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Representations of Clifford algebras and local

functional equations

By

Fumihiro SATO * and Takeyoshi KOGISO **

Introduction

Let P and P^{*} be homogeneous polynomials in n variables of degree d with real

coefficients. It is an interesting problem both in Analysis and in Number theory to

find a condition on P and P^{*} under which they satisfy a functional equation, roughly

speaking, of the form

(0.1) the Fourier transform of |P(x)|^{s}= Gamma factor \times|P^{*}(y)|^{-n/d-s}

A beautiful answer to this problem is given by the theory of prehomogeneous vector

spaces due to Mikio Sato. Namely, if P and P^{*} are relative invariants of a regular

prehomogeneous vector space and its dual, respectively, and if the characters  $\chi$ and  $\chi$^{*}

corresponding to P and P^{*}
, respectively, satisfy the relation  $\chi \chi$^{*}=1 , then, P and P^{*}

satisfy a functional equation (see [9], [10], [6]).
Meanwhile, in [5], Faraut and Koranyi developed a method of constructing poly‐

nomials with the property (0.1), starting from representations of Euclidean (formally
real) Jordan algebras. What is remarkable in their result is that, from representations
of simple Jordan algebras of Lorentzian type, one can obtain a series of polynomials

satisfying (0.1), which are not covered by the theory of prehomogeneous vector spaces

(see also Clerc [4]). Thus we got to know that the class of polynomials with the property
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(0.1) is broader than the class of relative invariants of regular prehomogeneous vector

spaces.

In [7], the first author gave a new construction of polynomials with the property

(0.1), which includes the result of Faraut and Koranyi as a special case. Now we explain
the construction briefly. Suppose that we are given homogeneous polynomials P and P^{*}

on a real vector spaces V and its dual V^{*} , respectively, satisfying a functional equation of

the form (0.1). Further suppose that there exists a non‐degenerate quadratic mapping Q

(resp. Q^{*} ) of another real vector space W (resp. W^{*} ) to V (resp. V^{*} ), and Q and Q^{*} are

dual. Then, the pullback of the functional equation for P and P^{*} by Q holds; namely,
the pullbacks \tilde{P} and \tilde{P}^{*} of P and P^{*} by Q and Q^{*} , respectively, satisfy a functional

equation of the form (0.1) and the gamma factors for the new functional equation have

an explicit expression in term of those for P and P^{*} . A precise formulation of this result

will be given in Section 1. For the proof we refer to [7].
In Section 2, we apply the general result in Section 1 to the case where V=V^{*}=

\mathbb{R}^{n}
,

and P=P^{*}=(x_{1}^{2}+\cdots+x_{p}^{2})-(x_{p+1}^{2}+\cdots+x_{p+q}^{2}) . Let C_{p} and C_{q} be the Clifford

algebras of the positive definite quadratic forms x_{1}^{2}+\cdots+x_{p}^{2} and x_{p+1}^{2}+\cdots+x_{p+q}^{2},
respectively. Then we can prove that non‐degenerate self‐dual quadratic mappings

Q : W\rightarrow V correspond to representations of the tensor product of C_{p}\otimes C_{q} and, starting
from representations of C_{p}\otimes C_{q} ,

we can construct quartic polynomials \tilde{P}=Po Q

satisfying functional equations of the form (0.1). Among these polynomials we find

several new examples of polynomials satisfying functional equations that do not come

from prehomogenous vector spaces. The non‐prehomogeneous polynomials with the

property (0.1) appearing in the work of Faraut, Koranyi and Clerc is a special case where

the signature of the quadratic forms P is (1, n-1) . To prove that a given homogeneous

polynomial \tilde{P} does not come from a prehomogeneous vector space, it is necessary to

know about the group G_{P^{-}} of linear transformations that leave the polynomial invariant.

We give a conjecture of the structure of the Lie algebras Lie (G_{P^{-}}) for the pullback \tilde{P} of

the quadratic form P and explain some partial results.

It is natural to ask whether global zeta functions with functional equations can be

associated with polynomials \tilde{P} and \tilde{P}^{*} given in [7]. For polynomials obtained from the

theory of Faraut and Koranyi, this problem was solved by Achab in [1] and [2]. But her

method works only for the case where the fibers Q^{-1}(v)(P(v)\neq 0) are compact and can

not apply to our general setting. If the polynomials P and P^{*} are relative invariants

of prehomogeneous vector spaces, then, by generalizing the method of Arakawa [3]
and Suzuki [11], we can define global zeta functions for \tilde{P} and prove their analytic

properties (analytic continuation and functional equation) (work with K. Tamura). We

shall discuss global zeta functions elsewhere.
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§1. Pullback of local functional equations by quadratic mappings

In this section, we recall the main result of [7].

§1.1. Local functional equations

Let V be a complex vector space of dimension n with real‐structure V and \mathrm{V}^{*} the

vector space dual to V. The dual vector space V^{:}

regarded as a real‐structure of \mathrm{V}^{*} . Let P_{1} ,
. . .

, P_{r}

of the real vector space V can be

resp. P_{1}^{*} ,
. . .

, P_{r}^{*} ) be homogeneous

polynomial functions on V (resp. \mathrm{V}^{*} ) defined over \mathbb{R} . We put

 $\Omega$=\{v\in \mathrm{V}|P_{1}(v)\cdots P_{r}(v)\neq 0\},  $\Omega$= $\Omega$\cap V,

$\Omega$^{*}=\{v*\in \mathrm{V}^{*}|P_{1}^{*}(v^{*})\cdots P_{r}^{*}(v^{*})\neq 0\}, $\Omega$^{*}=$\Omega$^{*}\cap V.

