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On the linearity of causal automorphisms of

symmetric cones

By

Soji KANEYUKI *

Abstract

We study the unique extension of local causal automorphisms of the Shilov boundary of an

irreducible bounded symmetric domain of tube type. As an application, we show the linearity
of causal automorphisms of symmetric cones in a simple Euclidean Jordan algebra.

Introduction

Let \mathfrak{g}_{1} be a simple Euclidean Jordan algebra of degree r . Then each element X\in \mathfrak{g}_{1}
has a signature (\mathrm{K}[3]) ,

which is uniquely determined by X and is a pair (p, q) of non‐

negative integers p and q with p+q\leq r . Let $\Omega$_{p,q} be the totality of elements X\in \mathfrak{g}_{1}
with signature (p, q) . The structure group Str(g) of \mathfrak{g}_{1} is a subgroup of GL(g) having
the Jordan determinant as a relative invariant polynomial. The identity component of

the structure group Str(g) is denoted by \mathrm{S}\mathrm{t}\mathrm{r}^{0}(\mathfrak{g}_{1}) . Each $\Omega$_{p,q} is a StrO(g)‐orbit, and

we have the Str
\ovalbox{\tt\small REJECT}
(g)‐orbit decomposition (i.e. Sylvester�s law of inertia)

\mathfrak{g}_{1}=\coprod_{\underline{<}p+qr}$\Omega$_{p,q}. (*)
$\Omega$_{p,q} is open if and only if p+q=r. $\Omega$_{r,0}(=-$\Omega$_{0,r}) is a Riemannian symmetric
convex cone, and $\Omega$_{i,r-i}(i\neq 0, r) is an affine symmetric non‐convex cone. The (linear)
automorphism group G() of $\Omega$_{r,0} is defined to be the subgroup of elements of GL(g)
leaving $\Omega$_{r,0} stable. It is known that G() is an open subgroup of Str(g). Note that

G($\Omega$_{r,0}) leaves the orbit decomposition () stable.
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Let  $\Omega$ denote any one of open cones  $\Omega$_{i,r-i} ,
for simplicity. The closure C of $\Omega$_{r,0} is

a causal cone (cf. 1.2). By attaching the parallel transport of C to each point of \mathfrak{g}_{1} ,
we

have a parallel cone field C_{\mathfrak{g}_{1}} on \mathfrak{g}_{1} ,
which is a causal structure on \mathfrak{g}_{1} with model cone

C (cf. Definition 1.2). The restriction C_{ $\Omega$} of C_{\mathfrak{g}_{1}} to  $\Omega$ is a causal structure on  $\Omega$.

The purpose of this paper is to announce the following result (Theorem 3.3): Any
diffeomorphism of  $\Omega$ leaving the causal structure  C_{ $\Omega$} invariant is necessarily a linear map

belonging to G($\Omega$_{r,0}) , provided that dimgl \geq 3.

The proof heavily depends on the Liouville‐type theorem (Theorem 2.1) for the

causal structure on the Shilov boundary M^{-} of the symmetric tube domain D over the

symmetric cone $\Omega$_{r,0}. M^{-} is a causal flag manifold of the holomorphic automorphism

group G(D) of D
,

and a symmetric cone  $\Omega$ is realized in  M^{-} as a causal open subman‐

ifold. Theorem 2.1 guarantees that the causal automorphism group of  $\Omega$ is a subgroup
of  G(D) . We then conclude that this subgroup acts linearly on \mathfrak{g}_{1} (Theorem 3.3).

In §1, we interpret a causal structure C as a G‐structure Q() and mention the

coincidence of the automorphism groups of both structures (Theorem 1.6). In 1.3, we

give a graded Lie algebra approach to the Sylvester�s law of inertia (Proposition 1.7).
Note that two groups G() and G(D) are identical.

A part of this work was done during the author�s stay at Hausdorff Research Insti‐

tute for Mathematics, Bonn, Germany in the summer, 2007. The author would like to

express his hearty thanks to that Institute for the support.

