The Schwarzian derivative on symmetric spaces of Cayley type

By

Khalid Koufany*

Abstract

Let M be a symmetric space of Cayley type and f a conformal diffeomorphism of M. We study a relationship between the conformal factor of f and a generalized Schwarzian derivatine of f.

§ 1. Introduction

Let \mathcal{H} be the single sheeted hyperboloid with the unique Lorentz metric $\underline{\mathbf{g}}$. A transformation f of \mathcal{H} is called conformal, if

$$f^*\mathbf{g} = \mathbf{c}_f\mathbf{g}$$

where \mathbf{c}_f is the conformal factor of f.

It is well known that \mathcal{H} is conformally equivalent to $S^1 \times S^1 \setminus \Delta_{S^1}$ where S^1 is the unit circle and Δ_{S^1} the null space. The group of (orientation preserving) conformal diffeomorphisms of \mathcal{H} coincides with $\mathrm{Diff}(S^1)$, the group of diffeomorphisms of the circle S^1 . In [KS] Kostant and Sternberg, pointed out an interesting relationship between the Shwarzian derivative of a transformation $f \in \mathrm{Diff}(S^1)$ and the corresponding conformal factor \mathbf{c}_f (which is a singular function on the null space). More precisely, they proved that \mathbf{c}_f tends to 1 on \mathcal{H} as we approach infinity, and that the Hessain of the (extended) \mathbf{c}_f is the Schwarzian derivative of f.

Received September 11, 2009. Accepted December 25, 2009.

2000 Mathematics Subject Classification(s): 32M15, 53A30

Key Words: Symmetre spaces of Cayley type, Schwarzian derivative

e-mail: khalid.koufany@univ-lorraine.fr

^{*}Institut Élie Cartan, UMR 7502, Université de Lorraine, CNRS, INRIA. B.P. 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

The single sheeted hyperboloid is the simplest example of a large class of parahermitian symmetric spaces, the Cayley type spaces. A such space is characterized as an open orbit in $S \times S$ where S is the Shilov boundary of a bounded symmetric domain of tube type $[K_1]$. In this paper, we will use this characterization to extend the results of Kostant and Sternberg to symmetric spaces of Cayley type.

§ 2. Causal symmetric spaces, Symmetric spaces of Cayley type

A causal structure on a a smooth n-manifold M is a cone field $\mathcal{C} = (C_p)_{p \in M}$ where

$$C_p \subset T_p M$$

is a causal cone *ie.* non-zero, closed convex cone which is pointed $(C_p \cap -C_p = \{0\})$, generating $(C_p - C_p = T_p M)$ and such that C_p depends smoothly on $p \in M$.

If M = G/H is a homogeneous space, where G is a Lie group and $H \subset G$ a closed subgroup, then the causal structure is said to be G-invariant if for any $g \in G$

$$C_{g \cdot x} = Dg(x)(C_x), \text{ for } x \in M,$$

where Dg(x) is the derivative of g at x.

Let M = G/H be a symmetric space, *ie.* there exists an involution σ of G such that $(G^{\sigma})^{\circ} \subset H \subset G^{\sigma}$ where $(G^{\sigma})^{\circ}$ is the identity component of G^{σ} .

Let $\mathfrak{g} = \operatorname{Lie}(G)$ be the Lie algebra of G and put

$$\mathfrak{h} = \mathfrak{g}(+1, \sigma), \quad \mathfrak{q} = \mathfrak{g}(-1, \sigma)$$

the eigenspaces of σ . Then $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$ and the tangent space $T_{x_0}M$ at $x_0 = 1H$ can be identified with \mathfrak{q} . In this identification, the derivative $Dg(x_0)$, $g \in H$ corresponds to Ad(g). Therefore an invariant causal structure on M is determined by a causal cone C in \mathfrak{q} which is Ad(H)—invariant.

Suppose that G is semi-simple with a finite centre and that the pair $(\mathfrak{g}, \mathfrak{h})$ is irreducible (*ie.* there is no non-trivial ideal in \mathfrak{g} which is invariant under σ). Then, there exists a Cartan involution θ commuting with the given involution σ .

Let K be the corresponding maximal compact subgroup of G. Let $\mathfrak{k} = \mathfrak{g}(+1,\theta)$, $\mathfrak{p} = \mathfrak{g}(-1,\theta)$. Then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is the corresponding Cartan decomposition of \mathfrak{g} .

Let $\operatorname{Cone}_{H}(\mathfrak{q})$ be the set of $\operatorname{Ad}(H)$ -invariant causal cones in \mathfrak{q} . Then following Ólafsson (see [H-O]) the symmetric space M is called

- (CC) Compactly Causal space if there exists a $C \in \text{Cone}_H(\mathfrak{q})$ such that $C^{\circ} \cap \mathfrak{k} \neq \emptyset$.
- (NCC) Non-Compactly Causal space if there exists a $C \in \text{Cone}_H(\mathfrak{q})$ such that $C^{\circ} \cap \mathfrak{p} \neq \emptyset$.
- (CT) Cayley Type space if it is (CC) and (NCC).