We assume that

(A.1) there exists a biregular rational mapping  $\phi$ :  $\Omega$\rightarrow$\Omega$^{*} defined over \mathbb{R}.

Let

 $\Omega$=$\Omega$_{1}\cup\cdots\cup$\Omega$_{l $\nu$}, $\Omega$^{*}=$\Omega$_{1}^{*}\cup\cdots\cup$\Omega$_{l $\nu$}^{*}

be the decompositions into connected components of  $\Omega$ and  $\Omega$^{*} . Note that (A.1) implies
that the numbers of connected components of  $\Omega$ and  $\Omega$^{*} are the same and we may

assume that

$\Omega$_{j}^{*}= $\phi$($\Omega$_{j}) (j=1, \ldots, v) .

For an s= (sl, . . .

, s_{r} ) \in \mathbb{C}^{r} with \Re(s_{1}) ,
. . .

, \Re(s_{r})>0 ,
we define a continuous function

|P(v)|_{j}^{s} on V by

|P(v)|_{j}^{s}=\left\{\begin{array}{ll}
\prod_{i=1}^{r}|P_{i}(v)|^{s_{i}}, & v\in$\Omega$_{j},\\
0, & v\not\in$\Omega$_{j}.
\end{array}\right.
The function |P(v)|_{j}^{s} can be extended to a tempered distribution depending on s in \mathbb{C}^{r}

meromorphically. Similarly we define |P^{*}(v^{*})|_{j}^{s}(s\in \mathbb{C}^{r}) .

We denote by S(V) and S(V^{*}) the spaces of rapidly decreasing functions on the

real vector spaces V and V^{*} , respectively. For  $\Phi$\in S(V) and $\Phi$^{*}\in S(V^{*}) ,
we define

the local zeta functions by setting

$\zeta$_{i}(s,  $\Phi$)=\displaystyle \int_{V}|P(v)|_{i}^{s} $\Phi$(v)dv, $\zeta$_{i}^{*}(s, $\Phi$^{*})=\displaystyle \int_{V^{*}}|P^{*}(v^{*})|_{i}^{s}$\Phi$^{*}(v^{*})dv^{*} (i=1, \ldots, v) .

It is well‐known that the local zeta functions $\zeta$_{i}(s,  $\Phi$) , $\zeta$_{i}^{*}(s, $\Phi$^{*}) are absolutely convergent
for \Re(s_{1}) ,

. . .

, \Re(s_{r})>0 and have analytic continuations to meromorphic functions of s

in \mathbb{C}^{r} . We assume the following:



56 Fumihiro Sato and Takeyoshi Kogiso

(A.2) There exist an A\in GL_{r}() and a  $\lambda$\in \mathbb{C}^{r} such that a functional equation of the

form

(1.1) $\zeta$_{i}^{*}((s+ $\lambda$)A,\displaystyle \hat{ $\Phi$})=\sum_{j=1}^{l $\nu$}$\Gamma$_{ij}(s)$\zeta$_{j}(s,  $\Phi$) (i=1, \ldots, v)
holds for every  $\Phi$\in S(V) ,

where $\Gamma$_{ij}(s) are meromorphic functions on \mathbb{C}^{r} not

depending on  $\Phi$ with \det($\Gamma$_{ij}(s))\neq 0 and

\displaystyle \hat{ $\Phi$}(v^{*})=\int_{V} $\Phi$(v)\exp(-2 $\pi$\sqrt{-1}\langle v, v^{*}\rangle)dv,
the Fourier transform of  $\Phi$.

A lot of examples of \{P_{1}, . . . , P_{r}\} and \{P_{1}^{*}, . . . , P_{r}^{*}\} satisfying (A.1) and (A.2) can

be obtained from relative invariants of regular prehomogeneous vector spaces (see [9],
[10], [6]). However, in §1, we do not assume here the existence of group action that

relates the polynomials to prehomogeneous vector spaces.

§1.2. Pullback of local functional equations

Let \mathrm{W} be a complex vector space of dimension m with real structure W and \mathrm{W}^{*} the

vector space dual to W. We consider the dual vector space W^{*} of W as a real structure

of \mathrm{W}^{*} . Suppose that we are given quadratic mappings Q : \mathrm{W}\rightarrow \mathrm{V} and Q^{*}:\mathrm{W}^{*}\rightarrow \mathrm{V}^{*}
defined over \mathbb{R} . The mappings B_{Q} : \mathrm{W}\times \mathrm{W}\rightarrow \mathrm{V} and B_{Q^{*}}:\mathrm{W}^{*}\times \mathrm{W}^{*}\rightarrow \mathrm{V}^{*} defined

by

B_{Q}(w_{1}, w_{2}):=Q(w_{1}+w_{2})-Q(w_{1})-Q(w_{2}) , B_{Q^{*}}(w_{1}^{*}, w_{2}^{*}):=Q^{*}(w_{1}^{*}+w_{2}^{*})-Q^{*}(w_{1}^{*})-Q^{*}(w_{2}^{*})

are bilinear. For given v\in \mathrm{V} and v^{*}\in \mathrm{V}^{*} ,
the mappings Q_{v}* : \mathrm{W}\rightarrow \mathbb{C} and Q_{v}^{*} :

\mathrm{W}^{*}\rightarrow \mathbb{C} defined by

 Q_{v^{*}}(w)=\langle Q(w) , v^{*}\rangle, Q_{v}^{*}(w^{*})=\langle v, Q^{*}(w^{*})\rangle

are quadratic forms on \mathrm{W} and \mathrm{W}^{*}
,

which take values in \mathbb{R} on W and W^{*} , respectively.
We assume that Q and Q^{*} are non‐degenerate and dual to each other with respect to

the biregular mapping  $\phi$ in (A.1). This means that  Q and Q^{*} satisfy the following:

(A.3) (i) (Nondegeneracy) The open set \tilde{ $\Omega$}:=Q^{-1} () (resp. \tilde{ $\Omega$}^{*}=Q^{*-1}($\Omega$^{*}) ) is not

empty and the rank of the differential of Q (resp. Q^{*} ) at w\in\tilde{ $\Omega$} (resp. w^{*}\in\tilde{ $\Omega$}^{*} ) is

equal to n . (In particular, m\geq n. )
(ii) (Duality) For any  v\in $\Omega$ ,

the quadratic forms  Q_{ $\phi$(v)} and Q_{v}^{*} are dual to each

other. Namely, fix a basis of W and the basis of W

and S_{v}^{*} the matrices of the quadratic forms  Q_{v}*\mathrm{a}\mathrm{n}\langle

other. Namely, fix a basis of  W and the basis of W^{:}

and S_{v}^{*} the matrices of the quadratic forms Q_{v}*\mathrm{a}\mathrm{n}(

dual to it, and denote by S_{v}*

Q_{v}^{*} with respect to the bases.

Then S_{ $\phi$(v)} and S_{v}^{*}(v\in $\Omega$) are non‐degenerate and S_{ $\phi$(v)}=(S_{v}^{*})^{-1}.



Representations 0F Clifford algebras and local functional equations 57

Now we collect some elementary consequences of the assumptions (A.1) and (A.3).
First note that a rational function defined over \mathbb{R} with no zeros and no poles on  $\Omega$ (resp.
 $\Omega$^{*}) is a monomial of P_{1} ,

. . .

, P_{r} (resp. P_{1}^{*} ,
. . .

, P_{r}^{*} ). Hence the assumptions (A.1) and

(A.3) (ii) imply the following lemma.

Lemma 1.1. If we replace P_{i}, P_{j}^{*},  $\phi$ by their suitable real constant multiples (if
necessary),

(1) there exists a  B=(b_{ij})\in GL() such that

P_{i}^{*}( $\phi$(v))=\displaystyle \prod_{j=1}^{r}P_{j}(v)^{b_{ij}} (i=1, \ldots, r) .

(2) There exist  $\kappa$, $\kappa$^{*}\in \mathbb{Z}^{r} and a non‐zero constant  $\alpha$ such that

\det S_{v}^{*}=$\alpha$^{-1}P^{ $\kappa$}(v) , \det S_{v}*= $\alpha$ P^{*$\kappa$^{*}}(v^{*}) .

(3) The mapping  $\phi$ is of degree -1 and there exists a  $\mu$\in \mathbb{Z}^{r} such that

\displaystyle \det(\frac{\partial $\phi$(v)_{i}}{\partial v_{j}})=\pm P^{ $\mu$}(v) .

If P_{1} ,
. . .

, P_{r} and P_{1}^{*} ,
. . .

, P_{r}^{*} are the fundamental relative invariants of a regular

prehomogeneous vector space (G,  $\rho$, \mathrm{V}) and its dual (G, $\rho$^{*}, \mathrm{V}^{*}) ,
then we have B=A^{-1}.

Indeed, by the regularity, there exists a relative invariant P for which  $\phi$(v)= gradlog P

is a G‐equivariant morphism satisfying (A.1). From the G‐equivariance of the mapping

 $\phi$ ([8, §4, Prop. 9]), we have  B=A^{-1} (see [6]). It is very likely that the identity
B=A^{-1} always holds under the assumption (A.1) and (A.2) and, for simplicity, we

assume

(A.4) B=A^{-1}.

Since we assumed that $\Omega$_{i} (resp. $\Omega$_{i}^{*} ) are connected components, the signature of

the quadratic form Q_{v}^{*}(w^{*}) (resp. Q_{v}*(w) ) on W^{*} (resp. W ) do not change when v

(resp. v^{*} ) varies on $\Omega$_{i} (resp. $\Omega$_{i}^{*} ). Let p_{i} and q_{i} be the numbers of positive and negative

eigenvalues of Q_{v}^{*} for v\in$\Omega$_{i} and put

(1.2) $\gamma$_{i}=\displaystyle \exp(\frac{(p_{i}-q_{i}) $\pi$\sqrt{-1}}{4}) (i=1, \ldots, v) .

We put

\tilde{P}_{i}(w)=P_{i}(Q(w)) , \tilde{P}_{i}^{*}(w^{*})=P_{i}^{*}(Q^{*}(w^{*})) (i=1, \ldots, r)
\tilde{ $\Omega$}_{i}=Q^{-1}($\Omega$_{i}) , \tilde{ $\Omega$}_{i}^{*}=Q^{*-1}($\Omega$_{i}^{*}) (i=1, \ldots, v) .
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Some of \tilde{ $\Omega$}_{i} �s and \tilde{ $\Omega$}_{i}^{*\prime}\mathrm{s} may be empty. We define |\tilde{P}(w)|_{i}^{s} and |\tilde{P}^{*}(w^{*})|_{i}^{s} in the same

manner as in §1.1. For  $\Psi$\in S(W) ,
we define the zeta functions associated with these

polynomials by

\displaystyle \tilde{ $\zeta$}_{i}(s,  $\Psi$)=\int_{W}|\tilde{P}(w)|_{i}^{s} $\Psi$(w)dw, \tilde{ $\zeta$}_{i}^{*}(s, $\Psi$^{*})=\int_{W^{*}}|\tilde{P}^{*}(w^{*})|_{i}^{s}$\Psi$^{*}(w^{*})dw^{*}
We denote by \hat{ $\Psi$} the Fourier transform of  $\Psi$ :

\displaystyle \hat{ $\Psi$}(w^{*})=\int_{W} $\Psi$(w)\exp(2 $\pi$\sqrt{-1}\langle w, w^{*}\rangle)dw.
Then our main result is that the functional equation (1.1) for P_{i} �s and P_{j}^{*\prime}\mathrm{s} implies
a functional equation for \tilde{P}_{i} �s and \tilde{P}_{j}^{*\prime}\mathrm{s} and the gamma factors in the new functional

equation can be written explicitly. Namely, we have the following theorem.

