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Logarithmic derivative and the Capelli identities

By

Akihito WACHI *

§1. Introduction

Let Ti_{ij} be variables, and \partial/\partial T_{ij} the corresponding partial differential operators for

1\leq i, j\leq m . Define m\times m matrices T and \partial/\partial T with entries in polynomial coefficient

differential operators as

T=(T_{ij})_{1\leq i,j\leq m}, \displaystyle \frac{\partial}{\partial T}=(\frac{\partial}{\partial T_{ij}})_{1\leq i,j\leq m}
Then the Capelli identity [1, 2, 3] is written as

\displaystyle \det {}^{t}T\det\frac{\partial}{\partial T}=\det(tT\frac{\partial}{\partial T}+\left(\begin{array}{llll}
m-1 &  &  & O\\
 & m-2 &  & \\
 &  & \ddots & \\
O &  &  & 0
\end{array}\right)) ,

where \det is the column‐determinant defined by \displaystyle \det A=\sum_{ $\sigma$}\mathrm{s}\mathrm{g}\mathrm{n}( $\sigma$)A_{ $\sigma$(1)1}\cdots A_{ $\sigma$(m)m}.
One of applications of the Capelli identity is a computation of the b‐function b_{f}(s) of

f(T)=\det T . The b‐function is the polynomial in s determined by

f(\partial)(f^{s+1})=b_{f}(s)f^{s},

and given explicitly by

(1.1) b_{f}(s)=(s+1)(s+2)\cdots(s+m) ,

where f(\partial) is the constant coefficient differential operator obtained by substituting the

corresponding partial differential operators to the variables in f.
From a viewpoint of representation theory of Lie algebras, the Capelli identity can

be interpreted as a formula which expresses invariant differential operator (LHS) by an
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image of the center of the universal enveloping algebra of the general linear Lie algebra

(RHS). In this article, we focus on more naive interpretation that the Capelli identity
is a non‐commutative version of the product formula of determinants. The following
formula is a special case of our first main theorem (Theorem 4.4), which is an analogue
of the Capelli identity in this sense:

(1.2) \displaystyle \det\frac{\partial}{\partial T}\det {}^{t}T\det\frac{\partial}{\partial T}\cdots\det {}^{t}T\det\frac{\partial}{\partial T}=\det(\frac{\partial}{\partial T}{}^{t}T\frac{\partial}{\partial T}\cdots {}^{t}T\frac{\partial}{\partial T})
Remark that there is no diagonal shift on the right‐hand side, which is an important

point in the original Capelli identity. Remark also that the entries of the matrix on the

right‐hand side commute with each other (Proposition 4.2).
The first result and its proof are related to the b‐function of the prehomogeneous

vector space associated to the equioriented quiver of type \mathrm{A} :

n_{0}\bullet\leftarrow n_{1}\bullet\leftarrow\cdots\leftarrow n_{l}\bullet,

where n_{0}=n_{l} and every n_{r} is greater than or equal to n_{0} . A vertex labeled n_{i} expresses

the vector space \mathbb{C}^{n_{i}} ,
and we associate GL(n_{i};\mathbb{C}) to the vertex. An arrow from one

vertex labeled n_{i} to another labeled n_{j} expresses \mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{n_{i}}, \mathbb{C}^{n_{j}}) . Thus this quiver

gives the prehomogeneous vector space (G, V) ,
where

G=GL(n_{0};\mathbb{C})\times\cdots\times GL(n_{l};\mathbb{C}) ,

V= Mat (n_{0}, n_{1};\mathbb{C})\oplus Mat (n_{1}, n_{2};\mathbb{C})\oplus\cdots\oplus Mat (n_{l-1}, n_{l};\mathbb{C}) ,

and the action is given for (g0, . . . , g_{l})\in G and (X(1), \ldots, X^{(l)})\in V by

(g_{0}, g_{1}, \ldots, g_{l}).(X^{(1)}, X^{(2)}, \ldots, X^{(l)})=(g_{0}X^{(1)}g_{1}^{-1}, g_{1}X^{(2)}g_{2}^{-1}, \ldots g_{l-1}X^{(l)}g_{l}^{-1}) .

