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The Schwarzian derivative on symmetric spaces of
Cayley type

By

Khalid KOUFANY*

Abstract

Let M be a symmetric space of Cayley type and f a conformal diffeomorphism of M. We
study a relationship between the conformal factor of f and a generalized Schwarzian derivatine
of f.

§1. Introduction

Let H be the single sheeted hyperboloid with the unique Lorentz metric g. A

transfomation f of H is called conformal, if
f'g=crg

where c; is the conformal factor of f.

It is well known that H is conformally equivalent to S* x S!\ Ag: where S! is
the unit circle and Ag: the null space. The group of (orientation preserving) conformal
diffeomorphisms of H coincides with Diff(S?), the group of diffeomorphisms of the circle
S1. In [KS] Kostant and Sternberg, pointed out an interesting relationship between the
Shwarzian derivative of a transformation f € Diff(S!) and the corresponding conformal
factor ¢y (which is a singular function on the null space). More precisely, they proved
that cy tends to 1 on H as we approach infinity, and that the Hessain of the (extended)
¢ is the Schwarzian derivative of f.
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The single sheeted hyperboloid is the simplest example of a large class of para-
hermitian symmetric spaces, the Cayley type spaces. A such space is characterized as
an open orbit in S x S where S is the Shilov boundary of a bounded symmetric domain
of tube type [K;]. In this paper, we will use this characterization to extend the results
of Kostant and Sternberg to symmetric spaces of Cayley type.

§ 2. Causal symmetric spaces, Symmetric spaces of Cayley type

A causal structure on a a smooth n—manifold M is a cone field C = (C})penr where
C, CT,M

is a causal cone ie. non-zero, closed convex cone which is pointed (C, N —C), = {0}),
generating (C, — C, = T, M) and such that C, depends smoothly on p € M.

If M = G/H is a homogeneous space, where G is a Lie group and H C G a closed
subgroup, then the causal structure is said to be G—invariant if for any g € G

Cyg.o = Dg(x)(Cy), forx e M,

where Dg(x) is the derivative of g at x.

Let M = G/H be a symmetric space, ie. there exists an involution o of G such
that (G7)° C H C G where (G7)° is the identity component of G.
Let g = Lie(G) be the Lie algebra of G and put

h= g(+170)7 q= g(—l,O’)

the eigenspaces of 0. Then g = b @ q and the tangent space T,, M at o = 1H can be
identified with q. In this identification, the derivative Dg(xg), g € H corresponds to
Ad(g). Therefore an invariant causal structure on M is determined by a causal cone C
in q which is Ad(H )—invariant.

Suppose that G is semi-simple with a finite centre and that the pair (g,b) is irre-
ducible (ie. there is no non-trivial ideal in g which is invariant under o). Then, there
exists a Cartan involution # commuting with the given involution o.

Let K be the corresponding maximal compact subgroup of G. Let ¢ = g(+1,0),
p=g(—1,0). Then g = £ @ p is the corresponding Cartan decomposition of g.

Let Coneg(q) be the set of Ad(H)-invariant causal cones in q. Then following
Olafsson (see [H-O]) the symmetric space M is called
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(CC) Compactly Causal space if there exists a C' € Conep(q) such that C° N€ # 0.

(NCC) Non-Compactly Causal space if there exists a C' € Conep(q) such that C°Np #
0.

(CT) Cayley Type space if it is (CC) and (NCC).

For example, the hyperboloid of one sheet realized as M = SOy(2,1)/S0p(1,1) is
a special case of Cayley type symmetric spaces.

§ 3. Causal compactification of symmetric spaces of Cayley type

Let D=G/K C Vg =V 44V ~ C" be a bounded symmetric domain in C—vector
space. The group G is the identity component of the group of holomorphic automor-
phisms of D, and K = {g € G | g - 0 = o} the stabilizer of the base point o = 1K € D,
which is a maximal compact subgroup of G.

Suppose that D is of tube type, then V is an Euclidean Jordan algebra and

D~Tqg=V+iQ

where €2 is the symmetric cone of V.
Let z — Z the complex conjugation in V¢ with respect to V' and e the unit element
of V. The set

S={zeV|zZz=¢}

is a connected submanifold of V¢ which is a Riemannian symmetric space of compact
type
S~U/U,,

where U is the identity component of the group of linear transformations g € GL(V¢)
such that ¢S =S, and U, is the stabilizer subgroup of e € S.

There exists on V¢ a U—invariant spectral norm z — |z|, and one can prove (see
[F-K]) that D is the unit disc

D={ze V||| <1}

and S is its Shilov boundary.
Let

G(Q) ={g € GL(V) | ¢Q = Q}.
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It is a reductive Lie group which acts transitively on Q. Let Gy = G(€2)° be the identity
component of G().

Let G° be the identity component of the group of holomorphic automorphisms of
Tq. Then Gy is a Lie subgroup of G¢. The subgroups Gp and Nt = {t, : 2 —~ z+v, v €
V'}, together with the inversion j : z — —271, generate the group G°.

The quadratic representation P of the Jordan algebra V is given by P(x) = 2L(x)?—
L(2?), where L(z) is the multiplication by .
The Lie algebra g of G¢ is the set of vector fields on V' of the form

X(z)=u+Tz+ P(z)v ~ (u,T,v),

where T' is linear and u,v € V.

Consider on G¢ the involutions

o°(g)=vogov
0°(g) = (—v)ogo(-v)

where v : z ++ z71. We use the same letters for the corresponding involutions on the
Lie algebra g°.
If X =(u,T,v) € g° then

o(X) = (v,-T",u) and 0°(X) = (—v,-T", —u),

Therefore,
he:= g% +1) ={(u,T,u) |[ueV, T € &}
q¢:=g°(c¢ —1) = {(u, L(v), —u) | u,v € V}
ti=g(0°+1) = {(u, T, —u) |u eV, T €t}
pei=g°(0% —1) = {(v, L(v),u) |[u e V}.