The detailed account of this paper is included in our paper [6].

§1. Preliminaries

1.1. Let M be an n‐dimensional smooth manifold. By a frame on M at p\in M we mean

a basis (u_{1}, \cdots, u_{n}) of the tangent space T_{p}(M) . Let (e_{1}, \cdots, e_{n}) be the standard basis

of \mathbb{R}^{n} . We will identify a frame (u_{1}, \cdots, u_{n}) at a point p with the linear isomorphism
u of \mathbb{R}^{n} onto T_{p}(M) defined by u(e_{i})=u_{i}, 1\leq i\leq n . The totality F(M) of frames on

M is called the frame bundle of M
,

which is a principal bundle over M with structure

group \mathrm{G}\mathrm{L}(n, \mathbb{R}) . The fiber of F(M) over p\in M is the totality Isom (\mathbb{R}^{n}, T_{p}(M)) of

linear isomorphisms of \mathbb{R}^{n} onto T_{p}(M) .

Let G be a Lie subgroup of \mathrm{G}\mathrm{L}(n, \mathbb{R}) . A subbundle Q of F(M) with G as the

structure group is called a G ‐structure on M.

Denition 1.1. Let (M, Q) and (M', Q') be two manifolds with G‐structures Q
and Q' , respectively. Let f be a diffeomorphism of M onto M' . Note that f is lifted up

to the bundle isomorphism \overline{f} of F(M) onto F(M') ,
which induces f on M. f is called

an isomorphism of (M, Q) onto (M', Q if \overline{f}(Q)=Q' is satisfied.

An automorphism of a manifold (M, Q) with a G‐structure Q is defined analogously.
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The automorphism group \mathrm{A}\mathrm{u}\mathrm{t}(M, Q) of (M, Q) is defined as

\mathrm{A}\mathrm{u}\mathrm{t}(M, Q)=\{f\in Diff (  M) : \overline{f}(Q)=Q\} , (1.1)

where Diff (M) denotes the diffeomorphism group of M . The group \mathrm{A}\mathrm{u}\mathrm{t}(M, Q) may be

infinite‐dimensional, in general.

1.2. Let V be a real vector space, and let C be a closed convex cone in V with vertex

at the origin 0\in V . Then C is said to be a causal cone, if the interior of C is not empty
and if the relation C\cap(-C)=(0) is valid. For a causal cone C in V ,

one can define

the (linear) automorphism group as follows:

\mathrm{A}\mathrm{u}\mathrm{t}(C)=\{g\in \mathrm{G}\mathrm{L}(V):gC=C\} . (1.2)

Denition 1.2. (Faraut [1], Hilgert‐Ólafsson [2]) Let M be an n‐manifold and

let T(M) be the tangent bundle of M with standard fiber \mathbb{R}^{n} . Let C be a causal cone

in \mathbb{R}^{n}
,

and let C=\{C_{p}\}_{p\in M} be a family of causal cones C_{p}\subset T_{p}(M) . Then C is called

a causal structure on M with model cone C,
if there exists a family of local trivialization

\{(U_{i}, $\phi$_{i})\}_{i\in I} of T(M) over M satisfying the condition

$\phi$_{i}(p, C)=C_{p}, p\in U_{i}, i\in I , (1.3)

where $\phi$_{i} : U_{i}\times \mathbb{R}^{n}\rightarrow T(M)|_{U_{i}} is a vector bundle isomorphism over U_{i} . The pair (M, C)
is called a causal manifold.

The condition (1.3) assures the smoothness of the assignment p\mapsto C_{p}.

Denition 1.3. Let (M, C) and (M', C') be two causal manifolds with model

cone C ,
where C=\{C_{p}\}_{p\in M} and C'=\{C_{q}'\}_{q\in M'} . A diffeomorphism f : M\rightarrow M' is

said to be a causal isomorphism, if f_{*}C_{p}=C_{f(p)}' is valid for p\in M.