For example, the hyperboloid of one sheet realized as $M = SO_0(2,1)/SO_0(1,1)$ is a special case of Cayley type symmetric spaces.

§ 3. Causal compactification of symmetric spaces of Cayley type

Let $D = G/K \subset V_{\mathbb{C}} = V + iV \simeq \mathbb{C}^n$ be a bounded symmetric domain in \mathbb{C} -vector space. The group G is the identity component of the group of holomorphic automorphisms of D, and $K = \{g \in G \mid g \cdot o = o\}$ the stabilizer of the base point $o = 1K \in D$, which is a maximal compact subgroup of G.

Suppose that D is of tube type, then V is an Euclidean Jordan algebra and

$$D \simeq T_{\Omega} = V + i\Omega$$

where Ω is the symmetric cone of V.

Let $z \mapsto \overline{z}$ the complex conjugation in $V_{\mathbb{C}}$ with respect to V and e the unit element of V. The set

$$S = \{ z \in V_{\mathbb{C}} \mid \bar{z}z = e \}$$

is a connected submanifold of $V_{\mathbb{C}}$ which is a Riemannian symmetric space of compact type

$$S \simeq U/U_e$$
,

where U is the identity component of the group of linear transformations $g \in GL(V_{\mathbb{C}})$ such that gS = S, and U_e is the stabilizer subgroup of $e \in S$.

There exists on $V_{\mathbb{C}}$ a U-invariant spectral norm $z\mapsto |z|$, and one can prove (see [F-K]) that D is the unit disc

$$D = \{ z \in V_{\mathbb{C}} \mid |z| < 1 \}$$

and S is its Shilov boundary.

Let

$$G(\Omega) = \{ g \in GL(V) \mid g\Omega = \Omega \}.$$

It is a reductive Lie group which acts transitively on Ω . Let $G_0 = G(\Omega)^{\circ}$ be the identity component of $G(\Omega)$.

Let G^c be the identity component of the group of holomorphic automorphisms of T_{Ω} . Then G_0 is a Lie subgroup of G^c . The subgroups G_0 and $N^+ = \{t_v : z \mapsto z + v, v \in V\}$, together with the inversion $j : z \mapsto -z^{-1}$, generate the group G^c .

The quadratic representation P of the Jordan algebra V is given by $P(x) = 2L(x)^2 - L(x^2)$, where L(x) is the multiplication by x.

The Lie algebra \mathfrak{g}^c of G^c is the set of vector fields on V of the form

$$X(z) = u + Tz + P(z)v \simeq (u, T, v),$$

where T is linear and $u, v \in V$.

Consider on G^c the involutions

$$\sigma^{c}(g) = \nu \circ g \circ \nu$$
$$\theta^{c}(g) = (-\nu) \circ g \circ (-\nu)$$

where $\nu: z \mapsto \bar{z}^{-1}$. We use the same letters for the corresponding involutions on the Lie algebra \mathfrak{g}^c .

If
$$X = (u, T, v) \in \mathfrak{g}^c$$
, then

$$\sigma^{c}(X) = (v, -T^{*}, u)$$
 and $\theta^{c}(X) = (-v, -T^{*}, -u)$,

Therefore,

$$\begin{split} & \mathfrak{h}^c := \mathfrak{g}^c(\sigma^c, +1) = \{(u, T, u) \mid u \in V, \ T \in \mathfrak{k}_0\} \\ & \mathfrak{g}^c := \mathfrak{g}^c(\sigma^c, -1) = \{(u, L(v), -u) \mid u, v \in V\} \\ & \mathfrak{k}^c := \mathfrak{g}^c(\theta^c, +1) = \{(u, T, -u) \mid u \in V, \ T \in \mathfrak{k}_0\} \\ & \mathfrak{p}^c := \mathfrak{g}^c(\theta^c, -1) = \{(u, L(v), u) \mid u \in V\}. \end{split}$$

Here \mathfrak{t}_0 is the algebra of derivations of V.

Consider the convex cones in \mathfrak{q}^c

$$C_1 = \{(u, L(v), -u) \mid u + v \in -\bar{\Omega}, u - v \in \bar{\Omega}\},\$$

$$C_2 = \{(u, L(v), -u) \mid u + v \in \bar{\Omega}, u - v \in \bar{\Omega}\}.$$

Then C_1 and C_2 are $Ad(H^c)$ -invariant causal cones and

$$C_1 \cap \mathfrak{p}^c \neq \emptyset, \ C_2 \cap \mathfrak{t}^c \neq \emptyset.$$

Let $\mathbf{c}: z \mapsto i(e+z)(e-z)^{-1}$ be the Cayley transform corresponding to the bounded symmetric domain D. Then we have

Theorem 3.1 ($[K_1, K_2]$).