The polynomial  $\psi$ on  V defined by

 $\psi$=\det(X^{(1)}X^{(2)}\cdots X^{(l)}) , (X(1), X^{(2)}, \ldots, X^{(l)})\in V,

which is nonzero by n_{r}\geq n_{0} for all r
,

is a relative invariant of the prehomogeneous
vector space (G, V) . When every n_{r}(2\leq r\leq l-1) is greater than n_{0} ,

this relative

invariant  $\psi$ is fundamental, that is, it does not have another relative invariant as its

factor. Using the result of F. Sato and Sugiyama [5], Sugiyama computed the  b‐functions

of the prehomogeneous vector spaces associated to the quivers of type A with any n_{r}

and any orientations of arrows [6]. As a special case of his result, the b‐function of the

above relative invariant  $\psi$ is given by

 b_{ $\psi$}(s)=(s+n_{1})^{(n_{0})}(s+n_{2})^{(n_{0})}\cdots(s+n_{l})^{(n_{0})},
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where a^{(b)} is the descending factorial power defined by

a^{(b)}=a(a-1)(a-2)\cdots(a-b+1) .

In the second main theorem (Theorem 5.1) we give another way of computing the b‐

function by means of the Capelli identity of our first main theorem.

§2. Logarithmic derivative

We localize the Weyl algebra \mathbb{C}[T_{ij}, \partial/\partial T_{ij} ; 1\leq i, j\leq m] by the nonzero polyno‐
mial f=\det T and work with the algebra \mathbb{C}[T_{ij}, \partial/\partial T_{ij}, f^{-1} ; 1\leq i, j\leq m] . We define

differential operators with parameters following Noumi‐Umeda‐Wakayama [4].

Denition 2.1. Define g=\log\det T ,
and

\displaystyle \frac{\partial}{\partial T_{ij}}(u)=\frac{\partial}{\partial T_{ij}}+u\frac{\partial g}{\partial T_{ij}}
for 1\leq i, j\leq m . If we define \partial g/\partial T=(\partial g/\partial T_{ij})_{1\leq i,j\leq m} ,

which is equal to {}^{t}T^{-1}
,

then

we also write

\displaystyle \frac{\partial}{\partial T}(u)=\frac{\partial}{\partial T}+u\frac{\partial g}{\partial T}.
Remark that we have

(2.1) \displaystyle \frac{\partial}{\partial T_{ij}}(u)=f^{-u}\frac{\partial}{\partial T_{ij}}f^{u}, \displaystyle \frac{\partial}{\partial T}(u)=f^{-u}\frac{\partial}{\partial T}f^{u},
and it follows that the entries of the matrix (\partial/\partial T)(u) commute with each other. In

addition, it follows from (1.1) and (2.1) that

(2.2) \displaystyle \det(\frac{\partial}{\partial T}(u))(f^{s+1})=(s+u+1)(s+u+2)\cdots(s+u+m)f^{s}
We have the Capelli identity with parameter u using the operators defined in Def‐

inition 2.1.

Proposition 2.2 (Noumi‐Umeda‐Wakayama[4]). We have

\displaystyle \det {}^{t}T\det\frac{\partial}{\partial T}(u)=\det(tT\frac{\partial}{\partial T}(u)+(^{m_{O^{-1_{m-2}}}}\cdot..O0))
=\displaystyle \det(tT\frac{\partial}{\partial T}+\left(\begin{array}{lllll}
u+m-1 &  &  &  & O\\
 & u+m & -2 &  & \\
 &  &  & \ddots & \\
O &  &  &  & u
\end{array}\right)) .
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Proof. In [4], this formula was obtained by the classical limit of the q‐analogue
of the Capelli identity. However, to prove only this formula is easy. The proof for the

first equality reduces to the case of the original Capelli identity, since the commutation

relations of T_{ij} and (\partial/\partial T)(u) are the same as that of Ti_{ij} and \partial/\partial T_{kl} . Second equality
holds since \partial g/\partial T={}^{t}T^{-1}. \square 

Let us define

T=X^{(1)}X^{(2)}\cdots X^{(l)}.

Note that Ti_{ij} �s are algebraically independent even when they are written in the coordi‐

nate functions of X^{(r)}(1\leq r\leq l) thanks to the condition n_{r}\geq n_{0}=n_{l} . We also define

differential operators with parameters in terms of X^{(r)}.