Similarly, we can define a causal automorphism of (M, C) . The causal automor‐

phism group of (M, C) ,
where C=\{C_{p}\}_{p\in M} ,

is defined as

Aut(M�) =\{g\in Diff (  M) : g_{*}C_{p}=C_{g(p)}, p\in M\} , (1.4)

which may be infinite‐dimensional, in general.
Under the situation in Definition 1.2, it can be seen by using (1.3) that the transition

functions of F(M) are \mathrm{A}\mathrm{u}\mathrm{t}(C) ‐valued with respect to the open covering \{U_{i}\}_{i\in I} ,
which

implies that there exists a subbundle Q() of F(M) with structure group Aut(C). Q()
is given in the coordinate‐free way as follows.
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Lemma 1.4. (\mathrm{K}[6]) Let C=\{C_{p}\}_{p\in M} be a causal structure on M with model

cone C. Then the \mathrm{A}\mathrm{u}\mathrm{t}(C) ‐structure Q() on M is given intrinsically as

Q(C)=\{u\in F(M):u(C)=C_{p}, p\in M\} . (1.5)

We say that Q() is the \mathrm{A}\mathrm{u}\mathrm{t}(C) ‐structure associated to a causal structure C . The

reverse process is also valid.

Lemma 1.5. (\mathrm{K}[6]) Let C be a causal cone in \mathbb{R}^{n}, n=\dim M
,

and let Q be an

\mathrm{A}\mathrm{u}\mathrm{t}(C) ‐structure on M. Then C(Q) :=\{u(C) : u\in Q\} is a causal structure on M with

model cone C.

Theorem 1.6. (\mathrm{K}[6]) Let C be a causal cone in \mathbb{R}^{n} . Let (M, C) and (M', C')
be two causal manifolds with the model cone C. Then a diffeomorphism f : M\rightarrow M'

is a causal isomorphism, if and only if f is an isomorphism (M, Q(C))\rightarrow(M', Q(C'))
of \mathrm{A}\mathrm{u}\mathrm{t}(C) ‐structures. As a special case we have the following coincidence of the two

automorphism groups

Aut(M�) =\mathrm{A}\mathrm{u}\mathrm{t}(M, Q(C)) . (1.6)

1.3. Let D be an irreducible bounded symmetric domain of tube type, and let G(D)
be the full holomorphic automorphism group of D . The Lie algebra \mathfrak{g}:= Lie G(D) is

simple of hermitian type, and is expressed as a 3‐graded Lie algebra (abbreviated to

3‐GLA):

\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1} . (1.7)

Let Z\in \mathfrak{g}_{0} be the characteristic element of \mathfrak{g} , that is, a unique element satisfying
ad Z|_{\mathfrak{g}_{k}}=k1, and let  $\tau$ be a grade‐reversing (i.e.  $\tau$(\mathfrak{g}_{k})=\mathfrak{g}_{-k} ) Cartan involution of

\mathfrak{g} . Note that G(D) is a normal subgroup of the Lie algebra automorphism group Aut \mathfrak{g}

with index 2. Let G(D) be the subgroup of G(D) consisting of all grade‐preserving

automorphisms. G(D) coincides with the centralizer C(Z) of Z in G(D) . We have

that Lie G_{0}(D)=\mathfrak{g}_{0} . Also note that G(D) acts on \mathfrak{g}_{1} linearly. Let us consider two

maximal parabolic subgroups U^{\pm}(D) :=G_{0}(D)\exp \mathfrak{g}\pm 1 of G(D) ,
which are opposite to

each other. The flag manifold

M^{-}=G(D)/U^{-}(D) (1.8)

is the Shilov boundary of D with respect to a suitable choice of invariant complex
structures of D (Koranyi‐Wolf [7]). M^{-} is expressed as a Riemannian symmetric space

(called a symmetric R ‐space) of a maximal compact subgroup of G(D) . Let r be the

rank of M^{-}
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Proposition 1.7. (\mathrm{K}[5]) Under the above situation, there exists a 3r ‐dimensional

graded subalgebra a of the GLA \mathfrak{g} :

a=a_{-1}+a_{0}+a_{1}

satisfy ing the following conditions

(i) a is a direct sum of pairwise commutative \mathfrak{s}[(2, \mathbb{R}) ‐triples \langle E_{-i}, \check{ $\beta$}_{i}, E_{i}\rangle, 1\leq i\leq r,
where E_{-i}=- $\tau$(E_{i}) .

