the generators h, (0 € CS®Ca), Fiq, E1q+ (o € S) and the same relations
as those in (SR1-9). Let (“ : g¢*° — g be the homomorphism sending the generators
to those denoted by the same symbols. Let g@° = (1*°)~1(g¥) for o0 € ZRY, so g¥% =
Doezrs 2. Let g° = g9, and g5 = g¥1°. Let RY® = {0 € ZR®|dim g9 # 0}.
Let o € TI. Then g« 1o} = gie} since g« 1@} is defined by using (SR1-5). By Serre’s
relations (SR1-5), g« 1%} is (the derived algebra of) an affine Lie algebra with R« {e} =
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R} UZE(a)a, where the affine root system R{%} is Agl) or Agl). Hence dim gg’{a} =2,
and dim g5"'*! = 1 (A € R#{e}\ {0}). Note R={e3\ {0} = R{} UZ*k()a.

Lemma 5.3.  There is a homomorphism x“ from g“ to a Lie algebra b* such that
dim x* (h*) = 142, dim Xw(bw’{a}(gf’{a})) =1 for alla € T1 and all A € RI*TUZXk(a)a,
and
X (0% + Caen Lnertoruzxrae a1 ™)
= x*(0) ® Buen Bre rreruzer(ea X (21 @)

(If w = w1, then b“ is given as an ‘affinization’ a ® C[t,t 1] @ Cc of (the derived
algebra of) an affine Lie algebra a, see [19, Proposition 3.1].)

(5.6)

Proof. If w = wy, then we can define y = x*! in a way entirely similar to that of
[19, Proposition 3.1], inspired by so-called an ‘unfolding process’ of a Dynkin diagram
of a reduced affine root system, and we see by checking each case directly that such x
has the property (5.6). The existence of a x“7 is well-known (see [6]). Then this lemma
follows from Lemma 5.2. O

For each o € TI, let [Ri*}]* := R{®} 0 (Na + Zk(a)a), and [RiH] .= —[Rio})+,
Note that Rie}t = [RieH]T U [RioH]~,

Lemma 5.4.  For each (, 8) € A,

g t@BY s (the derived algebra of) an affine Lie algebra

5.7
(5.7) with the affine root system R{O"ﬂ},

which implies R 1P = R UZk(a)a. In particular, for each (o/, ') € TI x I with
o # B, we have
(5:8) et (g ), P (g ) = 0

for all (A, ) € ([RUI]F < [RWI7) U ([RII] x [RII]F).
Proof. Note first that h, hg and h, are linearly independent in g<1@Bt which fol-
lows from Lemma 5.3. Let v € R1*%} be asin (4.13). If y is expressed as —s., ... 5, _, (7))

in (4.13) with v; € {a, 8}, then we let Eiy := n,y, ...0,,_ (Exqy) € gi’ﬁy{a’ﬁ}. Let

Yr41 € {a, B} \ {v-}. By (SR6-7) and (5.3), we have niy«(E+,, ., ) = ni%(Eiw;iH)
Hence g@-{®#} is generated by Eiq, Eip and E1,. We show

(5.9) [EiaaE=F7] = [EiBaE:F'y] = 0.

If RiAY £ Af), we have this in the same way as in [19, §2.3]. Assume R{®/} = Af).
We write X ~ Y if X € C*Y. By (5.3) and (SR6),

(5.10) E_y~ [E57 [Eﬂanz*]] ~ [Eg, [Ea, [EaaEﬂ*]]]
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Then [Eg, E_,] = 0 follows from (SR5). We have

[E—’Y? Ea] ~ [[Eﬁv [Eom [Eon Eﬁ*]]]a Ea] (by (510))
~[[Ep, Eol, [Ea, [Ea; Ep-]l]]  (by (SR5))
~ [[EB7 Ea]: [EB7 Ea*]]] (by (SRG))

~ng([Ea; [Ep, Ea-]])  (by (5.3))
~ng([Ea; [Ea; [Ea, Ep+]]])  (by (SR6))
—0 (by (SR5)).