Denition 2.3. Let g=\log\det T=\log\det(X^{(1)}X^{(2)}\cdots X^{(l)}) ,
and we define

\displaystyle \frac{\partial}{\partial X_{ij}^{(r)}}(u)=\frac{\partial}{\partial X_{ij}^{(r)}}+u\frac{\partial g}{\partial X_{ij}^{(r)}} \left(\begin{array}{ll}
1\leq i\leq & n_{r-1}\\
1\leq j\leq n_{r} & 
\end{array}\right)
for 1\leq r\leq l . We again use the notation in Definition 2. 1 like \partial g/\partial X^{(r)} . Then we have

(2.3) \displaystyle \frac{\partial}{\partial X(r)}(u)=\frac{\partial}{\partial X(r)}+u\frac{\partial g}{\partial X(r)}=f^{-u}\frac{\partial}{\partial X(r)}f^{u}
In view of (2.3), the entries of (\partial/\partial X^{(r)})(u)(1\leq r\leq l) commute with each other for

the same parameter u.

§3. Chain rules

Let T=X^{(1)}X^{(2)}\cdots X^{(l)} as in the previous section. Then we have chain rules for

derivatives of a function in T by the variables X_{ij}^{(r)}.
Lemma 3.1 (chain rules). Let 1\leq r\leq l ,

and u be a complex number.

(1) For a function  $\phi$= $\phi$(T) in T
,

we have

\displaystyle \frac{\partial $\phi$}{\partial X(r)}(u)={}^{t}(X^{(1)}X^{(2)}\cdots X^{(r-1)})\frac{\partial $\phi$}{\partial T}(u){}^{t}(X^{(r+1)}X^{(r+2)}\cdots X^{(l)}) ,

where (\partial $\phi$/\partial X^{(r)})(u) means the matrix \partial $\phi$/\partial X^{(r)}+u(\partial g/\partial X^{(r)}) $\phi$ ,
and so on. In par‐

ticular, when  r=1 or l
,

this formula becomes

\displaystyle \frac{\partial $\phi$}{\partial X(1)}(u)=\frac{\partial $\phi$}{\partial T}(u){}^{t}(X^{(2)}X^{(3)}\cdots X^{(l)}) ,

\displaystyle \frac{\partial $\phi$}{\partial X(l)}(u)={}^{t}(X^{(1)}X^{(2)}\cdots X^{(l-1)})\frac{\partial $\phi$}{\partial T}(u) .
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(2) Set S=X(1)X(2)\ldots X(r) . For a function  $\phi$= $\phi$(S) in S ,
we have

\displaystyle \frac{\partial $\phi$}{\partial X(r)}(u)={}^{t}(X^{(1)}X^{(2)}\cdots X^{(r-1)})\frac{\partial $\phi$}{\partial S}(u) .

Proof. (1) If we have the formula for u=0 ,
then the formula for general u is

obtained by the conjugation f^{-u}(\partial $\phi$/\partial X^{(r)})f^{u} . Therefore we have only to prove the

formula for u=0 . Fix r(1\leq r\leq l) ,
and set

X=X^{(1)}X^{(2)}\cdots X^{(r-1)}, Y=X^{(r)}, Z=X^{(r+1)}X^{(r+2)}\cdots X^{(l)}.

Then T_{ab}=\displaystyle \sum_{i,j}X_{ai}Y_{ij}Z_{jb} ,
and we have

(\displaystyle \frac{\partial $\phi$}{\partial X(r)})_{(i,j)}=(\frac{\partial $\phi$}{\partial Y})_{(i,j)}=\sum_{1\leq a,b\underline{<}n_{0}}\frac{\partial $\phi$}{\partial T_{ab}}\frac{\partial T_{ab}}{\partial Y_{ij}}
=\displaystyle \sum_{1\leq a,b\underline{<}n_{0}}\frac{\partial $\phi$}{\partial T_{ab}}X_{ai}Z_{jb} =(tX\frac{\partial $\phi$}{\partial T}{}^{t}Z)_{(i,j)}

(2) It suffices to prove the assertion when u=0 . By the same notation as above,

S_{ab}=\displaystyle \sum_{i} XYib, and we have

(\displaystyle \frac{\partial $\phi$}{\partial X(r)})_{(i,j)}=(\frac{\partial $\phi$}{\partial Y})_{(i,j)}=1\leq a\leq n_{0}\sum_{1\leq b\leq n_{r}}\frac{\partial $\phi$}{\partial S_{ab}}\frac{\partial S_{ab}}{\partial Y_{ij}}
=1\displaystyle \leq a\leq n_{0}\sum_{1\leq b\leq n_{r}}\frac{\partial $\phi$}{\partial S_{ab}}X_{ai}$\delta$_{bj} =(tX\frac{\partial $\phi$}{\partial S})_{(i,j)}

\square 

Remark 3.2 (chain rules without parameters). We need the condition n_{r}\leq n_{0}=

n_{l} for any r in Lemma 3.1. Otherwise f=\det T becomes zero, and \partial g/\partial T is undefined.