(ii) a_{\pm 1}=\displaystyle \sum_{i=1}^{r}\mathbb{R}E\pm i, a_{0}=\displaystyle \sum_{i=1}^{r}\mathbb{R}\check{ $\beta$}_{i}.

(iii) (Sylvester�s law of inertia)
Let

o_{p,q}:=\displaystyle \sum_{i=1}^{p}E_{i}-\sum_{j=p+1}^{p+q}E_{j}\in a_{1}\subset \mathfrak{g}_{1}, 0\leq p+q\leq r,
and let us consider the G(D) ‐orbits $\Omega$_{p,q}:=G_{0}(D)0_{p,q} in \mathfrak{g}_{1} . Then we have the

G(D) ‐orbit decomposition:

\mathfrak{g}_{1}=\coprod_{p+q\underline{<}r}$\Omega$_{p,q}.
$\Omega$_{p,q} is open, if and only ifp+q=r . Furthermore, $\Omega$_{r,0}(=-$\Omega$_{0,r}) is a Riemannian

symmetric convex cone, which are the non‐compact dual of M^{-} $\Omega$_{i,r-i}(i\neq 0, r)
are affine symmetric non‐convex cones.

Example 1.8. Let D=\{Z=X+iY : X, Y\in H(r, \mathbb{R}), Y>0\} be the Siegel

upper half‐plane of degree r
,
where H(r, \mathbb{R}) denotes the space of real symmetric matrices

of degree r . Then one has G(D)=\mathrm{S}\mathrm{p}(r, \mathbb{R}) , \mathfrak{g}=\mathfrak{s}\mathfrak{p}(r, \mathbb{R}) , \mathfrak{g}_{0}=\mathfrak{g}[(r, \mathbb{R}) , \mathfrak{g}\pm 1=

H(r, \mathbb{R}) , G_{0}(D)=\mathrm{G}\mathrm{L}(r, \mathbb{R}) , U^{-}(D)=\mathrm{G}\mathrm{L}(r, \mathbb{R})\exp H(r, \mathbb{R}) , M^{-}=G(D)/U^{-}(D)=
U(r)/O(r) . Furthermore we have that 0_{p,q}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(I_{p}, I_{q}, 0) ,

where I_{k} denotes the unit

matrix of degree k . Hence the open \mathrm{G}(\mathrm{D}) ‐orbits are given by

$\Omega$_{i,r-i}=\mathrm{G}\mathrm{L}(r, \mathbb{R})/O(i, r-i)=H_{i,r-i}(r, \mathbb{R}) ,

where H_{i,r-i}(r, \mathbb{R}) denotes the subset of H(r, \mathbb{R}) consisting of elements of signature

(i, r-i) . We also have the equality $\Omega$_{p,q}=H_{p,q}(r, \mathbb{R}) , 0\leq p+q<r . Note that the

linear automorphism group \mathrm{A}\mathrm{u}\mathrm{t}(H_{r,0}(r, \mathbb{R})) is G_{0}(D)(=\mathrm{G}\mathrm{L}(r, \mathbb{R})) .