Theorem 1.2 ([7], Theorem 4). Under the assumptions (A.1)(A.4), the zeta

functions \tilde{ $\zeta$}_{i}(s,  $\Psi$) and \tilde{ $\zeta$}_{i}^{*}(s, $\Psi$^{*}) satisfy the functional equation

\displaystyle \tilde{ $\zeta$}_{i}^{*}((s+2 $\lambda$+ $\kappa$/2+ $\mu$)A,\hat{ $\Psi$})=\sum_{j=1}^{l $\nu$}\tilde{ $\Gamma$}_{ij}(s)\tilde{ $\zeta$}_{j}(s,  $\Psi$) ,

where the gamma factors \tilde{ $\Gamma$}_{ij}(s) are given by

\displaystyle \tilde{ $\Gamma$}_{ij}(s)=2^{-2d(s)-m/2}| $\alpha$|^{1/2}\sum_{k=1}^{l $\nu$}$\gamma$_{k}$\Gamma$_{ik}(s+ $\lambda$+ $\kappa$/2+ $\mu$)$\Gamma$_{kj}(s) .

Here we denote by d(s)(s\in \mathbb{C}^{r}) the homogeneous degree of P^{s}
, namely, d(s)=

\displaystyle \sum_{i=1}^{r}s_{i}\deg P_{i}.

In the case of single variable zeta functions, namely, in the case of r=1
, writing

P=P_{1} and P^{*}=P_{1}^{*} ,
we have the following lemma.

Lemma 1.3. Assume that r=1 . Then we have

A=B=-1, d:=\displaystyle \deg P=\deg P^{*},  $\lambda$=\frac{n}{d},  $\mu$=-\frac{2n}{d},  $\kappa$=\frac{m}{d}.
By Lemma 1.3, if r=1

,
then the functional equation for local zeta functions takes

the form

\displaystyle \tilde{ $\zeta$}_{i}^{*}(-s-\frac{m}{2d},\hat{ $\Psi$})=\sum_{j=1}^{l $\nu$}\tilde{ $\Gamma$}_{ij}(s)\tilde{ $\zeta$}_{j}(s,  $\Psi$) ,

(1.3) \displaystyle \tilde{ $\Gamma$}_{ij}(s)=2^{-2ds-m/2}| $\alpha$|^{1/2}\sum_{k=1}^{l $\nu$}$\gamma$_{k}$\Gamma$_{ik}(s+\frac{m-2n}{2d})$\Gamma$_{kj}(s)
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and the b‐function is given by

(1.4) \displaystyle \tilde{b}(s)=b(s)b(s+\frac{m-2n}{2d}) ,

where b(s) and \tilde{b}(s) are defined by P^{*}(\partial_{v})P^{s}(v)=b(s)P^{s-1}(v) and \tilde{P}^{*}(\partial_{w})\tilde{P}^{s}(w)=
\tilde{b}(s)\tilde{P}^{s-1}(v) .

Example 1.4. Let V be the vector space of real symmetric matrices of size n and

put P(v)=\det v . Take a non‐degenerate real symmetric matrix Y of size m>n with

arbitrary signature. Set W=M_{m,n}(\mathbb{R}) and define the quadratic mapping Q:W\rightarrow V

by Q(w)=t_{wYw} . Then \tilde{P}(w)=\det(^{t}wYw ). The polynomial \tilde{P} is the fundamental

relative invariant of the prehomogeneous vector space (SO(Y)\times GL(n), M_{m,n}) . If we

identify the dual space of V (resp. W ) with V (resp. W ) via the inner product \langle v, v^{*}\rangle=
\mathrm{t}\mathrm{r}(^{t}vv^{*}) (resp. \langle w, w^{*}\rangle=\mathrm{t}\mathrm{r}(^{t}ww^{*} ), the dual of the mapping Q is given by Q^{*}(w^{*})=
t_{w^{*}Y^{-1}w^{*}} and the theorem can apply to this case.

Example 1.5. In [5, Chap. 16], Faraut and Koranyi proved that, starting from

a representation of a Euclidean Jordan algebra, one can construct polynomials satisfying
local functional equations. Their result is covered by Theorem 1.2 (see [7, §2.2]). In [4],
Clerc generalized the result of Faraut and Koranyi to several variable zeta functions,
which is also covered by Theorem 1.2, and noted that, if the Euclidean Jordan alge‐
bra V is of Lorentzian type, then the polynomials \tilde{P} obtained by the Faraut‐Koranyi
construction are not relative invariants of prehomogeneous vector spaces except for

some low‐dimensional cases (without specifying the exceptions). Let us explain this

non‐prehomogeneous example without referring to Jordan algebra. Let V be the q+1-
dimensional real quadratic space of signature ( 1, q) . We fix a basis \{e_{0}, e_{1}, . . . , e_{q}\} of V,
for which the quadratic form is given by

P ( x_{0} , xl, . . .