However, we do not need this condition at all, when the parameter u is equal to zero in

Lemma 3.1. Its proof is the same as in the proof of Lemma 3.1.

Although \partial g/\partial T is the transposed inverse of the matrix T
,

the matrix \partial g/\partial X^{(r)} is

not the transposed inverse of the matrix X^{(r)} in general, even if it is a square matrix.

However, we have the following left and right inverses.

Lemma 3.3 (left and right inverses). Let 1\leq r\leq l . Then we have

\displaystyle \frac{\partial g}{\partial X(1)}\frac{\partial g}{\partial X(2)} . . . \displaystyle \frac{\partial g}{\partial X(r)}{}^{t}(X^{(1)}X^{(2)}\cdots X^{(r)})=1_{n_{0}},
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and

{}^{t}(X^{(r)}X^{(r+1)}\displaystyle \cdots X^{(l)})\frac{\partial g}{\partial X(r)}\frac{\partial g}{\partial X(r+1)}\cdots\frac{\partial g}{\partial X(l)}=1_{n_{0}}.
In particular, \partial g/\partial X^{(r)} is equal to {}^{t}(X^{(r)})^{-1} when n_{0}=n_{1}=\cdots=n_{l}.

Proof. We prove the first formula by induction on r
,

and the second one is proved

similarly. When r=1
,

we set X=X^{(1)}, Y=X^{(2)}X^{(3)}\cdots X^{(r)}
,

and f=\det T=

\det(XY) . We have

(3.1) (\displaystyle \frac{\partial g}{\partial X}{}^{t}X)_{(i,j)}=\sum_{a=1}^{n_{1}}\frac{\partial g}{\partial X_{ia}}X_{ja}=\sum_{a=1}^{n_{1}}X_{ja}\frac{\partial f}{\partial X_{ia}}\cdot\frac{1}{f}.
Since f is of total degree one with respect to the variables X_{j1}, X_{j2} ,

. . .

, X_{j,n_{1}} in each

row of X
,
both sides of (3.1) are equal to 1 when i=j . In addition, since f is alternating

with respect to the rows of X
, (3.1) is equal to 0 when i\neq j . Hence (\partial g/\partial X){}^{t}X=1_{n_{0}},

and the formula is proved for r=1.

Let r\geq 2 ,
and we use the notation X^{(a,b)}=X^{(a)}X^{(a+1)}\cdots X^{(b)} . It follows from

Lemma 3.1 (1) (chain rules) and the formula (\partial g/\partial T){}^{t}T=1_{n_{0}} that

\displaystyle \frac{\partial g}{\partial X(1)} . . . \displaystyle \frac{\partial g}{\partial X(r)}{}^{t}X^{(1,r)}
=\displaystyle \frac{\partial g}{\partial X(1)} . . . \displaystyle \frac{\partial g}{\partial X(r-1)} . {}^{t}X^{(1,r-1)}\displaystyle \frac{\partial g}{\partial T}{}^{t}X^{(r+1,l)} . {}^{t}X^{(1,r)}

=\displaystyle \frac{\partial g}{\partial X(1)} . . . \displaystyle \frac{\partial g}{\partial X(r-1)}{}^{t}X^{(1,r-1)},
which is equal to 1_{n_{0}} by the hypothesis of induction. Hence the desired formula is

proved. \square 

We have the following formulas for change of variables.

Lemma 3.4 (change of variables). For a function  $\phi$= $\phi$(T) in T and a complex
number u

,
we have

\displaystyle \frac{\partial $\phi$}{\partial T}(u)=\frac{\partial g}{\partial X(1)} . . . \displaystyle \frac{\partial g}{\partial X(r-1)} . \displaystyle \frac{\partial $\phi$}{\partial X(r)}(u) \displaystyle \frac{\partial g}{\partial X(r+1)} . . . \displaystyle \frac{\partial g}{\partial X(l)}.
Remark that the right‐hand side is independent of r.