§2. Liouville‐type theorems for the causal flag manifolds M^{-}

Let C:=\overline{ $\Omega$}_{r,0} be the closure of the symmetric convex cone $\Omega$_{r,0}\subset \mathfrak{g}_{1} . Then C is a

causal cone. Moreover, considering the equality C=\displaystyle \prod_{p\leq r}$\Omega$_{p,0} ,
we have that

Aut (C)=G_{0}(D) . (2.1)
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Let 0^{-} denote the origin of the coset space M^{-}=G(D)/U^{-}(D) . In view of (1.7), the

tangent space T_{o-}(M^{-}) can be identified with \mathfrak{g}_{1} . As was done in \mathrm{K}[4] ,
one can extend

the cone C at o^{-} to the G(D) ‐invariant causal structure C on the whole M^{-} (with
model cone C). The following theorem is an analogue of the Liouville theorems for the

conformal transformation group of the pseudo‐Euclidean spaces.

Theorem 2.1. Let D be an irreducible bounded symmetric domain of tube type,
and let G(D) be the full holomorphic automorphism group ofD . Let M^{-}=G(D)/U^{-}(D)
be the Shilov boundary of D expressed as the flag manifold, and let C be the G(D)-
invariant causal structure on M^{-} with model cone C:=\overline{ $\Omega$}_{r,0} . Suppose that \dim M^{-}=

\dim_{\mathbb{C}}D\geq 3 . Then we have

\mathrm{A}\mathrm{u}\mathrm{t}(M^{-}, C)=G(D) , (2.2)

as the transfO rmation groups on M^{-} . Furthermore, let U be a connected open set in

M^{-}
,

and let f be a local causal transfO rmation on M‐defined on U. Then f extends

to the causal automorphism defined on the whole M^{-} induced by a unique element

a\in G(D) .

Proof. (Sketch) By Theorem 1.6, the equivalency of the causal structures with

model cone C reduces to that of G_{0}(D)- structures. The latter equivalence problem
was perfectly solved by constructing the Cartan connection, by Tanaka [10]. Let  $\omega$

be the \mathfrak{g}‐valued left invariant Maurer‐Cartan form of G(D) . We regard G(D) as the

total space of the principal U^{-}(D) ‐bundle over M^{-}=G(D)/U^{-}(D) . Then  $\omega$ is the

Cartan connection corresponding to the \mathrm{G}(\mathrm{D}) ‐structure Q(C) . In more detail, under

the dimension assumption of M^{-}
,

there is a one‐to‐one correspondence between (local)
automorphisms of the \mathrm{G}(\mathrm{D}) ‐structure Q() on M^{-} and (local) bundle automorphisms
of the principal bundle G(D)\rightarrow M^{-} leaving  $\omega$ invariant (Tanaka [10]). Thus the

problem of extending the local causal transformation  f is reduced to that of extending
a local diffeomorphism on G(D) leaving  $\omega$ invariant. This is solved by using the classical

result (e.g. Sternberg [8]) on the extension of local automorphisms of the Maurer‐Cartan

structure (G(D),  $\omega$) . \square 

Remark. The relation (2.2) was first obtained in Kaneyuki [4], by a slightly
different method. The crucial part of the proof is to show that the linear isotropy group

of \mathrm{A}\mathrm{u}\mathrm{t}(M^{-}, C) at the origin o^{-} is G_{0}(D) .

Corollary 2.2. Let N be a connected open submanifO ld of (M^{-}, C) ,
and let C_{N}

be the restriction of C to N. Suppose that \dim M^{-}\geq 3 . Then we have

\mathrm{A}\mathrm{u}\mathrm{t}(N, C_{N})=\{g\in \mathrm{A}\mathrm{u}\mathrm{t}(M^{-}, C)=G(D) : gN=N\} (2.3)
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§3. Linearity of causal automorphisms of symmetric cones $\Omega$_{i,r-i}

For simplicity, we will denote an arbitrary symmetric cone $\Omega$_{i,r-i}, (0\leq i\leq r) by
 $\Omega$ . Let us recall the causal cone  C=\overline{ $\Omega$}_{r,0} in \mathfrak{g}_{1} with vertex at 0 . Attaching the cone

C_{X}:=C+X to an arbitrary point X\in \mathfrak{g}_{1} ,
we obtain a parallel cone field

C_{\mathfrak{g}_{1}}:=\{C_{X}\}_{X\in \mathfrak{g}_{1}},

which is the causal structure on \mathfrak{g}_{1} with model cone C.