, x_{q} ) =x_{0}^{2}-x_{1}^{2}-\cdots-x_{q}^{2}.
Denote by C_{q} the Clifford algebra of the positive definite quadratic form x_{1}^{2}+\cdots+x_{q}^{2} and

consider a representation S:C_{q}\rightarrow M_{m}() of C_{q} on an m‐dimensional \mathbb{R}‐vector space.

We may assume that S_{i}:=S(e_{i})(i=1, \ldots, q) are symmetric matrices. We denote by
W=\mathbb{R}^{m} the representation space of S and define a quadratic mapping Q : W\rightarrow V by

Q(w)=({}^{t}ww)e_{0}+\displaystyle \sum_{i=1}^{q}({}^{t}wS_{1}w, \ldots,{}^{t}wS_{q}w)e_{i}.
Then, if \displaystyle \tilde{P}(w)=P(Q(w))=(^{t}ww)^{2}-\sum_{i=1}^{q}(^{t}wS_{i}w)^{2} does not vanish identically, Q is

a self‐dual non‐degenerate quadratic mapping and, by Theorem 1.2, \tilde{P} satisfies a local

functional equation. In the next section, we generalize this construction and examine

the prehomogeneity.
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Remark. In [4], Clerc proved local functional equations also for zeta functions with

harmonic polynomials. This part is not covered by Theorem 1.2.

§2. Quartic polynomials obtained from representations of Clifford

algebras

Let p, q be non‐negative integers and consider the quadratic form P(x)=\displaystyle \sum_{i=1}^{p}x_{i}^{2}-
\displaystyle \sum_{j=1}^{q}x_{p+j}^{2} of signature (p, q) on V=\mathbb{R}^{p+q} . We identify V with its dual vector space

via the standard inner product (x, y)=x_{1}y_{1}+\cdots+x_{p+q}y_{p+q} . Put  $\Omega$=V\backslash \{P=0\}.
We determine the quadratic mappings Q:W\rightarrow V that are self‐dual with respect to

the biregular mapping  $\phi$ :  $\Omega$\rightarrow $\Omega$ defined by

 $\phi$(v) :=\displaystyle \frac{1}{2} grad \displaystyle \log P(v)=\frac{1}{P(v)} (vl, . . .

, v_{p}, -v_{p+1}, \ldots, -v_{p+q} ).

By Theorem 1.2, for such a quadratic mapping Q ,
the complex power of the quartic

polynomial \tilde{P}(w) :=P(Q(w)) satisfies a functional equation with explicit gamma factor,
unless \tilde{P} vanishes identically (see [7, Lemma 6]).

For a quadratic mapping Q of W=\mathbb{R}^{m} to V=\mathbb{R}^{p+q} ,
there exist symmetric

matrices S_{1} ,
. . .

, S_{p+q} of size m such that

Q(w)=({}^{t}wS_{1}w, \ldots,{}^{t}wS_{p+q}w) .

For v=(x_{1}, \ldots, x_{p+q})\in \mathbb{R}^{p+q} ,
we put

S(v)=\displaystyle \sum_{i=1}^{p+q}x_{i}S_{i}.
Then the mapping Q is self‐dual with respect to  $\phi$ if and only if

 S(v)S( $\phi$(v))=I_{m} (v\in $\Omega$) .

If we define $\epsilon$_{i} to be 1 or -1 according as i\leq p or i>p ,
this condition is equivalent to

the polynomial identity

\displaystyle \sum_{i=1}^{p}x_{i}^{2}S_{i}^{2}-\sum_{j=1}^{q}x_{p+j}^{2}S_{p+j}^{2}+\sum_{1\leq i<j\underline{<}p+q}x_{i}x_{j}($\epsilon$_{j}S_{i}S_{j}+$\epsilon$_{i}S_{j}S_{i})=P(x)I_{m}.
This identity holds if and only if

S_{i}^{2}=I_{m}(1\leq i\leq p+q) ,

S_{i}S_{j}=\left\{\begin{array}{ll}
S_{j}S_{i} & (1\leq i\leq p<j\leq p+q \mathrm{o}\mathrm{r} 1\leq j\leq p<i\leq p+q)\\
-S_{j}S_{i} & (1\leq i, j\leq p or p+1\leq i, j\leq p+q) .
\end{array}\right.
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This means that the mapping S:V\rightarrow Sym() can be extended to a representation
of the tensor product of the Clifford algebra C_{p} of x_{1}^{2}+\cdots+x_{p}^{2} and the Clifford algebra

C_{q} of x_{p+1}^{2}+\cdots+x_{p+q}^{2}.
Conversely, if we are given a representation S : C_{p}\otimes C_{q}\rightarrow M_{m}() ,

then the

representation S is a direct sum of simple modules and a simple C_{p}\otimes C_{q} ‐module is a

tensor product of simple modules of C_{p} and C_{q} . Since one can choose a basis of the

representation space so that S(\mathbb{R}^{p+q}) is contained in Sym_{m}(\mathbb{R}) ,
we have proved that

Theorem 2.1. Self‐ dual quadratic mappings Q of W=\mathbb{R}^{m} to the quadratic

space (V, P) correspond to representations S of C_{p}\otimes C_{q} such that S(V)\subset Sym_{m}(\mathbb{R}) .