Proof. We use the notation X^{(a,b)}=X^{(a)}X^{(a+1)}\cdots X^{(b)} . By Lemma 3.1 (1)
(chain rule), we have

\displaystyle \frac{\partial $\phi$}{\partial X(r)}(u)={}^{t}X^{(1,r-1)}\frac{\partial $\phi$}{\partial T}(u){}^{t}X^{(r+1,l)}.



Logarithmic derivative AND the Capelli identities 49

By multiplying (\partial g/\partial X^{(1)})\cdots(\partial g/\partial X^{(r-1)}) from the left to the above equation, and

(\partial g/\partial X^{(r+1)})\cdots(\partial g/\partial X^{(l)}) from the right, we have the lemma thanks to Lemma 3.3.

\square 

§4. Product formula

Let T=X^{(1)}X^{(2)}\cdots X^{(l)}
,

and we use the notation X^{(a,b)}=X^{(a)}X^{(a+1)}\cdots X^{(b)}

as in the previous sections. In this section we prove the product formula which is a

generalization of the Capelli identity. A special case of the product formula is already
stated in (1.2). We need some lemmas.

Lemma 4.1. For complex numbers u_{1} ,
. . .

, u_{l} ,
we have the equation

\displaystyle \frac{\partial}{\partial X(1)}(u_{1})\frac{\partial}{\partial X(2)}(u_{2})\cdots\frac{\partial}{\partial X(l)}(u_{l})
=\displaystyle \frac{\partial}{\partial T}(u_{1}+n_{1}-n_{0})^{t}T\frac{\partial}{\partial T}(u_{2}+n_{2}-n_{0})^{t}T\cdots {}^{t}T\frac{\partial}{\partial T}(u_{l}+n_{l}-n_{0}) ,

as differential operators acting on functions in T.

Proof. First we prove the following equation as differential operators acting on

functions in T :

(4.1) \displaystyle \frac{\partial}{\partial T}(u-n_{0})^{t}T=\frac{\partial}{\partial X(1,r)}(u-n_{r})^{t}X^{(1,r)} (1\leq r\leq l) .

Set X=X^{(1,r)} and Y=X^{(r+1,l)} . By Remark 3.2 (chain rule without parameters), we

have \partial $\phi$/\partial X=(\partial $\phi$/\partial T)^{t}Y . By multiplying {}^{t}X from the right followed by transposing
the equation, we obt)) X^{t}(\partial/\partial X)=T^{t}(\partial/\partial T) . As for the left‐hand side, we have

(x^{t}(\displaystyle \frac{\partial}{\partial X}))_{(i,j)}=\sum_{a=1}^{n_{r}}X_{ia}\frac{\partial}{\partial X_{ja}}=\sum_{a=1}^{n_{r}}(\frac{\partial}{\partial X_{ja}}X_{ia}-$\delta$_{ij})
=(\displaystyle \frac{\partial}{\partial X}{}^{t}X)_{(j,i)}-n_{r}$\delta$_{ij}=(\frac{\partial}{\partial X}(-n_{r}){}^{t}X)_{(j,i)},

since \partial g/\partial X is the left inverse of {}^{t}X by Lemma 3.3. Hence the left‐hand side turns

out to be equal to {}^{t}(\partial/\partial X(-n_{r})^{t}X ). The right‐hand side similarly turns out to be

equal to {}^{t}(\partial/\partial T(-n_{0})^{t}T). Therefore we have (\partial/\partial X)(u-n_{r})^{t}X=(\partial/\partial T)(u-n_{0})^{t}T
by conjugation of f^{-u} and f^{u} ,

and hence (4.1) is proved.
Thanks to (4.1), we have

\displaystyle \frac{\partial}{\partial T}(u_{1}-n_{0})^{t}T\cdot\frac{\partial}{\partial T}(u_{2}-n_{0})^{t}T\cdots {}^{t}T\cdot\frac{\partial}{\partial T}(u_{l}-n_{0})
=\displaystyle \frac{\partial}{\partial X(1,1)}(u_{1}-n_{1})^{t}X^{(1,1)} . \displaystyle \frac{\partial}{\partial X(1,2)}(u_{2}-n_{2})^{t}X^{(1,2)}\cdots

. . . \displaystyle \frac{\partial}{\partial X(1,l-1)}(u_{l-1}-n_{l-1})^{t}X^{(1,l1)} . \displaystyle \frac{\partial}{\partial X(1,l)}(u_{l}-n_{l}) ,



50 AkihitO Wachi

where the last factor is by T=X^{(1,l)} and n_{0}=n_{l} . It follows from Lemma 3.1 (2) (chain
rule) that the expression above is equal to

\displaystyle \frac{\partial}{\partial X(1)}(u_{1}-n_{1})\frac{\partial}{\partial X(2)}(u_{2}-n_{2})\cdots\frac{\partial}{\partial X(l)}(u_{l}-n_{l}) .