Here £ is the algebra of derivations of V.

Consider the convex cones in ¢°

Cy={(u,L(v), —u) |u+v € -Qu—v €},
Co={(u, L(v), —u) |u+v € Qu—vecQ}

Then C; and Cy are Ad(H¢)—invariant causal cones and
(@ ﬂpc 75@, C’QQEC;A@.

Let ¢ : 2z = i(e+2)(e—2)~! be the Cayley transform corredponding to the bounded
symmetric domain D. Then we have
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Theorem 3.1 ([K;, Ks]).
1. H:=c'oGyoc=H®:=GNG".

2. M = G/H ~ G°/H® is a symmetric space of Cayley type, and every Cayley type
space is given in this way.

Let
Ag ={(z,w) € Sx S| A(z —w) =0}

be the null space of S x S, where A is the determinant function of V', extended to V.
The group G acts diagonally on S x S. Furthermore,

Theorem 3.2 ([Ky, Ks]). G acts transitively on S x S\ Ag and the stabilizer of
the base point (e, —e) € Sx S\ Ag is the subgroup H. Therefore, M = G/H ~ SxS\Ag
and S x S is the (causal) compactification of M.

For example,

D = SU(n,n)/S(U(n) x U(n))
={z € Mat(n,C) | I, — 2"z > 0}

S =U(n)

M = SU(n,n)/GL(n,C) x RT

| ~ {(z,w) € U(n) x U(n) | Det(z — w) # 0},
D = Sp(n,R)/U(n)
={z € Sym(n,C) | I, — z*z > 0}
S =U(n)/O(n)
={zeU(n)|z"'=z}
M = Sp(n,R)/GL(n,R) x R*
~ {(z,w) € U(n) x U(n) | 2* = z,w" = w, Det(z —w) # 0}.

§4. The Schwarzian derivative on the one-sheeted hyperboloid

Recall the classical cross-ratio of four points in the complex plane

Z1 — X3 X1 — %4
[21722,23,24] = :

Z9 — 23 ' 22—254.
In [C] Elie Cartan have proved the following formula for the cross-ratio.

Theorem 4.1.  Consider f : S — St and four points x1,x2, x3, x4 € S tending
tox € St. Then

[.f(xl)»f(x2)7f(x3)»f(x4)] _ 1 — %S(f)(x)(x]_ — x2)(aj3 — x4)

[ml 7m27m37w4]

+[ higher order terms |
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where S(f) denote the Schwarzian derivative of f,

111 1 2
S 3 ()
sH=%-5%]
froo2\J
Recall that the one sheeted hyperboloid can be realized as

H=SL(2,R)/R%
~ SU(1,1)/50(1,1)
~ Sl X Sl \Asl
= {(e",¢e1%2) . 0 £ 0,}.
H carries a (unique up to multiplicative constant) Lorentz metric, g, invariant
under SL(2,R),
db,dbs

Let f : S' — S! be a diffeomorphism viewed as a conformal transformation of
(H,8), f*'g = cyg. Applying the Cartan formula, when 01,0y — 0, we get

frg(61,02)
cr(601,02) — 1= 560 1

= LS(F)(e®)(e — ) 4 ...

Then we have

Theorem 4.2 (Kostant-Sternberg [KS]).  The conformal factor c; — 1 as (61,62) —
Ag1i. In the other word cy tends to 1 on H as we approach the infinity.

So let us extend cs to be defined on S x S' by setting it equal to 1 on Agi. Then

cy is twice differentiable on S' x S, it has Agi as critical manifold and the Hessian
Hess(cy) is equal to S(f).

§5. The Schwarzian derivative on symmetric spaces of Cayley type

The Kantor [Kan| cross-ratio for z7, 29, 23, 24 in Vg, is the rational function

Az —23)  Alzr — z4)
A(zg — 23)  A(zg — 24)

where A is the determinant function of V' (extented to V).

[Z17227237Z4] =

The cross-ratio is invariant under the group G¢ (when it is well defined) : The

invariance under translations is clear. The invariance under the group Gg follows from
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the relation A(gz) = x(g9)A(z) where x is a character of Gy. The invariance under the
inversion follows from the Hua identity A(w™! — 271) = A(2) 'A(z — w)A(w) L.

On the Cayley type symmetric space M ~ S x S\ Ag there exists a G—invariant
measure

g = |A(z — w)| 7?7 do(2)do(w),

where n is the dimension of V' and r its rank.

Let (-,-) be the inner product of the Euclidean Jordan algebra V extented to a
Hermitian inner product of V.

Let f: Vo — V¢ be a map of class C3. Let z; = z + ta;ju be four points tending to
z€ D, wheret € R and a; € R for j =1,2,3,4.

Theorem 5.1.  For any a € R we have

[f(zl)a f(z2)7 f(Z3), f(z4)]a

[217 22,23, 24]04

—1=at*(a1 — as)(az — as)S(f)(2) + o(t?)

where ]
(P(F)F

1, ,—
S() =" F ) -
with f' = Df(2)u, f" = D2f(2)(u,u) and " = D*f(2)(u, u, )

One can also prove

Theorem 5.2.  Let f be an orientation-preserving diffeomorphism of (M, g).
Then

1. ¢f(z,w) — 1 as z — w, the function c; extends smoothly to S x S and has,
moreover, Ag as its critical set.

2. The Schwarzian S(f) completely determines cy.

The complete proofs will appear in a forthcoming paper.
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