The construction above is a generalization of Example 1.5 related to representa‐

tions of simple Euclidean Jordan algebra of Lorentzian type. In the case (p, q)=(1, q) ,

the self‐dual quadratic mappings over the quadratic space of signature (1, q) correspond
to representations of C_{1}\otimes C_{q}\cong C_{q}\oplus C_{q} . Representations of C_{1}\otimes C_{q} can be identified

with the direct sum of 2 C_{q} ‐modules W+ and W_{-} . On W+(resp. W_{-}) , e_{0} acts as mul‐

tiplication by +1 (resp. -1 ). The Lorentzian case in the Faraut‐Koranyi construction

is the one for which W_{-}=\{0\}.
The quartic polynomials \tilde{P}(=\tilde{P}^{*}) above are conjectured not to be relative in‐

variants of prehomogeneous vector spaces except for low‐dimensional cases. It is an

interesting problem to classify the prehomogeneous case.

Theorem 2.2. If p+q=\dim V\leq 4 ,
then the polynomials \tilde{P} are relative in‐

variants of prehomogeneous vector spaces.

The prehomogeneous vector spaces appearing in the case p+q\leq 4 are given in the

following table:

prehomogeneous vector space

(\mathrm{G}\mathrm{L}(1, ) \mathrm{S}\mathrm{O}(\mathrm{k} ,k), )(1, 0)
(2,0) (\mathrm{G}\mathrm{L}(1, ) \mathrm{S}\mathrm{O}(\mathrm{k}, ), )
(1,1)(\mathrm{G}\mathrm{L}(1, ) \mathrm{S}\mathrm{O}(\mathrm{k} ,k), ) (\mathrm{G}\mathrm{L}(1, ) \mathrm{S}\mathrm{O}(\mathrm{k} ,k), )

(\mathrm{G}\mathrm{L}(1, ) SU(2) SO (2k), )(3, 0)
(2, 1)
(4, 0)
(3, 1)
(2, 2)

(\mathrm{G}\mathrm{L}(2, ) \mathrm{S}\mathrm{O}(\mathrm{k} ,k), \mathrm{M}(2,\mathrm{k} + \mathrm{k} , ))
(\mathrm{G}\mathrm{L}(1, ) \mathrm{G}\mathrm{L}(1, ) \mathrm{G}\mathrm{L}(\mathrm{k}, ),\mathrm{M}(2,\mathrm{k}, ))

(\mathrm{G}\mathrm{L} () SU (\mathrm{k} ,k), \mathrm{M}(2, \mathrm{k} + \mathrm{k} ; ))
(\mathrm{G}\mathrm{L} () \mathrm{G}\mathrm{L} () \mathrm{S}\mathrm{L}(\mathrm{k}, ), \mathrm{M}(2,\mathrm{k};)

(Table 1)

Here k, k_{1}, k_{2}, k_{3}, k_{4} denote the multiplicities of simple C_{p}\otimes C_{q} ‐modules in W.
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If p+q=5 ,
then \tilde{P} is not a relative invariant of any prehomogeneous vector

spaces except the case of simple module. If p+q=6 and W is simple, then \tilde{P} vanishes.

However, if W is not simple but pure, then \tilde{P} is a relative invariant of the prehomogeous
vector space

(3, 3) (\mathrm{G}\mathrm{L} () \mathrm{S}\mathrm{p}(\mathrm{k}, ),\mathrm{M}(4,2\mathrm{k};)) (\mathrm{k} 2, \mathrm{W} = pure)
(5, 1) (\mathrm{G}\mathrm{L} () \mathrm{S}\mathrm{p}(\mathrm{k} ,k), \mathrm{M}(2, \mathrm{k} + \mathrm{k} ; )) (\mathrm{k} + \mathrm{k} 2, \mathrm{W} = pure)

(Table 1�)

Here a C_{p}\otimes C_{q} ‐module W is called pure if W\otimes_{\mathbb{R}}\mathbb{C} is isotypic as a module of the

subalgebra of even elements in (C_{p}\otimes C_{q})\otimes_{\mathbb{R}}\mathbb{C} . Pure modules do not appear for (p, q)=
(6,0) and (4, 2).

To examine higher dimensional cases, we consider the Lie algebra \mathfrak{g} of the group

G=\{g\in GL(W)|\tilde{P}(gw)\equiv\tilde{P}(w)\} and the Lie algebra \mathfrak{h}(=\mathfrak{h}_{p,q}) of the group H=

\{h\in GL(W)|Q(hw)\equiv Q(w)\} . The Lie algebra \mathfrak{h} is a Lie subalgebra of \mathfrak{g} . Note that

the Lie algebras \mathfrak{g} and \mathfrak{h} depend on p, q and the choice of the representation of C_{p}\otimes C_{q}.
Our problem is to determine all the cases where (GL_{1}\times G, W) is a prehomogeneous
vector space.

Conjecture 2.3. We have

\mathfrak{g}\cong \mathfrak{s}0(p, q)\oplus \mathfrak{h}

except for some low dimensional cases.

The structure of \mathfrak{h} can be described explicitly. By the periodicity of Clifford algebras

C_{p+8}\cong C_{p}\otimes M(16, \mathbb{R}) ,
there exists a natural correspondence between representations

of C_{p+8}\otimes C_{q} and representations of C_{p}\otimes C_{q} and it can be proved that the structure of

\mathfrak{h} is the same for corresponding representations. This implies the isomorphisms

(2.1) \mathfrak{h}_{p,q}\cong \mathfrak{h}_{q,p}\cong \mathfrak{h}_{p+8,q}\cong \mathfrak{h}_{p,q+8}.

Similarly, by C_{p+4}\cong C_{p}\otimes M(2, \mathbb{H}) and M_{2}(\mathbb{H})\otimes M_{2}()\cong M_{16}(\mathbb{R}) ,
we have the

isomorphism

(2.2) \mathfrak{h}_{p,q}\cong \mathfrak{h}_{p+4,q\pm 4}.