The remaining equalities of (5.9) can be shown similarly. Hence by (5.3) and (SR5), the
above generators satisfy Serre’s relations. Hence (5.7) holds, as desired. O

For i € N, let (n“*)® be the C-linear subspaces of g* defined by (n»*)(1) .=
Daen Drg[riat= L“”{O‘}(g;}’{a}) (see Lemme 5.3), and (n®*)(®) .= [(n@®)(1) | (nwrE)@=1)]
inductively for i > 2. Let n®>* be the two Lie subalgebras of g¥ defined by n** :=
S (o E)O ] Let ne® = g Nn@E. Then n“F = @,cz.nez4)\ 7SS, For each
a € II, since {2} is a Lie algebra homomorphism (preserving ZII & Za-grading), we
have n‘lj’i = n‘lj’i N ()M = Lw’{o‘}(gﬁ’{a}) for all p € (Z+a @ Za) \ Za. Moreover,

by (5.8), we have

(5.11) [0 H) D, (@) D] € (@)D g (o)W § 30 3T eladgaed))
a€ll ceZk(a)a

Hence by Lemma 5.3 and (5.7), we have

(5.12) ¢ = ont o o(@ P et
a€ll ceZXk(a)a

dimb* =1+ 2, and dimn‘/{”jE = dimL“”{O‘}(g‘;”{a}) =1 for a € I, A € [RI®}* and
o € Z"k(a)a. By (3.22), we have

R = Wi UyenlRTH,
(5.13) { (ZR)*\ R
= Wit - (Unen(Na ® Za) \ [REF) U (ZR)* \ (2, TTUZ_TI) & Za).

Then by (5.5), using a standard argument as in [10], [18], together with the automor-
phisms n,, (u € By), we have

Theorem 5.1.  We have (R¥)* = R, dimg}, =1, [g%,9%,] = Chyv (1 € R),
g¥ = h¥, dimbp® =1+ 2, (R¥)? C Z§ ® Za, and dimg¥,, = [{a € M|m € Zk(a)}|
(m e Z*).
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By the following theorem, we can compute dim g for A € Zd @ Za.

Theorem 5.2.  LetIT'U{a’} be a fundamental-set of R. Then there exist a tuning
n for ' U {a'} and an isomorphism f : g(I', k', g',n) — ¢* such that f(gy") = ¢ for
all A € ZI1 & Za, where g"" := g(Il', k', ¢’,n). In particular, we have

(5.14) dimg¥ ., = [{' € Il'|m € ZK'(a')}| for m € Z*.

Proof. Let By' = {d/, (¢/)*|a € '} and B’ = B,'U—B,'. By (SR1-9), Theorem 5.1
and (5.3), for some 7, we have a homomorphism f of the statement such that f (g;ﬁ) =
gy, for all 4/ € B'. Since g'" is generated by g;ﬁ (1" € B'), we have f(gy") C g¢¥ for all
A€ ZR=7II"®Zd. Since R = Wg,+ - By by (4.12), using n(E,s, E_,s) € Aut(g"")
(' € B'), by Theorem 5.1, we have f(gg") = g} for all 8 € R. Since E, € f(g"") for
all u € B, we have f(g"") = g*, so f(gy") = g4 for all A € ZR. By the same argument,
for some tuning w’ for IT U {a}, we have an epimorphism f’: g*" = g(II, k, g,w’) — g""
such that f’(g‘j\’/) = g)" for all A\ € ZR. Hence dim g‘j/ > dim g for all A € ZR, so
(R¥)? c (R¥')°. Assume that Wy - IT is not Al(l). By Lemma 5.2, we have dim g¢’ =
dim gy = dim g¥ for all A € ZR, so (R¥)? = (R¥')°. Hence f o f’ is an isomorphism,
so is f. Assume that Wy - II is Al(l). Assume ¢ : g(IL k, g,wq, ) — g(IL k, g,wy,) is
an epimorphism such that ¢(g(IL, k, g,wq, )n) = g(IL k, g,wy,)x for all A € ZR. For
v € By, let ¢y € C* be such that ¢(E,) = ¢ E, (Ey # 0 by Lemma 5.3). For
a €11, let dy = co/cax. By (SR6), we have wg, (o, 8) = wg, (o, B)dn/dg (the element
of (SR6) is not zero by Lemma 5.3 and (5.1)). Hence d,, = d for 0 <4 <. Since
wg, (o, ) = wg, (a7, g), we have ¢1 = ¢2. Then by the same argument as above, we

Qg1

conclude that f is an isomorphism.
The last statement follows from Theorem 5.1. O

By the same argument as that for the proof of Theorem 5.2, we have

Theorem 5.3.  Let t = @ircznazaty be a ZI1 & Za-graded Lie algebra with T :=
{A € ZR|dimt\ # 0} satisfying the conditions (i)-(iv) below.

(i) T* =R, and dimt, =1 for all p € R.
(ii) t is generated by t,’s with all p € R.