Now we need the other parabolic subgroup U^{+}(D) . We consider the affine repre‐

sentation of U^{+}(D) on \mathfrak{g}_{1} . Choose an element u=(\exp A)g\in(\exp \mathfrak{g}_{1})G_{0}(D)=U^{+}(D) .

For each point X\in \mathfrak{g}_{1} ,
we define the image point u\cdot X as

u\cdot X:=(\mathrm{A}\mathrm{d}g)X+A.

Under this action, \mathfrak{g}_{1} is expressed as the homogeneous space

\mathfrak{g}_{1}=U^{+}(D)/G_{0}(D) .

The causal structure C_{\mathfrak{g}_{1}} is U^{+}(D) ‐invariant. Moreover U^{+}(D) coincides with the affine
causal automorphism group \mathrm{A}\mathrm{f}\mathrm{f}(\mathfrak{g}_{1}, C_{\mathfrak{g}_{1}}) ,

that is, the group of all affine transformations

of \mathfrak{g}_{1} leaving C_{\mathfrak{g}_{1}} invariant. The restriction of C_{\mathfrak{g}_{1}} to  $\Omega$ is denoted by  C_{ $\Omega$} ,
which is a

\mathrm{G}(\mathrm{D}) ‐invariant causal structure on  $\Omega$ with model cone  C.

Next we consider the map  $\xi$ of \mathfrak{g}_{1} into M^{-} defined by

 $\xi$(X)=(\exp X)0^{-}, X\in \mathfrak{g}_{1}.

It is well‐known that  $\xi$ is an open dense embedding of \mathfrak{g}_{1} into M^{-} . Furthermore  $\xi$ is

 U^{+}(D) ‐equivariant. Identifying \mathfrak{g}_{1} and  $\Omega$ with their  $\xi$‐images, we have the following

Lemma 3.1.  C_{\mathfrak{g}_{1}} and C_{ $\Omega$} coincides with the restrictions of C to \mathfrak{g}_{1} and  $\Omega$
,

re‐

spectively, that is, (\mathfrak{g}_{1}, C_{\mathfrak{g}_{1}}) and ( $\Omega$, C_{ $\Omega$}) are open causal submanifO lds of (M^{-}, C) .

Therefore, as an immediate consequence of Corollary 2.2, we have

Lemma 3.2. Suppose that dimgl =\dim $\Omega$\geq 3 . Then we have

Aut(g�) =\{f\in G(D) : f(\mathfrak{g}_{1})=\mathfrak{g}_{1}\},
(3.1)

Aut =\{f\in G(D) : f() = $\Omega$\}.

In the next theorem, we determine the causal automorphism groups of symmetric

cones, which turn out to be one and the same linear group, independent of i.
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Theorem 3.3. Let  $\Omega$ be any one of the symmetric cones  $\Omega$_{i,r-i}(0\leq i\leq r) in

\mathfrak{g}_{1} . Suppose that dimgl =\dim $\Omega$\geq 3 . Then we have

\mathrm{A}\mathrm{u}\mathrm{t}(\mathfrak{g}_{1}, C_{\mathfrak{g}_{1}})=U^{+}(D)= Aff(g�),
Aut =G_{0}(D) .

Proof. (Sketch) We will only give the outline of the proof of the second equality.
Put L:= Aut \subset G(D) ,

and let [ := Lie L. [has the structure of a graded

subalgebra of \mathfrak{g} . We then conclude that [is either one of the parabolic subalgebras

\mathrm{u}^{\pm}=\mathfrak{g}_{0}+\mathfrak{g}\pm 1 or the Levi‐subalgebra \mathfrak{g}_{0} . It is easy to see that the case [=\mathrm{u}^{+} is

excluded. Also the case [ =\mathrm{u}^{-} is excluded by using Takeuchi [9]. The case [=\mathfrak{g}_{0}
actually occurs. \square 
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