Hence it is sufficient to give the structure of \mathfrak{h} only for 0\leq p\leq 7 and 0\leq q\leq 4.

Theorem 2.4. The Lie algebra \mathfrak{h} is isomorphic to the reductive Lie algebra given



Representations 0F Clifford algebras and local functional equations 63

in the following table:

so(\mathrm{k} ,k)\mathrm{g}\mathrm{l}(\mathrm{k}, ) so(\mathrm{k}, )
1 so(\mathrm{k},\mathrm{k}) \mathrm{s}\mathrm{o}(\mathrm{k},\mathrm{k}) so(\mathrm{k},\mathrm{k})\mathrm{s}\mathrm{o}(\mathrm{k} ,k)

\mathrm{g}\mathrm{l}(\mathrm{k}, )
\mathrm{s}\mathrm{p}(\mathrm{k}, ) \mathrm{s}\mathrm{p}(\mathrm{k}, ) \mathrm{s}\mathrm{p}(\mathrm{k}, )
\mathrm{s}\mathrm{p}(\mathrm{k}, )

5 \mathrm{s}\mathrm{p}(\mathrm{k},\mathrm{k})\mathrm{s}\mathrm{p}(\mathrm{k},\mathrm{k}) \mathrm{s}\mathrm{p}(\mathrm{k},\mathrm{k})\mathrm{s}\mathrm{p}(\mathrm{k} ,k)
\mathrm{g}\mathrm{l}(\mathrm{k}, )
so

(Table 2)

Here \mathrm{p}=p mod8 and \overline{q}=q mod8 and k_{1}, k_{2}, k_{3}, k_{4}, k are the multiplicities of simple
modules in W.

Put R_{p,q}=C_{p}\otimes C_{q} and let R_{p,q}^{+} be the subalgebra of even elements in R_{p,q} . Then,

R_{p,q}^{+} is isomorphic to C_{p,q}^{+} ,
the subalgebra of even elements of the Clifford algebra C_{p,q}

of the quadratic form P of signature (p, q) . As we can see from the table below, the

structure of the Lie algebra \mathfrak{h} is completely determined by the structure of R_{p,q} and

R_{p,q}^{+}.

\mathrm{p},\mathrm{q} \mathrm{p},\mathrm{q} (\mathrm{p}\overline{}, \overline{\mathrm{q}}) (\overline{\mathrm{p}} \overline{\mathrm{q}})
(0, 2),(4, 6)

(0, 7),(2,3),(3, 4),(6, 7)
(0, 3),(2,7),(3, 6),(4, 7)

(0, 6),(2, 4)
(0,0),(2,2),(4, 4),(6, 6)

(0, 4),(2, 6)

(\mathrm{T} \mathrm{T}, \mathrm{T}

(0, 1),(1,2),(4, 5),(5, 6)
(1, 3),(1, 7),(3, 5),(5, 7)
(0, 5),(1,4),(1, 6),(2, 5)

(3, 3),(7, 7)
(\mathrm{T} \mathrm{T}, \mathrm{T}

(3, 7)
(1, 1),(5, 5)

(\mathrm{T} \mathrm{T} \mathrm{T} \mathrm{T}, \mathrm{T}

(, ) \mathrm{s}\mathrm{p}(\mathrm{k}, ) \mathrm{s}\mathrm{p}(\mathrm{k}, )
(, ) so (2\mathrm{k})
(, ) so(\mathrm{k},\mathrm{k}) so(\mathrm{k} ,k)
(, ) \mathrm{s}\mathrm{p}(\mathrm{k},\mathrm{k}) \mathrm{s}\mathrm{p}(\mathrm{k} ,k) (1, 5)

(Table 2�)

Here T and T' denote the matrix algebras over \mathrm{K} and \mathrm{K}'
, respectively, of appropriate

size.
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Sketch of the proof of Theorem 2.4. Let \mathcal{A} be the commutant of R_{p,q}^{+} in

End (W) . For an r in R_{p,q} ,
we put \mathcal{A}^{r}=\{X\in \mathcal{A}|{}^{t}XS(r)+S(r)X=0\} . Denote by

e_{1} ,
. . .

, e_{p+q} the standard basis of V=\mathbb{R}^{p+q} . If r=e_{i}r' with r'\in(R_{p,q}^{+})^{\times} ,
then \mathcal{A}^{r}

coincides with \mathfrak{h} . For an appropriate choice of r
,

it is not hard to calculate \mathcal{A}^{r}.

As an example, consider the case (p, q)=(1,1) . Then R_{1,1} is isomorphic to \mathbb{R}\oplus \mathbb{R}\oplus

\mathbb{R}\oplus \mathbb{R} and there exist 4 inequivalent simple R_{1,1} ‐modules W_{1}, W_{2}, W_{3}, W_{4} of dimension

1. The action of e_{1}, e_{2} are given by

\left\{\begin{array}{l}
e_{1} . w_{1}=w_{1},\\
\{
\end{array}\right. e_{1} .

w_{2}=-w_{2}, \left\{\begin{array}{l}
e_{1} . W3= w_{3},\\
\{
\end{array}\right. e_{1} .

w_{4}=-w_{4},

e_{2}\cdot w_{1}=w_{1}, e_{2}\cdot w_{2}=-w_{2}, e_{2}. W3=-w_{3}, e_{2}\cdot w_{4}= w_{4}.