- 1. $H := \mathbf{c}^{-1} \circ G_0 \circ \mathbf{c} = H^c := G \cap G^c$.
- 2. $M = G/H \simeq G^c/H^c$ is a symmetric space of Cayley type, and every Cayley type space is given in this way.

Let

$$\Delta_S = \{(z, w) \in S \times S \mid \Delta(z - w) = 0\}$$

be the null space of $S \times S$, where Δ is the determinant function of V, extended to $V_{\mathbb{C}}$. The group G acts diagonally on $S \times S$. Furthermore,

Theorem 3.2 ([K₁, K₂]). G acts transitively on $S \times S \setminus \Delta_S$ and the stabilizer of the base point $(e, -e) \in S \times S \setminus \Delta_S$ is the subgroup H. Therefore, $M = G/H \simeq S \times S \setminus \Delta_S$ and $S \times S$ is the (causal) compactification of M.

For example,

$$D = SU(n,n)/S(U(n) \times U(n))$$

$$= \{z \in \text{Mat}(n,\mathbb{C}) \mid I_n - z^*z \gg 0\}$$

$$S = U(n)$$

$$M = SU(n,n)/GL(n,\mathbb{C}) \times \mathbb{R}^+$$

$$\simeq \{(z,w) \in U(n) \times U(n) \mid \text{Det}(z-w) \neq 0\},$$
and
$$D = Sp(n,\mathbb{R})/U(n)$$

$$= \{z \in \text{Sym}(n,\mathbb{C}) \mid I_n - z^*z \gg 0\}$$

$$S = U(n)/O(n)$$

$$= \{z \in U(n) \mid z^t = z\}$$

$$M = Sp(n,\mathbb{R})/GL(n,\mathbb{R}) \times \mathbb{R}^+$$

$$\simeq \{(z,w) \in U(n) \times U(n) \mid z^t = z, w^t = w, \text{Det}(z-w) \neq 0\}.$$

§ 4. The Schwarzian derivative on the one-sheeted hyperboloid

Recall the classical cross-ratio of four points in the complex plane

$$[z_1, z_2, z_3, z_4] = \frac{z_1 - z_3}{z_2 - z_3} : \frac{z_1 - z_4}{z_2 - z_4}.$$

In [C] Élie Cartan have proved the following formula for the cross-ratio.

Theorem 4.1. Consider $f: S^1 \to S^1$ and four points $x_1, x_2, x_3, x_4 \in S^1$ tending to $x \in S^1$. Then

$$\frac{[f(x_1), f(x_2), f(x_3), f(x_4)]}{[x_1, x_2, x_3, x_4]} - 1 = \frac{1}{6}S(f)(x)(x_1 - x_2)(x_3 - x_4) + [higher order terms]$$

where S(f) denote the Schwarzian derivative of f,

$$S(f) = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2.$$

Recall that the one sheeted hyperboloid can be realized as

$$\mathcal{H} = SL(2, \mathbb{R})/\mathbb{R}_{+}^{*}$$

$$\simeq SU(1, 1)/SO(1, 1)$$

$$\simeq S^{1} \times S^{1} \setminus \Delta_{S^{1}}$$

$$= \{(e^{i\theta_{1}}, e^{i\theta_{2}}) : \theta_{1} \not\equiv \theta_{2}\}.$$

 \mathcal{H} carries a (unique up to multiplicative constant) Lorentz metric, $\underline{\mathbf{g}}$, invariant under $SL(2,\mathbb{R})$,

$$\underline{\mathbf{g}} = \frac{d\theta_1 d\theta_2}{|e^{i\theta_1} - e^{i\theta_2}|^2}.$$

Let $f: S^1 \to S^1$ be a diffeomorphism viewed as a conformal transformation of $(\mathcal{H}, \underline{\mathbf{g}}), f^*\underline{\mathbf{g}} = \mathbf{c}_f\underline{\mathbf{g}}$. Applying the Cartan formula, when $\theta_1, \theta_2 \to \theta$, we get

$$\mathbf{c}_{f}(\theta_{1}, \theta_{2}) - 1 = \frac{f^{*}\underline{g}(\theta_{1}, \theta_{2})}{\underline{g}(\theta_{1}, \theta_{2})} - 1$$

$$= \frac{1}{6}S(f)(e^{i\theta})(e^{i\theta_{1}} - e^{i\theta_{2}})^{2} + \dots$$

Then we have

Theorem 4.2 (Kostant-Sternberg [KS]). The conformal factor $\mathbf{c}_f \to 1$ as $(\theta_1, \theta_2) \to \Delta_{S^1}$. In the other word \mathbf{c}_f tends to 1 on \mathcal{H} as we approach the infinity. So let us extend \mathbf{c}_f to be defined on $S^1 \times S^1$ by setting it equal to 1 on Δ_{S^1} . Then \mathbf{c}_f is twice differentiable on $S^1 \times S^1$, it has Δ_{S^1} as critical manifold and the Hessian $Hess(\mathbf{c}_f)$ is equal to S(f).