(iii) [to, to] = {0}.

(iv) There exists a C-linear epimorphism j : V& — ty satisfying the following
conditions (iv-i) and (iv-ii).

(iv-i) [j(e), X] = (6, \)X for all 0 € V©, all X\ € ZI1 ® Za, and all X € ty.

(iv-ii) [tg,t_g] = Cj(BY) for all 5 € R.
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Then there exist a tuning w for I1 U {a} and an epimorphism f : g* — t such that
[(@5) =ty for all X € ZI1 & Za. (Therefore t is generated by t,’s with v € B*'.)

86. List of dimg,us54ra

In this section we use the notation as follows. For a Z-module X, r € Z and =z,
y € X, let x =, y means x —y € rX. Recall that [ = |[II| — 1 > 2, and see Subsection 3.2
for the numbering of the elements «; (0 <17 <) of I. Let § = 6(II). Fix 1 € Igy \{ao}-
Fix v9 € iz \ {ao} if Rig # 0. Let M := 76 & Za. We also denote md + ra € M with
m, r € Z by [’ﬂ Let R = R(II,k,g) be as in (4.10). Let Lg,, Lig and Lex be the
subsets of M such that v; + Lgn = RN (y1 + M), y2 + Lig = RN (y2 + M) (if Rig # 0),
and 271 + Lex = RN (271 + M) (if Rex # 0). Let IT' := 11\ {ev}, so w(I') is a base
of m(R). By Lemma 2.1, we have Rgy, = Wi - 71 + Lsn, Rig = Wi - v2 + Lig and
Rex = Wi - 291 + Lex. Let g := g(IL, k, g,w), and g := g“*.

Remark 6.1.  (Due to Kaiming Zhao) Here we would like to mention that a map
from M to{0,1,...,t—1} which is periodic modulo ¢ on any line in M is not necessarily
meant to be periodic modulo tM. This indicates that we have to be very careful when
calculating dim g5 ., because (5.14) does not immediately imply that dimgy,s_ ., is
periodic, although we finally see that this is true.

Let f: M — Zy be a map such that mZ +rZ = f(["])Z, where f(["]) is a g.c.d.
of m and r if [7'] # [}]. By definition, f(h[”]) = h- f(["]) for all h € Z and all
[T] € M. Let t € N be such that ¢ > 2. Define the map f, : M — {0,1,...,t — 1}

by fe([™]) = f([T]). Then fi((hit + ho)["]) = fi(ho[]) for all hy € Z, all hy €
{0,1,...,t — 1} and all ['ﬂ € M. Now assume that t = 25 and [T] = [24000]. Then

S([]) = 40 and f([m:—t]) = 5. Hence fy(["']) =15 #5 = ft([mjt]), as desired.
Now we have the following theorem.

Theorem 6.1.  Assume g*¥ = g if Wy - I is not Al(l) (see Lemma 5.2). Then
dim g% with o € M \ {0} are listed below.

(1) Assume that Wiy - 11 is Xl(l) with X = A,...,G, and k(o) =1 and g(a) = 0
for all o € 11, s0 Lgy = M, Rex = 0, and Lig = M if Rig # 0 (so X = B,C,F or G).
Then we have dimg¥ =1+ 1 for all o0 € M \ {0}.

(2) Assume Wiy - 11 is Xl(l) with X = B,C,F or G. Let r = (v2,72)/(71,7)-
Assume that k(a) = (a,@)/(71,7m) and g(la) = 0 for all « € 11, so Ly, = M, L)y =
Z6 @ Zra, and Rex = 0. Then we have dimg,, = I + 1 for all o1 € Lz \ {0}, and
dim g,, = Hsn| for all 09 € M\ Lig. (This R is isomorphic to R(Ily, k1, g1) for which
Wi, - Iy s Dﬁ_)l, Ag)_l, Eéz) (1 =4), or Df’) (I = 2) respectively, and ki(a) = 1,

gi(@) =0 (e €Il).)
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(3) Assume Wrp - I is Dl(_zi_)l, Ag)_l, Eéz) (I =4), or Df’) (1 =2) Letr =
(v2,v2)/(71,71). Assume that k(o) = (o, a)/(71,71) and g(la) = O for all « € I, so
Ly, =M, Lig =rM, and Rex = 0. Then we have dimg,, =1+ 1 for all 01 € Lz \ {0},
and dim g,, = |Ig,| for all oo € M\ rM.