Since the subalgebra R_{1,1}^{+} is generated by ee, W_{1}\cong W_{2} and W_{3}\cong W_{4} as R_{1,1}^{+} ‐modules.

Let W=W_{1}^{k_{1}}\oplus W_{2}^{k_{2}}\oplus W_{3}^{k_{3}}\oplus W_{4}^{k_{4}} and identify W with the space of k_{1}+k_{2}+k_{3}+k_{4^{-}}
dimensional row vectors. Then we have

\mathcal{A}=\{\left(\begin{array}{l}
A0\\
0B
\end{array}\right)|A\in M_{k_{1}+k_{2}}(\mathbb{R}) , B\in M_{k_{3}+k_{4}}(\mathbb{R})\}
Take r=e_{1} . Then the action of r on W is given by the right multiplication of the

matrix

\left(\begin{array}{llll}
I_{k_{1}} & 0 & 0 & 0\\
0 & -I_{k_{2}} & 0 & 0\\
0 & 0 & I_{k_{3}} & 0\\
0 & 0 & 0 & -I_{k_{4}}
\end{array}\right)
and we obtain

\mathfrak{h}=\mathcal{A}^{r}=\{\left(\begin{array}{ll}
A & 0\\
0B & 
\end{array}\right)|B\in \mathfrak{s}0(k_{3},k_{4}A\in \mathfrak{s}0(k_{1},k_{2} \}\cong \mathfrak{s}0(k_{1}, k_{2})\oplus \mathfrak{s}0(k_{3}, k_{4}) .

If p+q is relatively small, we can check Conjecture 2.3 with the aid of a symbolic
calculation engine such as Maple or Mathematica and the result can be summarized in

the following table.

Theorem 2.5. Under the convention

m_{0} = minimum of the dimensions of the simple C_{p}\otimes C_{q} ‐modules,

m=\dim W,

0\Leftrightarrow\tilde{P}\equiv 0 (degenerate case),

\mathrm{T}\Leftrightarrow \mathfrak{g}_{p,q}( $\rho$)=\mathfrak{s}0(p, q)\oplus \mathfrak{h}_{p,q}( $\rho$) (Conjecture 2.3 is true.),

\mathrm{F}\Leftrightarrow \mathfrak{g}_{p,q}( $\rho$)\neq\supset \mathfrak{s}0(p, q)\oplus \mathfrak{h}_{p,q}( $\rho$) (Conjecture 2.3 fails.),

\mathrm{p}\mathrm{v}\Leftrightarrow\tilde{P} is a relative invariant of a pv,

pure \Leftrightarrow (all the  R_{p,q}^{+}\otimes_{\mathbb{R}}\mathbb{C}‐simple modules in W\otimes_{\mathbb{R}}\mathbb{C} are isomorphic),
mixed \Leftrightarrow (  W is not pure),
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we have

\mathrm{p} + \mathrm{q} \mathrm{m} \mathrm{m} = \mathrm{m} \mathrm{m} = 2\mathrm{m}

\mathrm{T}, pv \mathrm{T}, pv\mathrm{T}, pv

(mixed) \mathrm{T}, pv (mixed) \mathrm{T}, pv

(pure) 0 (pure) 0

\mathrm{F}, pv

\mathrm{F}, pv

\mathrm{T}, pv

\mathrm{T}, pv

\mathrm{F}, pv

(pure) pv\mathrm{F}, pv
(mixed) non‐pv

\mathrm{F}, pv

\mathrm{F}, pv

\mathrm{F}, pv

16

16

16

(pure) pv10 16
(mixed) non‐pv

11 32 \mathrm{F}, pv

(Table 3)

Almost all the non‐degenerate cases in Theorem 2.5 for which Conjecture 2.3 fail

are prehomogeneous cases and are given in the following table:

\mathrm{p} + \mathrm{q} \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{W}

\mathrm{s}\mathrm{l}(2) \mathrm{s}\mathrm{l}(2)
\mathrm{s}\mathrm{l}(2) \mathrm{s}\mathrm{l}(2) \mathrm{s}\mathrm{l}(2) \mathrm{g}\mathrm{l}(2)

(so(\mathrm{p},q) h)

\mathrm{s}\mathrm{l}(2) \mathrm{s}\mathrm{l}(2) \mathrm{g}\mathrm{l}(2)
so(8)

16 (pure)
16 (mixed) \mathrm{s}\mathrm{l}(4) \mathrm{s}\mathrm{l}(2) \mathrm{s}\mathrm{l}(2) \mathrm{g}\mathrm{l}(1) \mathrm{s}\mathrm{l}(4) \mathrm{s}\mathrm{l}(2) \mathrm{s}\mathrm{l}(2)

\mathrm{s}\mathrm{l}(4) \mathrm{s}\mathrm{l}(4)

so(8) \mathrm{s}\mathrm{l}(2)16

16

16

so(8) so(8) \mathrm{g}\mathrm{l}(1)
so(16) so(9)

32 (pure) so(10) \mathrm{s}\mathrm{l}(2)10

11 32 so(12) so(11)

(Table 4)

The unique non‐prehomogeneous case is

\mathrm{p} + \mathrm{q} \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{W} (so(\mathrm{p},q) h)
10 32 (mixed) so(10)

(Table 5)
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The following is a refinement of Conjecture 2.3.

Conjecture 2.6. Conjecture 2.3 is true for p+q\geq 12.

Conjecture 2.6 implies that prehomogeneous cases do not appear for p+q\geq 12
and all the prehomogeneous cases are listed in Tables 1, 1� and 4.

Remark. (Added in proof) Conjectures 2.3 and 2.6 are now theorems. The proof
will appear elsewhere.
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