§ 5. The Schwarzian derivative on symmetric spaces of Cayley type

The Kantor [Kan] cross-ratio for z_1, z_2, z_3, z_4 in $V_{\mathbb{C}}$, is the rational function

$$[z_1, z_2, z_3, z_4] = \frac{\Delta(z_1 - z_3)}{\Delta(z_2 - z_3)} : \frac{\Delta(z_1 - z_4)}{\Delta(z_2 - z_4)}$$

where Δ is the determinant function of V (extented to $V_{\mathbb{C}}$).

The cross-ratio is invariant under the group G^c (when it is well defined): The invariance under translations is clear. The invariance under the group G_0 follows from

the relation $\Delta(gz) = \chi(g)\Delta(z)$ where χ is a character of G_0 . The invariance under the inversion follows from the Hua identity $\Delta(w^{-1} - z^{-1}) = \Delta(z)^{-1}\Delta(z - w)\Delta(w)^{-1}$.

On the Cayley type symmetric space $M \simeq S \times S \setminus \Delta_S$ there exists a G-invariant measure

$$\mathbf{g} = |\Delta(z - w)|^{-2\frac{n}{r}} d\sigma(z) d\sigma(w),$$

where n is the dimension of V and r its rank.

Let $\langle \cdot, \cdot \rangle$ be the inner product of the Euclidean Jordan algebra V extented to a Hermitian inner product of $V_{\mathbb{C}}$.

Let $f: V_{\mathbb{C}} \to V_{\mathbb{C}}$ be a map of class C^3 . Let $z_j = z + ta_j u$ be four points tending to $z \in \bar{D}$, where $t \in \mathbb{R}$ and $a_i \in \mathbb{R}$ for j = 1, 2, 3, 4.

Theorem 5.1. For any $\alpha \in \mathbb{R}$ we have

$$\frac{[f(z_1), f(z_2), f(z_3), f(z_4)]^{\alpha}}{[z_1, z_2, z_3, z_4]^{\alpha}} - 1 = \alpha t^2 (a_1 - a_2)(a_3 - a_4)S(f)(z) + o(t^3)$$

where

$$S(f) = \frac{1}{6} \langle f^{'''}, f'^{-1} \rangle - \frac{1}{4} \langle P(f^{''}) f'^{-1}, f'^{-1} \rangle$$

with
$$f' = Df(z)u$$
, $f'' = D^2f(z)(u, u)$ and $f''' = D^3f(z)(u, u, u)$

One can also prove

Theorem 5.2. Let f be an orientation-preserving diffeomorphism of (M, \underline{g}) . Then

- 1. $c_f(z, w) \to 1$ as $z \to w$, the function c_f extends smoothly to $S \times S$ and has, moreover, Δ_S as its critical set.
- 2. The Schwarzian S(f) completely determines c_f .

The complete proofs will appear in a forthcoming paper.

References

- [C] Cartan, É., Leçons sur la théorie des espaces à connexion projective. Gauthiers-Villars, Paris 1937.
- [D-G] Duval, C.; Guieu, L., The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet. J. Geom. Phys. **33** (2000), 103–127.

- [F-K] Faraut, J.; Korányi, A., Analysis on symmetric cones. Oxford Math. Monog. The Clarendon Press, Oxford University Press, New York, 1994.
- [Kan] Kantor, I. L., Non-linear groups of transformations defined by general norms of Jordan algebras. *Dokl. Akad. Nauk SSSR*, **172**, (1967) 779–782.
- [KS] Kostant, B.; Sternberg, S., The Schwartzian derivative and the conformal geometry of the Lorentz hyperboloid. M. Cahen and M. Flato (eds.), *Quantum Theories and Geometry*, 113–125, Kluwer Academic Publishers, 1988.
- [K₁] Koufany, K., Réalisation des espaces symétriques de type Cayley. C. R. Acad. Sci. Paris, **318** (1994), 425–428.
- $[K_2]$ —, Semi-groupe de Lie associé à un cône symétrique. Ann. Inst. Fourier, **45** (1995), 1–29.
- [H-Ó] Hilgert, J.; Ólafsson G., Causal symmetric spaces. Geometry and harmonic analysis. Perspect. Math, 18. Academic Press, Inc., San Diego, CA, 1997.