(4) Assume Wi - 11 is Dl(i)l, and k(o) = 2, k(1) = 1, k(B) = 2 (B € Iig),
g(a) =0 (0 € I1), so Lgy = {0,8,a} + 2M, Ly = 2M, and Rex = 0. Then we have
dimg,, =1+ 1 for all oy € 2M \ {0}, and dimg,, = 1 for all 0o € M \ 2M.

(5) Assume Wy - 11 is Dl(i)l, and k(o) =2, g(ag) =22+ 1, k(ay) =1, g(aq) =0,
k(B) =2, g(B) =0 (B €y), so Ly, = {0,6,a}+2M, Lig = 2M and 3 Lex = 6+a+2M.
Then we have dim g, = l+1 for alloy € 2M\{0}, anddim g,, = 1 for all oo € M\2M.

(6) Assume Wy - 11 is Dl(i)l, and k(ag) =1, glag) =2Z + 1, k(ay) =1, glay) =
2Z+1,k(B) =1, g(8) =0 (B € iz ), so Lsn = M, Lig = {0,a}+2M, and Lex = a+2M.
Then we have dim g, = l+1 for all oy € Lig\ {0}, and dim g,, = 1 for all oo € M\ Lyg.
(This R is isomorphic to R(Ila, ko, g2) for which Wi, - Il is Ag), and ko(a) = 1,
g2(a) =0 (o € Ilaw), k2(B) = 2, g2(8) =0 (B € I Ullex).)

(7) Assume Wy - 11 is Ag), and k(a) =1 (e € IT), glan) =2Z+ 1, g(B) = 0
(B € Mg Ullex), so Lgn = Lig = M, and Lex = {9,6 + a,a} +2M. Then we have
dimg, =141 for all o € M \ {0}.

(8) Assume Wy - 11 is Bl(l), and k(a) =1 (e € I), g(an) = 2Z+ 1, g(B) = 0
(B €Ilig), so Lgn = Lig = M, and Lex = a+2M. Let M' = {0,a} +2M. Then we
have dim g,, =1+ 1 for all o1 € M'\ {0}, and dimg,, =1 for all oo € M\ M'. (This
R is isomorphic to R(Ils, ks, g3) for which Wry, - I3 is Ag), and k3(a) =1, gs(a) =10
(a € Ty, UIDyg ), k3(B) =2, g3(B) =0 (B € ley).)

(9) Assume Wy - II is Ag), and k(a) =1, g(a) =0 (a € I1), so Lgp = Lig = M,
and Lex = {6,0+a} +2M. Then we have dimg,, =1+ 1 for all 01 € M \ (Lex U{0}),
and dimg,, = [ for all o9 € Lex. (This R is isomorphic to R(Ily, kg, gs) for which
Wi, - Ty is AY, and ka(an) = 1, ga(ar) = 2Z+ 1, ka(ao) = 2, ga(on) = 0, ka(8) = 1,
94(8) =0 (B €1lg).)

(10) Assume Wi - 11 is Dl(i)l, and k(o) =1 (a € ), g(ag) =2Z + 1, g(B) = 0
(B € U{ai}). Then
(6.1) Ly, =M, Lig ={0,a} +2M and Lex = {20 + a,26 + 3a} +4M,
and we have
l+1ifp=40 and [?] # [8],

1 ifp=s1,

l ifp=42 and z =5 0,
l+1ifp=42and z =5 1.

(This R is isomorphic to R(Ils, ks, g5) for which Wiy, 115 is Ag), k(o) = (a,a)/(y1,71),
gs(a) =0 (a€1I).)

(6.2) dim gpss 2a =
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Figure 1. dim g,,5.4r¢ in (6.2)

(11) Assume Wi - II is Cl(l), and k(ag) = 2, k(ey) = 1, k(B) =1 (B € Tg),
g(@) =0 (e € 1T), so Lgy = M, Lig = {0,0,a} + 2M, and Rex = 0. Then we have
dimg,, =1+ 1 for all oy € 2M \ {0}, and dimg,, =1 for all oo € M \ 2M.

(At this moment, we do not see why dim gps4., are periodic modulo tM for some

t € N. Maybe one of reasons is that g may be realized as a ‘fixed point’ Lie algebra, see
also [3], [20].)