Thus the lemma is proved. \square 

Proposition 4.2. Let u_{1}, u_{2} ,
. . .

, u_{l} be complex numbers, and Ti_{ij} independent
variables (1\leq i, j\leq n_{0}) . The entries of the matrix

(4.2) \displaystyle \frac{\partial}{\partial T}(u_{1})^{t}T\frac{\partial}{\partial T}(u_{2})^{t}T\cdots {}^{t}T\frac{\partial}{\partial T}(u_{l})
commute with each other.

Proof. Suppose that n_{0}=n_{1}=\cdots=n_{l} in Lemma 4.1. Then the matrix of this

proposition is the right‐hand side of Lemma 4.1.

As remarked in Definition 2.3, for each r the entries of (\partial/\partial X^{(r)})(u) commute

with each other. Moreover, each \partial g/\partial X^{(r)} is the transposed inverse of X^{(r)} as in

Lemma 3.3. In particular, (\partial/\partial X^{(r)})(u) contains variables only in X^{(r)}
,

and it follows

that the entries of (\partial/\partial X^{(r)})(u) commute with the entries of (\partial/\partial X^{(r')})(u_{r'}) . Thus

the left‐hand side of Lemma 4.1 is a matrix with commutative entries.

Therefore the entries of Expression (4.2) commute with each other when T=X^{(1,l)}

with all n_{r} being equal. Finally, since the entries of X^{(1,l)} are algebraically independent
as mentioned before Definition 2.3, we have the proposition. \square 

In the following, we use |A| for the column‐determinant of A for simplicity. How‐

ever, all the matrices to take determinants have commutative entries in the rest of the

article.

Lemma 4.3. If n_{0}=n_{1}=\cdots=n_{l} ,
then we have

(4.3) |\displaystyle \frac{\partial}{\partial T}(u_{1})||^{t}T||\frac{\partial}{\partial T}(u_{2})||^{t}T|\cdots|^{t}T||\frac{\partial}{\partial T}(u_{l})|
=|\displaystyle \frac{\partial}{\partial X(1)}(u_{1})\Vert\frac{\partial}{\partial X(2)}(u_{2})|\cdots|\frac{\partial}{\partial X(l)}(u_{l})|

Proof. For a function  $\phi$= $\phi$(T) in T and 1\leq r\leq l ,
it follows from Lemma 3.4

that

(4.4) \displaystyle \frac{\partial $\phi$}{\partial T}(u)=\frac{\partial g}{\partial X(1,r-1)}\frac{\partial $\phi$}{\partial X(r)}(u)\frac{\partial g}{\partial X(r+1,l)}.
Since all n_{r} are equal, \partial g/\partial X^{(1,r-1)} and \partial g/\partial X^{(r+1,l)} are equal to the transposed
inverses of the square matrices X^{(1,r-1)} and X^{(r+1,l)}

, respectively. In particular, their
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entries do not contain coordinate functions of X^{(r)} . Hence we can remove the function  $\phi$
from (4.4), and the determinant of the resulting equation factors into three determinants

as follows:

|\displaystyle \frac{\partial}{\partial T}(u)|=|^{t}(X^{(1,r-1)})^{-1}||\frac{\partial}{\partial X(r)}(u)||^{t}(X^{(r+1,l)})^{-1}|.
By substituting the above equation to (\partial/\partial T)(u_{r})(1\leq r\leq l) on the left‐hand side of

(4.3), the determinants |^{t}T|, |^{t}(X^{(1,r-1)})^{-1}| and |^{t}(X^{(r+1,l)})^{-1}|(1\leq r\leq l) cancel out,

and we obtain the assertion. \square 

Theorem 4.4 (product formula). Let u_{1}, u_{2} ,
. . .