Proof. We only prove (10), since (1)-(9), (11) are similarly treated.
Assume (o, 1) = 1. Definee; € V (1 <i<1[) bye; :=0a; and g := a; +¢5_1
(2 <j <I). Then (g;,¢;) = d;;, and ap = § — £;. Moreover, we have

Wh - a1 = Ueeg—1,1},1<i<i1€6i + 279,
(63) W]‘[ QO = Uel,626{—1,1},1§i<j§l618i + 625‘:]‘ + 27,6 (2 S r S l),
Wn-ap = Uee{-1,1}1<i<i€Ei + (2Z + 1)9.
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Then by (4.9), we have

R = Uee{-1,1},1<i<1€Ei + 27.6 + Za
Uy exe{-1,1},1<i<j<i €1€i + €265 + 226 + Za
UUee—1,1},1<i<i €€i + (2Z +1)0 + Za
(6.4) UUee{-1,1}1<i<t 2(€€; + (2Z 4 1)0) + (2Z 4 1)a
= Uee{-1,1}1<i<i€€i + M
U Uel,qe{—l,l},lgi<j§l €1€; + €265 + {0, a} +2M
UUeef—1,1},1<i<i 2€€5 + {20 + a,26 + 3a} + 4M.

Hence we have (6.1), as desired.

Let IT" U {da'} be a fundamental-set of R. Let ¢’ := §(II'), so {¢’,a’} is a Z-basis of
M.

Assume a’ =4 a = m Then ¢ =4 6 = [;], where we replace I’ with —II" if
necessary. Let 0 = ¢ — ya’. Then {0”,a’} is a Z-basis of M. Since ¢" =4 6 = [(1)] =5
§ = [5], we have Lig = {0,a’} + 2M and Lex = {26" + d/, 26" + 3a’} + 4M. Hence we
have the root system isomorphism f; : RR — RR (cf. (2.4)) such that fi(a;) = o
(1<j<l), f1(6) =9" and fi(a) = a’. Then by Theorem 5.2, we have dim g,,or =1+ 1
for m € 7.

Assume o' =4 § = [é] Let Rs = R(Il5, ks,95) be as in the statement. Let
g’ = g(IIs, k5, 95). Define the R-linear isometry fo : RRs — RR by fa(a;) = o
(1 <j <), f2(6) =26 —aand fa(a) = 4. Note that fo(Len) = f2(M) = M = Lg,
fo(Lig) = f2({0,0} +2M) = Lig and fo(Lex) = f2({0,30} +4M) = Lex. Hence fo is a
root system isomorphism. Let a” := f, *(a’). Then a” =4 a. By the same argument as
above, as for dim g/, ,,, we have the same equalities as in (6.5) below. Then Theorem 5.2
implies that

l+1ifm # 0 and m =40,
(6.5) dimgne =<1  ifm=s1,
l if m=42.

For other a’’s, we can utilize the root system isomorphisms f; : ZR — ZR (3 <

i < 5) defined by fi(e;) = o for all 1 < j <[, and fg([é]) = [_01], fg([(l)]) = [?],
f4([(1JD = [(ﬂ: f4([§’]) = [—01]7 f5([(1JD = [ﬂ: f5([(1J]) = [?] Let Re¢ = R(Ils, ke, gs) be
such that Wy, - Ilg is Dl(i)l, ke(c;) =1 for 0 < i <1, and gs(ag) = 0, gs(v1) = 2Z + 1
and ge(a;) = 0 for 2 < j <1 —1. Then we can also use the root system isomorphism
fo : ZRs — ZR defined by fs(a;) = o5 (1 < j <), f6(d) =6 and fe(a) =2 +a.

Finally we have

Case-1. If a’ =4 m, [g], E] or [g], then we have dim g,,,,» = + 1 for m € Z*.

Case-2. If a’ =4 [é}, [g], [ﬂ, [;J, m, [g}, B] or [g], then the same as (6.5) holds.
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Let A\ = pd + za = [Iz’} = mad with p, z € Z and m € Z*. Let [f/] = d, so
L+ yl =7.

Assume that p =4 0. If z =5 1, then m =4 0, so dimgy =1+ 1. If x =5 0, then
Yy =2 1, so Case-1 implies dimgy =1+ 1.

Assume that p =4 2 and z =2 0. If x =5 0, then y =5 1, so m =2 0, so p =4 0,
contradiction. Hence x =5 1, so m =4 2, so Case-2 implies dim gy = [.

Assume that p =4 2 and 2 =5 1. Then m =5 1, y =5 1 and x =5 0, so Case-1
implies dimgy =1+ 1.

Assume that p =5 1. Then m =5 1 and z =5 1, so Case-2 implies dim gy = 1.

Thus we have (6.2), as desired. This completes the proof. O
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