, u_{l} be complex numbers, and

T_{ij} independent variables. We have

|\displaystyle \frac{\partial}{\partial T}(u_{1}){}^{t}T\frac{\partial}{\partial T}(u_{2}){}^{t}T\cdots {}^{t}T\frac{\partial}{\partial T}(u_{l})|
=|\displaystyle \frac{\partial}{\partial T}(u_{1})||^{t}T||\frac{\partial}{\partial T}(u_{2})||^{t}T|\cdots|^{t}T||\frac{\partial}{\partial T}(u_{l})|

Proof. Let T=X^{(1)}X^{(2)}\cdots X^{(l)} with n_{0}=n_{1}=\cdots=n_{l} . Note that Tij�s are still

algebraically independent, since n_{r}\geq n_{0} for all r . The matrix on the left‐hand side is

equal to (\partial/\partial X^{(1)})(u_{1})(\partial/\partial X^{(2)})(u_{2})\cdots(\partial/\partial X^{(l)})(u) by Lemma 4.1. Its determinant

factors into l determinants as

(4.5) |\displaystyle \frac{\partial}{\partial X(1)}(u_{1})\Vert\frac{\partial}{\partial X(2)}(u_{2})|\cdots|\frac{\partial}{\partial X(l)}(u_{l})|,
since the entries of the matrices in this expression commute with each other for the

same reason as in the proof of Proposition 4.2. By Lemma 4.3, (4.5) is equal to the

right‐hand side of the theorem, and we proved the theorem. \square 

§5. b‐Functions associated to quivers of type \mathrm{A}

Let T=X^{(1)}X^{(2)}\cdots X^{(l)}
,

and |A| denote the column‐determinant as in the pre‐

vious sections. In this section we consider the prehomogeneous vector space associated

to an equioriented quiver of type \mathrm{A} :

 n_{0}\bullet\leftarrow n_{1}\bullet\leftarrow\cdots\leftarrow n_{l}\bullet (  n_{0}=n_{l} and n_{r}\geq n_{0} for all r ),

and calculate the b‐function of the relative invariant

 $\psi$=\det(X^{(1)}X^{(2)}\cdots X^{(l)})

of the prehomogeneous vector space. This b‐function is first obtained as a special case of

Sugiyama�s result [6], which uses the result of F. Sato and Sugiyama [5]. Our calculation

gives a way of computing by means of Capelli identities.
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Theorem 5.1 ( b‐function). The b ‐function b_{ $\psi$}(s) of  $\psi$ is given by

 b_{ $\psi$}(s)=(s+n_{1})^{(n_{0})}(s+n_{2})^{(n_{0})}\cdots(s+n_{l})^{(n_{0})},

where a^{(b)} is defined by a^{(b)}=a(a-1)(a-2)\cdots(a-b+1) .

Proof. We have

(5.1)  $\psi$(\displaystyle \partial)($\psi$^{s+1})=|\frac{\partial}{\partial X(1)}\frac{\partial}{\partial X(2)} . . . \displaystyle \frac{\partial}{\partial X(l)}|(|X^{(1)}X^{(2)}\cdots X^{(l)}|^{s+1}) .

Using Lemma 4.1 and Theorem 4.4, we have

Eq. (5.1)

=|\displaystyle \frac{\partial}{\partial T}(n_{1}-n_{0}){}^{t}T\frac{\partial}{\partial T}(n_{2}-n_{0}){}^{t}T\cdots {}^{t}T\frac{\partial}{\partial T}(n_{l}-n_{0})|(|T|^{s+1})
=|\displaystyle \frac{\partial}{\partial T}(n_{1}-n_{0})||{}^{t}T||\frac{\partial}{\partial T}(n_{2}-n_{0})||{}^{t}T|\cdots|{}^{t}T||\frac{\partial}{\partial T}(n_{l}-n_{0})|(|T|^{s+1}) .

First we apply the determinant |(\partial/\partial T)(n_{l}-n_{0})| to |T|^{s+1} ,
and obtain (s+n_{l})^{(n_{0})}|T|^{s}

by (2.2). Second we apply |^{t}T| to it, and obtain (s+n_{l})^{(n_{0})}|T|^{s+1} ,
and so on. Finally

we obtain

 $\psi$(\partial)($\psi$^{s+1})=(s+n_{1})^{(n_{0})}(s+n_{2})^{(n_{0})}\cdots(s+n_{l})^{(n_{0})}$\psi$^{s},

and hence the b‐function is b_{ $\psi$}(s)=(s+n_{1})^{(n_{0})}(s+n_{2})^{(n_{0})}\cdots(s+n_{l})^{(n_{0})}. \square 
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